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Abstract

A Wireless Sensor Network (WSN) security strategy is imperative to counteract security threat-
s, and energy consumption directly affects the network life-time of a wireless sensor; thus an
attempt to exploit a low-consumption Intrusion Detection System (IDS) to detect malicious
attacks makes a lot of sense. Current Intrusion Detection Systems can detect just some specific
attacks and the network life time is reduced due to their high energy consumption. For the
purpose of energy limitation and high efficiency, this paper proposes an intrusion detection
model based on game theory and an autoregressive model. The paper not only improves the
autoregressive theory model to a non-cooperative complete information static game model, but
makes a prediction about attack pattern based on the reliable model. The proposed approach
improves on previous approaches in two main ways: it takes energy consumption of the in-
trusion detection process into account, and it obtains the optimal defense strategy, balancing
detection efficiency and the system’s energy consumption by analyzing the model’s mixed Nash
equilibrium solution. In the simulation experiment, the running time of the process is regarded
as the main indicator of energy consumption of the system. The simulation results show that
the IDS proposed not only effectively predicts the attack time and the next targeted cluster
based on the game theory, but also reduces energy consumption.

Keywords: Wireless Sensor Network, Intrusion Detection System, Optimal Defense Strategy,
Energy Consumption

1. Introduction

1.1. Current researches

Recent developments in network infrastructure have heightened the need for sensor networks;
it is a development direction of intelligent sensor to integrate artificial intelligence with sensor
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technology , because it improves intelligence of sensor (1; 2). A WSN is a multi-hop distributed
network formed by intelligent, miniature, and cheap sensor nodes (3; 4). It consists of three
main parts: sensor nodes, a base station (BS), and an observer (5). Sensor nodes are usually
deployed randomly in the form of airdrops, and deliver the information to the base station.

As the Internet of Things and the use of sensors become more and more popular, security
issues are becoming increasingly prominent (6; 7). In addition, the sensor operating system
and its safety protection are very simple, so the sensor invasion is easy and convenient; but
its threat is effective and direct, thus attracting more and more malicious intrusion. Different
from computers and smart mobile devices, the detection of the sensor provides few external
operation interfaces, and can be detected by paying little attention to the source, type, or
signal flow of operation. Therefore, the attacks on sensor networks are increasingly artificially
or intelligently controlled, and are no longer persistent attacks, because continuous attacks are
easy to detect. The topic has received much attention from researchers in both network and
security fields. Key management, authentication, security routing, and security services are
at core of this technology (8). An IDS monitors user behavior or network traffic at different
network levels and adopts an active detection technology to protect the network from various
intrusions (9; 10). So far, a considerable number of approaches have been proprosed on this
issue (11; 12).

Most of the intrusion detection algorithms proposed can be divided into two major cate-
gories: misuse detection algorithms (signature-based) and anomaly detection algorithms (behavior-
based). The former can only detect specific attacks; the latter can detect more attacks but is
not efficient (13). Hybrid intrusion detection mechanisms are the combination of both, but
are difficult to achieve (14). From the perspective of wireless sensor networks data, Jianli Guo
proposes a sensing data mining based intrusion detection algorithm and intrusion detection of
abnormal sensory data from the network protocol, node type (15). Although this system solves
the detection of a new hybrid heterogeneous network, detection efficiency is low. Zeyu Sun
introduces a variety of wireless sensor networks key management scheme in-depth study and
based on the design of a key pre-distribution scheme using a node identifier. However, his main
concern is trust probability, not detection efficiency (16).Yun Wang analyzes the problem of
intrusion detection in a Gaussian-distributed WSN by characterizing the detection probability
with respect to the application requirements and the network parameters under both single-
sensing detection and multiple-sensing detection scenarios(17). Who examines the effects of
different network parameters on detection probability, but ignores the impact of the opening
time of the node on the detection rate.

Once the sensor nodes are configured, the main function of the sensor is to obtain a single
type of information. One of the characteristics of sensor networks is poor computing power,
and energy consumption is a key indicator: reducing the energy consumption of the sensor is
thus an urgent bottleneck problem (18; 19). In fact, there are many experts proposing a variety
of methods to optimize energy efficiency for WSN (20; 21). Unfortunately, all those studies
in the field of energy optimization have focused only on the operation of the sensor network,
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while ignoring the energy consumption of the intrusion detection itself (22). There is no doubt
that one of the major problems WSNs face is energy (23). Battery power is the main energy
source used by the sensor nodes, but a the battery’s energy density is limited, impeding the
normal operation of a sensor node. Hence, an energy-efficient sensor network would offer a
significant benefit for carring out the work in such conditions, and our proposed schemes take
energy consumption as the major consideration.

So far there are some proposed solutions that apply game theory to WSN security strategy
in order to reduce energy consumption (24; 25). But most of them regard the game as a
single process and assume that there is only one choice for the attacker (26). Instead, in
the actual WSN environment there are always replay attacks, and the attack methods are
more diversified (27; 28). For the purpose of balancing detection efficiency and the energy
consumption of the system, our proposed scheme uses game theory to intelligently control the
sensor network, adjust the configuration of the nodes in layout, and predict the next targeted
cluster, and the attack time.

1.2. Our motivation and outline

With the development of communication technology, embedded technology, and the Internet
of Things, the sensors are increasingly intelligent, miniaturized, and wireless networked. Mean-
while, the attacks on sensor networks are gradually becoming human or intelligent-controlled.
In addition, a core problem of WSN is to effectively utilize the node energy and extend the
lifetime of the network (29). In order to solve those problems, the design proposed in this paper
has taken a comprehensive view of this issue by presenting an intelligent intrusion detection
model based on game theory and an autoregressive model to minimize energy consumption.
This model has been developed and improved to a non-cooperative complete information static
game model. For this purpose, the network is divided into clusters using clustering routing
protocols and a set of cluster head nodes (CHs) are systematically chosen. Hence only good
quality nodes from the perspective of game theory are selected as CH to activate IDS. Ulti-
mately a defense strategy is obtained, which can balance detection efficiency and the energy
consumption of the system.

This paper is organized as follows. Section II is an overview of related game theory. Section
III presents our model in detail. Section IV discusses the autoregressive (AR) model applied
to mitigate the attack times. Finally, after the simulation test in section V, we summarize the
paper in section VI.

2. Overview of related game theory

As a mathematical theory of confrontation research, game theory takes the predictive and
actual behavior of the individual in the game into account (30). Individuals involved in the
game process must choose the best plan based on their opponent’s choices in order to achieve
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maximum interest. To explore how to take action under the corresponding reaction of other par-
ticipants. We have identified several basic concepts of game theory: Participant, Information,
Strategy space, Benefit, and Equilibrium.

Definition 1. Participant is a decision-maker in the game, who takes reasonable actions to
maximize benefits (or utility). Usually showed as i = 1, 2, . . . , n.

Definition 2. Information refers to the information in the game process observed by the par-
ticipants, which includes the number of participants, features and actions, etc.

Definition 3. Strategy space is an action taken by the participant in a specific time in reaction
to the other participants’ behavior. Si is a particular strategy of participant i. The n-dimensional
vector S = {S1, S2, ..., Sn} is called a combined strategy.

Definition 4. Benefit is the deterministic or expected utility obtained under a specific combi-
nation of strategies. Utility usually shows the results (winning or losing), and must be expressed
in terms of its size, where Ui is the benefit of participant i. If (S1, S2, ..., Sn) is a combination
of strategies, then the profit of every participant is Ui = Ui (S1, S2, ..., Sn), where i = 1, 2, ..., n.

Definition 5. Equilibrium is the optimal strategy combination of all participants. It is expressed
as S∗ = (S∗1 , S

∗
2 , ..., S

∗
n), where S∗i is the optimal strategy of participant i. It is a strategy for

maximizing Ui in all possible strategies of participant i.

Depending on whether there is a binding agreement among the participants, game theory
can be divided into cooperative and non-cooperative. Cooperative game theory is not only
more complex, but also far less considered than the non-cooperative game theory. For this
reason, non-cooperative game theory has been widely adopted.

Various equilibrium concepts consist of different types and conditions of the game problem.
Non-cooperative game equilibrium is also called Nash equilibrium. In the Nash equilibrium
solution, any participant’s decision is the optimal value relative to others. In this case, all
participants maintain their chosen strategy and the equilibrium system. When the Nash equi-
librium is reached, it does not mean that both sides of the game are in a state of immobility.
In the sequential game, this equilibrium is reached in the continuous actions and reactions of
the participants, called dynamic balance.

3. Intrusion detection model based on game theory

As compared to the computer smart networks, WSN has many resource constraints, such as
memory, power, and processing power capabilities. Therefore it is vulnerable to special attacks,
for instance sybil attack, hello flood attack, blackhole attack, and grayhole attacks(31). Younis
have proposed a novel security attack known as snooze attack on cluster-based routing in
WSN. Recently Qiong shi applied an the internal attack detection model as an epidemiological
model(32). However most of these models ignore the game process between attackers and the
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IDS. Actually attackers always attempt to damage the sensor network nodes in order to obtain
the benefits; simultaneously the IDS will be activated to maintain the normal operation of
the system. Obviously it is an opposed game process. On the one hand, attackers will pay
a certain price in order to obtain certain profits. On the other hand, the IDS will consume
energy to defend the system. As a result, we propose the game theory model to simulate the
attack-defense process, and to identify the equilibrium solution between the attacker and IDS
as a means of solving the problems of energy consumption and detection efficiency, as shown
in Fig. 1.

IDS System Game Model

IDS Response Decision

Defence Strategy Attack Strategy

Nash Equilibrium 

Solution

Cluster Predition 

Algorithm

Attackers

Detection Efficiency

Fig. 1. Intrusion detection model based on game theory.

3.1. Model establishment

During the game process, there is no cooperation between the attacker and the IDS, so the
non-cooperative game model is chosen. In addition, attackers and defenders may act again
and again at random times. However, the latter actor knows nothing about the strategy of the
former, and consequently it is a static game process. Furthermore, assuming that attackers and
defenders have an accurate knowledge of each other’s characteristics, strategy space and benefit
function during the process; in other words, it conforms to complete information game theory.
From what has been discussed above, we propose the non-cooperative complete information
static game model.

The attack-defense model in WSN is composed of two participants: the attacker (A) and the
defender (D). As explained above, information is fully perceptible for both participants. For
the moment, the strategy space is recorded as SA and SD, and the benefit function is expressed
as UA and UD. Moreover the equilibrium solution is deduced from these four parameters, and
thus the game model is presented as G = {(D,A), (SD, SA), (UD, UA)}.

As a result of the energy limitation in WSN, the IDS can be activated for a limited number
of nodes. Therefore, clustering routing protocols are applied to divide the network into clusters
to balance the system’s energy consumption and detection efficiency. Each cluster contains a
number of member nodes and a CH that is periodically elected from the cluster nodes. The
member nodes are in charge of collecting information and delivering it to CH, and CH is then
responsible for transmitting the information and implementing the intrusion detection program.
Finally, the base station (BS) controls the operation of the IDS in the CH.
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Suppose that there are N nodes in the WSN, divided into k clusters as C1, C2, ..., Ck. Ci
represents the number of nodes in each cluster, where i = 1, 2, ..., k. Only one cluster can be
attacked during each attack, and BS can only select one CH to start the IDS. Then in each
attack-defense process, the attacker has three strategies on cluster node Ci: attacking (A1),
waiting for time t and then attacking (A2), or choosing a different cluster node Cj to attack
(A3), that is SA = {A1, A2, A3}. At the same time, there are three alterative strategies for
the defender: protecting the cluster node Ci(D1), closing the IDS (D2), or choosing a different
cluster node Cj(i 6= j) to protect (D3), so SD = {D1, D2, D3}. After combining SA and SD we
will obtain all of the combination strategies between the IDS and the attacker, as shown in the
following matrix X.

X =

(D1, A1) (D1, A2) (D1, A3)
(D2, A1) (D2, A2) (D2, A3)
(D3, A1) (D3, A2) (D3, A3)

 (1)

The rows and columns in the matrix (1) represent the options of the defender and attacker
respectively, in order to determine the utility function, some signs need to be defined, as shown
in Table 1.

Table 1
Sign and explanation

Sign Explanation
U(t) The utility of the normal operation at time t
Avg The average value of each node
Ci(t) The cost for protecting cluster Ci at time t
Vi(t) The utility for successfully protecting cluster Ci at time t
Qi(t) The cost for attacking cluster node Ci at time t
Pi(t) The utility for successfully attacking cluster Ci at time t
W(t) The cost for waiting for next attack time
SA&SD The strategy space of the attacker and the defender.
UA&UD The benefit function of the attacker and the defender.

β The average detection accuracy for new attacks by the anomaly method
α The average detection accuracy for common attacks by the misuse method

X11 = (D1, A1) indicates that both the attacker and the IDS choose the cluster node Ci.
Suppose that in this case, the IDS can successfully detect the intrusion. As a result, the benefit
and cost of the protection are Vi(t) and Ci(t); furthermore, the benefit U(t) from normally
operating the system should be considered. It is apparent that UD = U(t) + Vi(t) − Ci(t).
Simultaneously the attacker must unsuccessfully attack, and the benefit and cost of the attack
are respectively 0, Qi(t); that is, UA = −Qi(t).
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Ultimately, the benefit matrix Y , Z of the attacker and defender are shown as :

Y =

 −Qi(t) −W (t) Pj(t)−Qj(t)
Pi(t)−Qi(t) −W (t) Pj(t)−Qj(t)
Pi(t)−Qi(t) −W (t) −Qj(t)

 (2)

Z =

 U(t) + Vi(t)− Ci(t) U(t)− Ci(t) U(t)− Ci(t)− Cj ∗ Avg
U(t)− C ′

i ∗ Avg U(t) U(t)− C ′
j ∗ Avg

U(t)− Cj(t)− C
′
i ∗ Avg U(t)− Cj(t) U(t) + Vj(t)− Cj(t)

 (3)

Corresponding to matrix (1), the row and column in matrix (2) and (3) are the strategies
chosen by IDS and the attacker, respectively.

In this case, the simplest way to find the Nash equilibrium solution is the scribing method
for the bivariate utility matrix. The core idea is to find the optimal strategy for participant
1 in each column of the bivariate matrix and draw a line below the corresponding utility.
Correspondingly, the optimal strategy for participant 2 is found in each row of the bivariate
matrix, and underlined. Finally, if the two benefit values of a unit in the matrix are underlined,
the corresponding strategy combination of the unit is a pure strategy Nash equilibrium solution
of the game theory.

It is obvious that the revenue Pi(t) obtained by successfully attacking cluster Ci is greater
than the cost Qi(t); that is, Pi(t) > Qi(t). Otherwise, the attacker will be rational and give
up attacking. The pure utility obtained by successfully attacking cluster Ci or Cj isn’t much
different in essence, which means that Pi(t)−Qi(t) ≈ Pj(t)−Qj(t). Thus, the maximum profits
of the first, second, and third row are y13 and y21 (or y23), and y31.

The matrix Z is symmetric and revenue Vi(t)-obtained by successfully defending cluster
Ci-is greater than the cost Ci(t); therefore Vi(t) > Ci(t). In the circumstances, the maximum
profits of the first, second, and third column are Z11, Z22, and Z33.

Since the subscript of the maximum profit in the two matrices (Y and Z) isn’t exactly the
same, we can draw the following conclusions:

Theorem 1. There is no pure strategy Nash equilibrium in the game theory model.

Proof . The optimal solution for the attacker is assumed to attack the cluster node Ci.
In this case, the defender will choose to guard cluster node Ci. Hence the attacker will reselect
another attack strategy to obtain more benefits. As a result the system can’t be stabilized, and
there is no pure strategy Nash equilibrium in the game theory.

Theorem 2. In order to obtain the maximum benefit, the attacker always chooses to attack.

Proof . Although there is no equilibrium solution, the maximum benefits of rows in the
matrix Y are y13, y21 (or y23), and y31. It is obvious that the column subscripts are 1 and 3; in
other words, regardless of the strategy chosen by the defender, the attacker will always choose
strategy A1 or A3 to maximize profit.
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Different from the analysis of the convergence and stability of the system of equations by
genetic algorithm(33). One of the advantages of the game theory is to find the equilibrium
point in the dynamic process. When the system is in a steady state, both participants of the
game choose the equilibrium strategy of utility called Nash equilibrium solution(34). The Nash
equilibrium strategy describes the local static property of the equilibrium point, which is a local
optimal concept rather than the global. Therefore, the Nash equilibrium is not guaranteed to
be the fixed point with the highest detection rate or the least energy consumption, but means
any participant’s decision is the optimal value relative to others. In this case, all participants
maintain their chosen strategy and the equilibrium system, which guarantees the convergence
and the stability of solution.

3.2. Multiple attack detection model based on game theory

A misuse detection method may be an efficient way to detect most common attacks; however,
that isn’t applicable for new attacks, because their characteristics are unknown. As a result,
we need to adopt an anomaly detection method. The characteristics of the data collected by
the two methods are not the same. For a network suffering only one type of attack, collecting
more data means more energy consumption, and gradually detecting each module can be costly
and time consuming. Consequently, it is reasonable to coordinate the two detection methods
and adopt one at each detection process. In this case we need to develop a strategy to make
the IDS choose the optimal method at the right moment.

3.2.1. Model based on game theory

If the game model is recorded as G1, the participants are still the attacker (A) and the
defender (D). The attacker can select either the common means (A1) or a new type of means
(A2). The defender can also either use the misuse detection method (D1) or the anomaly
detection method (D2). Now the strategies of the defender and attacker are expressed as
Di and Aj, and each of their total benefit functions is defined as UA and UD. The terms
Uij(D) and Uij(A) are the benefit of the defender and attacker respectively, when strategies
(Di) and (Aj) are chosen. Consequently the attack-defense game function can be described as:
G1 = {(D,A), (SD, SA), (UD, UA)}, where SD = {D1, D2}, SA = {A1, A2}. The strategy matrix
for the game model is M , shown as following:

M =

[
(D1, A1) (D1, A2)
(D2, A1) (D2, A2)

]
(4)

Assume that the average detection accuracy for new attacks by the anomaly detection
method is β and the average detection accuracy for common attacks by the misuse detection
method is α . When M11 = (D1, A1), the attacker chooses the common attack methods, and
the defender adopts the misuse detection method. Then the detection accuracy is α, thus:

U11(A) = (1− α)(Pi(t)−Qi(t))− αQi(t) = (1− α)Pi(t)−Qi(t)

U11(D) = (1− α)(U(t)− Ci(t)− C
′

i ∗ Avg) + α(U(t)− Ci(t))
= U(t)− Ci(t)− (1− α)C

′

i ∗ Avg.
(5)
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The benefit Pi(t) obtained by attacking cluster i is equal to the cost C
′
i ∗ Avg; hence the

defender’s benefit can be simplified as:

U11(D) = U(t)− Ci(t)− (1− α)Pi(t). (6)

Similarly, the other three sets of data can also be analyzed to obtain the bivariate utility
matrix:

Y ′ =

[
(1− α)Pi(t)−Qi(t) Pi(t)−Qi(t)

Pi(t)−Qi(t) (1− β)Pi(t)−Qi(t)

]
(7)

Z ′ =

[
U(t)− Ci(t)− (1− α)Pi(t) U(t)− Ci(t)− Pi(t)

U(t)− Ci(t)− Pi(t) U(t)− Ci(t)− (1− β)Pi(t)

]
(8)

The matrices Y ′ and Z ′ represent separately the utility matrix of the attacker and the
defender, in which rows and columns denote the attacker’s and defender’s strategies.

Suppose that the defender performs the misuse detection method and the anomaly detection
method with probability p and 1−p. Meanwhile the attacker adopts the common attack method
and the new attack method with probability q and 1− q. We try to obtain the value of (p, q)
when the attacker and defender get the maximum benefit. According to the above bivariate
utility matrix, we can gain the total benefit function UD and UA of the defender and attacker,
where (1− p)(1− q) is expressed as ε:

UD = p(1− q)U12(D) + (1− p)qU21(D) + pqU11(D) + εU22(D)

UA = p(1− q)U12(A) + (1− p)qU21(A) + pqU11(A) + εU22(A).
(9)

Uij(D) and Uij(A) in the matrices Y ′ and Z ′ are brought into UD and UA:

UD = U(t)− Ci(t)− Pi(t)[1− αpq − εβ]

UA = [1− αpq − εβ]Pi(t)−Qi(t).
(10)

3.2.2. Analysis of Nash equilibrium solution

It is appropriate to look for the strategy that maximizes the UD and UA by the extreme
method to make the utility function optimal.

In the defender’s total utility function UD, there are variables p, q, and the constants α, β,
U(t), Ci(t), and Pi(t). In order to maximize UD, we calculate the partial derivative about p of
UD and q of UA, then make them equal to 0:

∂UD
∂p

= [(α + β)q − β]Pi(t) = 0. (11)

∂UA
∂q

= [β − (α + β)p]Pi(t) = 0. (12)

Obtaining:

q =
β

α + β
, p =

β

α + β
. (13)
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Consequently, the strategy SD and SA are:

SD = (p, 1− p) = (
β

α + β
,

α

α + β
). (14)

SA = (q, 1− q) = (
β

α + β
,

α

α + β
). (15)

The defender’s probabilities of adopting the misuse and the anomaly detection method in
intrusion detection are β

α+β
and α

α+β
, respectively.

Accordingly, the attacker’s probabilities of adopting the common and the new detection
method are β

α+β
and α

α+β
, respectively.

In the equation (14) and (15), SD and SA are the Nash equilibrium solutions. When p and
q are equal to the values, we obtain the maximum benefit of the attack and defender. Then,
there is a simple analysis of the Nash equilibrium solution.

On the one hand, when α is a fixed value, the greater the β, and the greater the p = q =
β

α+β
, which indicates that the detection accuracy of the anomaly detection method increases.

Therefore, the attacker can be rational to reduce the probability of adopting a new attack
method (1 − q = α

α+β
). From the perspective of the defender, due to the attacker’s new

strategy, the probability of adopting the misuse detection method (p = β
α+β

) will increase.

On the other hand, when β is a fixed value, the greater the α, the smaller the p = q = β
α+β

.
This indicates that the detection accuracy of the misuse detection method increases. So the
attacker will avoid adopting a common attack (reducing q). It is the same for the defender,
which reveals that our strategies are exactly in line.

The variables α and β are the detection rate of adopting the misuse and the anomaly
detection method in the IDS, respectively. It is possible to use the misuse and the anomaly
detection method based on the probability value ( β

α+β
, α
α+β

) to obtain the maximal benefit and
reduce the energy consumption.

3.2.3. Model for multiple attack detection based on game theory

A network is divided into k clusters by the LEACH clustering algorithm(35). The basic idea
is to reduce the energy consumption of the network and improve the lifetime of the network
by randomly selecting the CH nodes and fairly distributing the energy load of the system.
The proposed multiple attack detection game model combines game theory with the existing
intrusion detection model to develop various intrusion detection strategies, as in the following
algorithm:

1. Initializing the WSN, and setting the basic information of the node and the base station.

2. By the clustering protocol LEACH, the network is divided into k clusters. The base station
sets the values of U(t), Avg, Ci(t), Vi(t), Qi(t), Pi(t), and W (t) (see Table 1).

3. The base station will take these values into the corresponding formula above to construct
first Uij(D) and Uij(A), then the utility matrices Y ′ and Z ′, where 1 ≤ i, j ≤ 2.
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4. The base station solves both utility matrices to determine whether or not there is a pure
strategy Nash equilibrium solution. If it exists, jump to step 7; otherwise continue to step
5.

5. Inputting detection rate of each module (p and q).

6. Applying p and q, the mixed profits of the attacker UD and the defender UA are calculated
to solve the mixed Nash equilibrium solution.

7. Depending on the solution, the base station starts the corresponding detection module for
the intrusion detection.

4. Cluster prediction algorithm based on an autoregressive model

As mentioned above, activating our detection model on the cluster will consume energy and
reduce the lifetime of the node. Consequently, it is necessary to both make the IDS energy
efficient and maintain a high detection accuracy. This work has focused on accurately predict
the attack time and target nodes. As a result, the IDS will start only on the target nodes at
the time of the attack, thus saving energy and extending network lifetime.

4.1. Prediction of attack time

The time of an attack on the WSN is usually random. Consequently, in order to predict
the attack time, the IDS needs to be started on all CHs for a short time in the beginning in
order to obtain a certain amount of intrusion information and predict the next attack time.

Suppose that the n invasion is detected at this time: the time point is then denoted as
T1, T2,..., Tn(i, Ti). Therefore the least square method can be applied to fit the curve to
approximately predict the attack time Ti+1.

In addition, the linear or the curve fitting is available to predict the attack time. Certainly
we can choose the appropriate function in accordance with the fitting effect, then predict the
next attack time Ti+1. In order to make our prediction more accurate, we set a confidence
probability θ. Furthermore with the help of the mathematical properties of the confidence
interval, we can calculate a threshold δ. Thus the confidence interval (Ti+1 − δ, Ti+1 + δ) can
cover the next attack time Ti+1 with the confidence probability θ.

4.2. Prediction of the next targeted cluster

The attacker’s target is a random choice; as a result we can build a prediction model based
on the time series and make use of the existing finite data to predict the future value. There
are several basic time series models to choose from: the autoregressive (AR) model, the moving
average (MA) model, and the autoregressive moving average (ARMA) model (36).

As the linear regression model, the AR model uses the linear combination of random vari-
ables at a certain moment in the previous period to describe the random variables at a later
time (37). In time series analysis, the MA model is a common approach for modeling univariate
time series, which specifies that the output variable depends linearly on the current and vari-
ous past values of a stochastic (imperfectly predictable) term (38). Finally, the ARMA model
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provides a parsimonious description of a (weakly) stationary stochastic process in terms of two
polynomials, one for the AR and the second for the MA.

As mentioned earlier, in the beginning the IDS is started on all CHs for a period of time T
to obtain the cluster attacked. According to these data, the AR model is employed to predict
the next targeted cluster:

Zt = φ1Zt−1 + φ2Zt−2 + ...+ φpZt−p + at, (16)

where φ1, φ2,...,φp is called the autoregressive coefficient, and at is the white noise sequence
whose mean and variance are zero and σa. Additionally, p represents the order of the model,
which indicates that the value at the t moment depends only on the values of the previous p
moments. Therefore the model (16) can also be called the AR (p) model. Obviously, the AR
(1) model is:

Zt = φ1Zt−1 + at. (17)

In order to establish the AR model, we need to make sure of the order and estimate the
parameters. There are many kinds of standards to determine the order in an AR model. First
of all, it can depend on the partial correlative coefficient and the autocorrelation coefficient.
Second, the methods of mathematical statistics are useful for examining the residual or whether
the confidence intervals of the parameters contain zero. Finally, the information criterion
method is also available to determine the order by defining the characteristic function related
to model order.

Currently, the most popular method in the AR model is the AIC criterion method, which
is a kind of information criterion method. The criterion function of AIC is:

AIC = 2lg(Maximun likelihood of simulation) + 2(Paramters of the model). (18)

The AIC criterion function of AR (p) model is:

AIC(p) = Nlgσ2
a + 2(p+ 1). (19)

In formula (19) the smallest p is the order of the model; p can be determined by the AIC
criterion method.

Moment estimation and least squares estimation are the most common methods for esti-
mating the parameters of the AR model. A brief introduction to these techniques follows.

A) Moment estimation of parameters in the AR model.
In the AR model, an important characteristic of the observation sequence x(t) is the trailing

property of the autocorrelation function, that is:

Rk =

p∑
j=1

φpjRk−j, k > 0. (20)
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Where k = 1, 2, ..., p, equations are written as matrix:
R1

R2
...
Rp

 =


R0 R1 R2 . . . Rp−1
R1 R0 R1 . . . Rp−2
...

...
... . . .

...
Rp−1 Rp−2 Rp−3 . . . R0


 φp1
φp2

...
φpp

 (21)

The equation (21) is the famous Yule-Walker(Y-W) equation. If Rk in equation (21) is
replaced by a moment estimator

R̄k = R̄−k =
1

N

N−k∑
i=1

xixi+k, (22)

the Y-W estimate of (φp1, φp2, ..., φpp) can be obtained by the positive definition of {R̄k}:
φ̄p1
φ̄p2
...
φ̄pp

 =


R̄0 R̄1 R̄2 . . . R̄p−1
R̄1 R̄0 R̄1 . . . R̄p−2
...

...
... . . .

...
R̄p−1 R̄p−2 R̄p−3 . . . R̄0


−1 

R̄1

R̄2
...
R̄p

 (23)

The moment estimation of the variance σ2
a(p) about residual sequence {at} in the AR (p)

model is:

σ2
a(p) = E(ā2t ) = R̄0 −

p∑
j=1

φ̄pjR̄j. (24)

The parameters of the model (24) can be solved by taking the known data from the sequence
into the formula.

B) Least squares estimation.
With the help of the least squares method, the least squares estimation is applied to estimate

the parameters of the the AR (p) model. Thus we can obtain the residual function shown as:

L(φ) =
N∑

t=p+1

a2t =
N∑

t=p+1

(Z̄t − φ1Z̄t−1 − φ2Z̄t−2 − ...− φpZ̄t−p)2. (25)

According to the principle of least squares, we explore the partial derivative of the formula
(25) and make it equal to zero:

φ̄ =


φ̄1

φ̄2
...
φ̄p

 =


r̄11 r̄12 . . . r̄1p
r̄21 r̄22 . . . r̄2p
...

... . . .
...

r̄p1 r̄p2 . . . r̄pp


−1 

r̄01
r̄02
...
r̄0p

 (26)
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σ̄2
a =

1

N − p

N∑
t=p+1

(āt)
2. (27)

After the order and parameters in the AR (p) model are estimated, we can completely
establish our prediction model and provide guidance for IDS. The numbers of CH are positive
integers, but the results predicted by the AR (p) model are usually fractional, so the result is
rounded down.

4.3. The cluster prediction algorithm of the autoregressive model

The cluster prediction algorithm of the autoregressive model is a combination of the time
of the attack and the prediction of the attacked cluster. The least squares method is useful
for making a rough estimation of the attack time, and the credibility of the prediction time is
increased by introducing the confidence probability. In addition, the AR model is applied to
predict the target cluster. The algorithm contains the following main steps:

1. The WSN is initialized, and the basic information of the node and the base station is set.

2. With the clustering protocol LEACH, the network is divided into k clusters; θ is the confi-
dence probability of the attack time.

3. In the beginning, the IDS in all CHs are activated within a period T to obtain attack records
(i, Ti, Ki).

4. The least squares method is used to deploy the polynomial fit for (i, Ti), and the confidence
probability α is set, to approximately calculate threshold δ in order to determine the next
attack interval (Ti+1 − δ, Ti+1 + δ).

5. Using the AIC criterion or the partial autocorrelation function and the autocorrelation
function of the time series (i,Ki), the order p of the sequence is determined.

6. The Yule-Walker formula is used to develop moment estimation of parameters in the AR (p)
model, and the parameters are obtained.

7. Based on the results of Step 5 and 6, the AR (p) model is determined to predict the next
attacked cluster.

Combining the prediction results of Step 4 and 7, the IDS is activated in the corresponding
cluster to protect the system. The above steps are implemented with pseudo-code, shown in
Table 2.

5. Simulation experiment and analysis

In reality, the current sensor network is still in an initial stage of construction, and a large-
scale physical test is difficult to perform. The strategy of IDS proposed in this paper not only
focuses on the configuration of the nodes in layout and the prediction of the next targeted

14



Table 2
Pseudo code of autoregression cluster prediction algorithm.

Init−NetWork()
AR−Forecast(T, a)
{

while(t < T )
switch−on−all()
Record−Information(i, Ti, Ki)
Increase(t)

b = Least−Squares(i, Ti, a)
p = Partial−auto−func(i,Ki)&&Autocorr−func(i,Ki)
‖AIC−func(i,Ki)

Y ule−Walker(i, ki)‖Max−like−Estimate(i,Ki)
predict−n = AR−Calculate()
Intrusion−Detection−Start(a, b, predict−n)

}

cluster to activate IDS, but also simplifies the data analysis processing. There are many types
of sensors. In order to highlight the general type of the paper, we chose Xiaomi phone as the
sensor platform. The phone contains: distance sensor, fingerprint sensor, position sensor, image
sensor, barometric sensor, and inertial sensor; which can set three-dimensional coordinates and
provide specific location information. In addition, these data could be directly obtained from the
built-in sensor of Xiaomi phone through the sensor interface function SensorUDP in MATLAB.
That was operable, easy to track and adjust.

5.1. Simulation experiment

To simulate the simplicity and contingency of actual WSN intrusion, the intrusion was
regarded as a simple data transformation function. In addition, it was designed as a single
process to reflect the traces of intrusion (such as: data is converted to a specific number); and
it was the same that the detection was designed as another separate process. The purpose of
this design is mainly to realize the acquisition and differentiation of the running time of the
process; that is a direct indicator of energy consumption. Intrusion and detection functions
were installed on each phone, but the functions of trigger and running times were adjustable
according to the actual experimental condition. The operation of the experimental program
alone can’t reflect the game idea, but it could not always simulate the program with manual
interference, so the random function was introduced in the simulation program.

In the simulation of intrusion and detection location, we set up 4 groups, each group was
regarded as a cluster, there were 5 Xiaomi phones; simulation detections were divided into CH
detections and ordinary phone detections.

In the simulation of intrusion and detection time, the experimental operation time could be
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adjusted manually according to the game theory. For example, running once every 5 minutes
and running for 30 seconds.

The above two simulations weren’t measured simultaneously. When measuring the intrusion
and detection time, the simulation experiment was performed in the same mobile phone, and
the running time was used as a direct quantitative indicator of energy consumption. When
measuring the intrusion and detection location, 5 mobile phones of each group were randomly
running according to the game theory in the simulation experiment.

There were 100 sensor nodes randomly deployed in a selected area of 100 ∗ 100 square
meters. All of their initial energy was set to 0.5 J, except for the BS located in the center,
which had no energy restriction. Although the actual energy consumption of the sensors isn’t
easy to detect, we assumed that the energy consumption was the same due to the same property.
With LEACH clustering algorithm, CHs were randomly selected with a probability of 0.1, so
there were 10 cluster head nodes in the whole network. The simulation parameters are shown
in Table 3.

Table 3
Simulative experimental parameters

.

Parameter Value

Size of detection area/m 1002

Number of sensor nodes 100

Location of base station/m (50,50)

Network Clustering Protocol LEACH

Probability of the node elected as CH 0.1

Whether can the node move no

Initial energy of node/J 0.5

The unit energy consumption of data transmission Eelec(nJ/bit) 50

Consumption parameter of free-space channel model EfspJ(bit×m2) 10

Consumption parameter of multipath fading channel model EmppJ(bit×m2) 0.013

Fig. 2 shows the network structure of the MATLAB simulation. Suppose that only one
cluster can be attacked in a time unit. To simulate the attack, a malicious node was appended to
the network, and randomly sent data packets. The cluster receiving these data was considered
under attack. We divided the packets into two types, depending on their length: the shorter
packets represent the common attacks; the longer packets represent the new attacks.

According to game theory, the attacker acts in each time gap to obtain the maximum benefit.
In actuality, the network was randomly attacked, and the time for each simulation experiment
was set to 10 minutes divided into 50 intervals. At the beginning of the simulation, the IDS in
all cluster heads was started to record the attack data during this time. Then, we applied the
AR model to predict the next target node, as shown in Fig. 3.

In Fig. 3 the previous 20 attacks were history records that were analyzed and processed with
the AR model to predict the next target cluster. Similarly, we can extract the time sequence
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Fig. 2. Randomly distributed nodes in a cluster network by the MATLAB simulation. The CH nodes selected
by the LEACH clustering protocol are denoted by a red plus sign; the common nodes are represented by blue
solid dots; the base station is indicated by a black asterisk, which is located at the center of the whole network.
It can send control information to the CHs.

 

Fig.4  Cluster prediction algorithm based on AR model 
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Fig. 3. Cluster prediction algorithm based on AR model. The abscissa is the number of attacks; the ordinate
is the cluster number.

of the attack time points. The fitting curve is shown as Fig. 4.
In Fig. 4, we can learn that the quadratic curve fitting is utilized from the degree value in

the figure. There is a confidence curve on both sides of the fitting curve. The parameter passed
in the polytool function is 0.05, so the confidence interval of the curve is 95%. This means that
95% of the data falls between the two lines. In additon, the size of the interval is 4.9331, so
that the time interval a± 4.9331 will contain the real attack time point with a 95% confidence
rate, where a is the prediction value.

It is assumed that the detection rate of the misuse detection module and the abnormal
intrusion detection module are both 0.9. According to the improved game model, the IDS
should be started with the probability of (0.5, 0.5), then the simulation should be run.

In order to obtain more convincing results, intrusion detection algorithms used for traffic
prediction and CH surveillance are introduced to carry on the contrast experiment under the
same conditions. The basic idea of the traffic prediction algorithm is to protect cluster nodes
with the largest flow. The basic idea of CH surveillance is to start the IDS on all the cluster
head nodes.

According to Fig. 5, the attack-defense model built with the game theory is more stable,
because the detection rate is about 75%, compared to the detection rate of the model built
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Fig. 4. Time curve fitting to extract the time sequence of the attack time points. The blue plus sign is the
time point for the network attacker to attack; the green curve is the fitting curve.
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Fig. 5. Comparison of intrusion detection rate of each intrusion detection algorithm. Shows the intrusion
detection rate of each intrusion detection algorithm under the ideal conditions

with the CH detection algorithm, which is about only 50%. The main reason for this difference
is that starting IDS on all cluster nodes consumes more energy, which affects overall detection
efficiency; there is no way to specify the start order of the detection modules, so they can
only be randomly operated at equal probability. According to the general consensus (14), the
detection accuracy of the intrusion detection algorithm based on traffic is about 15%, because
there is no necessary connection between the traffic volume in the cluster and the attacker’s
choice.

Consequently, the intrusion detection algorithm based on game theory provides a high
detection rate and ensures that the WSN network can be safely used in a more complex network
environment.

5.2. Assessment for energy

Some energy consumption models monitor several performance counters related to the CPU
in order to estimate power consumption (18). Zhang et al. validate that energy usage of an
application is directly related to the amount of CPU time it uses (19). Our paper focuses on
critical power and regards running time as the main indicator of energy consumption of the
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system. In order to reduce energy consumption errors due to not directly considering loads
handled by I/O devices and multi-core processing, each family of machines was equipped with
a similar hardware configuration in our experiment.

The energy consumption was based on the running time of the process. For example, in
the simulation of intrusion and detection time, the experiment run every five minutes; then the
energy consumption ratio was: 30s/5 ∗ 60s = 1/10.

After accumulating times of each group, the total energy consumption ratio was obtained:

20∑
i=1

30(s)

xi ∗ 60(s)
; (28)

where xi respected the running time interval of each cell phone.
Suppose that there are N nodes in a WSN, the total time deployed in the monitoring area

is T , and the energy consumption for each node in per unit time is µ. When the IDS is started
on all nodes, the energy consumption is:

p1 = µNT. (29)

At this point, the clustering protocol LEACH is adopted to divide the network into K clusters,
the IDS is started in real time in the CH, and the energy consumption is:

p2 = µKT. (30)

The time T is equally divided into n time slots T1, T2, ..., Tn. Because certain historical data
is necessary to predict the next attack, the IDS is fully operated for a period in the beginning.
Afterwards, the error threshold δ of the attack time can be calculated under the confidence
probability α%. The energy consumption of the system is:

p3 = µ(KT
′
+ 2δn(1− T

′

T
)). (31)

In this simulation experiment, there were N = 100 nodes in the WSN, and the monitoring
time was T = 10min. Furthermore, the probability of selecting cluster nodes to be CH was
set to 0.1 by the LEACH clustering algorithm, so the number of CH was K = 100 ∗ 0.1 = 10.
Moreover, we divided the monitor time into n = 50 gaps, then took the data from the first 20
intrusions as historical data to calculate the error threshold 4.9331, containing real intrusion
time points with 95% confidence ratio. Specifically, the consumption energy µ of per node in
per unit time was almost identical in all three cases. Finally, taking the values into the formula
above, p2/p1 = 0.1, p3/p2 = 0.4491.

It is worth mentioning that the energy consumption ratio is not fixed, because the config-
uration of the nodes in layout, the prediction of the next targeted cluster to activate IDS, the
experimental operation time, and the running time interval will change according to the status
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of the simulation. This also reflects the dynamic balance when the game model reaches Nash
equilibrium.

As a result, the cluster-based intrusion detection algorithm consumed about 90% less energy
than the node-based algorithm under the same conditions. Nevertheless, the intrusion detection
algorithm based on game theory and the autoregressive model proposed in this paper performed
even better than the existing cluster-based detection algorithm, whose energy consumption was
only about 55% less than the node-based approach.

In the simulation experiment, the running time of the process is regarded as the main
indicator of energy consumption of the system. Fig. 6 contrasts energy consumption of the
system under the same conditions. Therefore, in the case of the same initial energy, the lower
the running time is, the lower the energy consumption is. It is worth noting that the additional
energy consumption due to the cluster partition protocol and the IDS’s failure is negligible.
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Fig. 6. Utilization of CPU.

From Fig. 6, under the same experimental environment, the running time (used as a proxy
for the energy consumption of the WSN adopting an intrusion detection model based on game
theory and an autoregressive model) is significantly lower than that based on a CH detection
algorithm and a scenario where the IDS is started on all nodes.

6. Conclusions

For the purpose of reducing energy consumption, this paper proposed an intrusion detection
model for a wireless sensor network based on game theory and an autoregressive model, in which
the attack-defense process between the IDS and the attacker is viewed as a non-cooperative
game model. Furthermore, the autoregressive theory game model (AR) was established and
applied to improve on a non-cooperative information static game model that was being applied
to predict attack times. In addition, by analyzing the model’s mixed Nash equilibrium solution,
the optimal defense strategy that could balance the detection efficiency and energy consumption
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of the system was obtained. In the simulation experiment, the running time of the process is
regarded as the main indicator of energy consumption of the system. The simulation results
show that the game model can not only effectively predict the attack time and the next targeted
cluster based on the game theory, but also reduce energy consumption.

Game theory also provides new feasible ideas and technologies to address essential problems
in WSN security, a significant and promising direction for future research.
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