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Abstract

Environmental cycling of the toxic metal mercury is ubiquitous, and still not

completely understood. Volatilisation and emission of mercury from vegeta-

tion, litter and soil during burning represents a significant return pathway for

previously-deposited atmospheric mercury. Rates of such emission vary widely

across ecosystems as they are dependent on species-specific uptake of atmo-

spheric mercury as well as fire return frequencies. Wildfire burning in Australia

is currently thought to contribute between 1 and 5 % of the global total of

mercury emissions, yet no modelling efforts to date have utilised local measure-

ments of fuel mercury concentrations or local mercury emission factors/ratios.

Here we present laboratory and field investigations into mercury emission from

burning of surface fuels in dry sclerophyll forests, native to the temperate south-

eastern region of Australia. From laboratory data we found that fire behaviour

— in particular combustion phase — has a large influence on mercury emission

Preprint submitted to Atmospheric Environment June 13, 2018



and hence emission ratios. Further, emission of mercury was predominantly

in gaseous form with particulate-bound mercury representing < 1 % of total

mercury emission. Importantly, fuel mercury concentrations, mercury emission

factors, and mercury emission ratios from both laboratory and field data all

show that gaseous mercury emission from biomass burning in Australian dry

sclerophyll forests is currently overestimated by around 60 %.

Keywords: gaseous elemental mercury, biogeochemical cycling, emissions,

biomass burning, Australia

1. Introduction

The global nature of mercury (Hg) pollution has long been recognised [20].

With natural sinks, sources and cycles, the unique physicochemical properties

of this toxic metal allow for constant transfer between biological, terrestrial,

aquatic and atmospheric reservoirs, making it ubiquitous throughout the envi-5

ronment [24, 63, 48, 44]. Increases in mercury emission sources due to human

activities have perturbed this natural cycle in a manner that has become a threat

to human and ecosystem health [71, 72, 4]. This threat is globally recognised

in the Minamata Convention on Mercury [43], aimed at reducing anthropogenic

emissions of mercury to the environment. Article 19 of the convention addresses10

the need to understand mercury’s complex natural cycling by calling for par-

ties to the convention to, where possible, increase research and extend current

monitoring efforts.

In the atmosphere, mercury exists largely in the form of gaseous elemen-

tal mercury (GEM), with the operationally-defined gaseous oxidised mercury15

(GOM) and particulate bound mercury (PBM) forms generally thought to com-

prise less than 10 % of total atmospheric mercury [60]. The long atmospheric

lifetime of GEM [estimated at between 5 and 12 months 46, 37, 38] means

transport of mercury can take place through the atmosphere — but also in wa-

tercourses and the ocean — to regions far-removed from their sources. From20

the atmosphere, mercury is deposited to terrestrial surfaces and waterways,
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taken up by vegetation, and re-emitted in a complex natural cycle that is still

not completely understood [68, 4, 3]. Atmospheric mercury may be taken into

vegetation during photosynthesis [62] or deposited via dry or wet deposition

processes onto vegetated surfaces, whereby it can be incorporated into the cell25

membrane through foliar uptake [49, 69, 36]. Throughfall, litterfall and surface

dry/wet deposition processes deliver atmospheric mercury to the underlying

surface litter, whereby leaf decomposition and further atmospheric deposition

enhance soil mercury levels due to binding of mercury to organic matter within

the soil [82, 34]. Vegetation type, coverage and growth rates, and atmospheric30

mercury concentrations all affect the rate at which mercury is stored within

these components [41, 22, 14].

Biomass burning releases mercury from these stores back into the atmo-

sphere through volatilisation of mercury within biomass during combustion and

through thermal desorption of mercury bound within the soil matrix [51]. Herein35

we limit the definition of biomass burning to free-burning vegetation fires (both

intentionally and accidentally ignited) and exclude burning of biomass for indus-

trial/cultural purposes (e.g. wood burners and stoves). The release of mercury

from biomass burning is an important yet complex and poorly understood com-

ponent of the global mercury cycle as it can lead to redistribution of mercury40

to sensitive ecosystems where methylation may occur, or it can result in direct

human exposure to mercury through inhalation of biomass burning plumes [65].

Mercury is often completely volatilised from combusted biomass [27] and this

emitted mercury is largely in the form of GEM [26, 27], however Obrist et al.

[56] showed that increasing PBM levels are associated with increasing fuel mois-45

ture and decreasing fire intensity. The lower atmospheric lifetime of PBM leads

to changing mercury deposition patterns in response to emission partitioning

[66]. The extent to which thermal desorption takes place in the soil is related

to the intensity of the fire, as low intensity, slow-moving fires may heat the soil

to higher temperatures than faster moving, higher-intensity fires [80]. As such,50

release of mercury is not only dependent on the loading of mercury within the

fuels but also on fire behaviour.
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Ecosystem-scale estimates of mercury release from biomass burning are typ-

ically achieved by applying a mixture of empirical and remotely-sensed data.

Burned areas are often derived from satellite data products, from which emis-55

sion of mercury (or other chemical species) can be estimated by applying an

empirically-derived emission factor, or an emission ratio with reference to an-

other chemical species along with its emission factor. These approaches are

outlined generally below [1]:

Ex = A · L ·BE · EFx (1)

Ex = A · L ·BE · EFy · ERx/y (2)

where Ex is the emitted mass of species x, A the area burned, L the fuel loading60

in mass per area, BE the burning efficiency and EFx the emission factor for

species x. Where emission factors for species x are poorly constrained or not

known, these can be determined by using an emission ratio ERx/y and applying

this to the known emission factor for species y. Emission ratios for mercury are

generally derived from ground- or aerial-based measurements of smoke plumes65

and are typically reported with respect to carbon monoxide (CO), although

ratios with carbon dioxide (CO2) have been presented by Brunke et al. [10]. The

use of emission ratios is advantageous as, due to turbulent mixing in the plume,

it provides an average enhancement across the horizontal and vertical extent

of the fire. Emission factors are instead based on fuel mercury concentrations70

and empirically-derived estimates of release during combustion. These provide

the most direct estimate of mercury release from specific vegetation types and

from soils when the amount of biomass burned is known, yet require significant

sampling to obtain data suitable at an ecosystem scale [5].

Australia is a particularly fire-prone continent, and global-scale models of75

mercury emission from biomass burning estimate that emissions over Australia

represent between 1 and 5 % of the global total [25, 65]. Based on the National

Oceanic and Atmospheric Administration’s Advanced Very High Resolution Ra-
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diometer (NOAA-AVHHR) satellite data, an average of 41 million ha (5 % total

land mass) burned annually in the years 1997–2011 [Fig. 1, 47]. Home to 3280

major vegetation groups [6] and spanning a broad range of climates, Australia’s

ecosystems are subject to varying degrees of fire frequency and intensity. Trop-

ical savannah in northern Australia may undergo burning every 1–2 years [52],

whilst temperate forests in south-eastern Australia typically experience burn-

ing every 15+ years [28], which can result in greater uptake of mercury over85

a longer growing period. Simplification of vegetation types across continental

scales is necessary in modelling biomass burning mercury emissions, a global

example of which is the terrestrial ecoregion [57, 7, see Fig. 1]. To date, the

most extensive investigation into vegetation mercury content across Australia

was performed by Packham et al. [58] (see Table 1), yet these have not been used90

in any subsequent mercury modelling efforts. Modelling estimates of mercury

emissions from biomass burning in Australia have instead so far only been ob-

tained using empirically-derived emission factors or emission ratios from studies

undertaken in the Northern Hemisphere [27, 25]. The resulting estimates of an-

nual release over Australia are currently poorly constrained, spanning a range95

between 7 Mg Hg a−1 and 129 Mg Hg a−1 [25, 55, 58, 15, 54, 65].

In response to the general lack of knowledge surrounding mercury in Aus-

tralian vegetation — and the complete lack of Australian-derived emission ratios

or emission factors in Australian mercury emission modelling — this paper re-

ports on and compares two different studies of mercury release from the burning100

of Australian native forest surface fuels. In this paper we limit our analysis to

the eucalypt-dominated dry sclerophyll forests, the most widespread forest type

in south-eastern Australia [53]. Native to Australia, eucalypts have been culti-

vated globally and can now be found on all inhabited continents. Experimental

burns of dry sclerophyll surface fuels took place in a combustion wind tunnel105

designed for the study of combustion of vegetation fuels [73], which provided the

unique advantage that the influence of fire propagation on emissions could be

investigated. Results from this laboratory-scale study are then compared with

observations of biomass burning plumes from the Cape Grim Baseline Air Pollu-
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tion Station (CGBAPS) in Tasmania. These data add to the growing knowledge110

surrounding mercury in vegetation and its release during biomass burning, and

will contribute to constraining uncertainty regarding natural mercury cycling

over the Australian continent.

2. Methods

2.1. Fuel collection and analysis115

Surface fuels used in the experimental burns were collected from a dry scle-

rophyll forest in Pumphouse, Central Victoria (Site 1, Fig. 1). This forest is

classified as Shrubby Foothill, dominated by Broad-leaved Peppermint (Eucalyp-

tus dives), Australian Oak (Eucalyptus obliqua) and Narrow-leaved Peppermint

(Eucalyptus radiata). Fine fuels (herein leaves, bark and twigs with diameter120

< 6 mm) and coarse fuels (woody debris with diameter between 6 and 50 mm)

were collected separately in late January 2014 and immediately transported to

the CSIRO laboratory in Canberra where sorting and sieving took place. Fine

fuels were sieved to remove any remaining components > 6 mm and to remove

inorganic material (such as stones and rocks) and decomposed fuel elements.125

Representative subsamples were collected, sorted and weighed after oven drying

at 105 ◦C for 24 hours to determine relative fractions of leaves, bark and twigs

on a gravimetric basis. Coarse fuels were sorted into components with diameters

6–25 mm and 25–50 mm. Prior to each experimental burn, between two and

four subsamples (∼50–100 g) of fine fuel were collected and weighed to deter-130

mine experimental fuel moisture content (MC). Subsamples were oven-dried at

105 ◦C for 24 hours and then reweighed, from which fuel moisture content was

calculated [50]. For further detail regarding fuel collection see Sullivan et al.

[74].

An additional subsample of each fuel type, along with a sample of ash, was135

collected from each experimental burn for total mercury (THg) content analysis.

These were dried and homogenised, then mercury contents were analysed using

a Milestone direct mercury analyser (DMA-80) and US EPA method 7473. The
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sampling protocol involved triplicate sampling to determine precision, the intro-

duction of blanks to reduce memory effects and liquid standards to determine140

analytical accuracy. Calibrations were checked using National Institute of Stan-

dards and Technology (NIST) traceable Standard Reference Material (SRM,

NIST 1575a and 2709a).

2.2. Experimental burns

Experimental burns were performed at the CSIRO Pyrotron facility, a 25.6 m145

long stainless-steel wind tunnel with a 2.0 × 2.0 m cross-sectional area and a

2.0 × 4.8 m working section designed for investigations into fire behaviour and

emissions. Within the working section, fuel beds up to 1.5 × 4.8 m can be

prepared and combusted [for details see 73, 75, 74]. An array of 62 thermo-

couples within the working section record gas temperatures 1–3 cm above the150

fuel during the experimental burns. Wind speed within the tunnel was set at

1.0 m s−1 for all experimental burns. Prior to each experimental burn, fine fuel

moisture contents were measured using an A&D MF-50 moisture meter [12] and

a mass equivalent to a dry fine fuel weight of 1.00 ± 0.02 kg m−2 was gathered

and spread evenly across the working section. Four treatments were applied in155

this experiment, each with a different load of coarse fuels. These required the

addition of 0.0 kg m−2 (i.e. control), 0.2 kg m−2, 0.6 kg m−2 and 1.2 kg m−2

coarse fuels to the 1.0 kg m−2 fine fuels. Coarse fuel loads were split evenly be-

tween the two size fractions (6—25 mm and 25–50 mm) and distributed evenly

across the working section.160

The fuel bed was ignited against one edge of the working section using a

1.5 m channel filled with ethanol that was lit with a butane lighter. In addition

to investigating changes in coarse fuel load, differing fire behaviour was also

investigated by lighting the fuel such that the fire propagated with the wind

(heading) or against it (backing). Fuel bed sizes for heading fires were 6.0 m2
165

(1.5 × 4.0 m). Due to the slower propagation of backing fires, fuel bed sizes

were set at 3.0 m2 (1.5 × 2.0 m). In total, 22 experimental burns took place

during the experiment. Working section blanks were determined by igniting
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ethanol spread across the working section, with no appreciable enhancement of

mercury recorded.170

2.3. Emissions sampling

Emissions from the experimental burns were measured 3.6 m downwind of

the working section through 1/4
′′ polytetrafluoroethylene (PTFE) tubes sup-

ported within stainless steel tubes to a 0.84 m sampling height. Two sampling

methods were employed in determining mercury emission concentrations. The175

first, termed “continuous” sampling, consisted of direct sampling of downwind

air by instruments. Sample air was drawn through a 2 µm PTFE filter located at

the sample inlet. This filter was retained and analysed using a Tekran 2600 and

US EPA method 1631 to quantify PBM release. Flow rates through this filter

were measured before and after each burn and averaged 4.2 l min−1 (gas volumes180

herein are referenced at 1 atm and 0 ◦C) From this sampling stream, CO2 was

measured using a Los Gatos GGA-24r-EP analyser, whilst CO was measured

with a Los Gatos 907-0015. GEM was quantified using a Tekran 2537A, drawing

at 1 l min−1 and sampling continuously every 2.5 minutes. Previous investiga-

tions have shown that the portion of GOM emitted from biomass burning is185

generally small [27], which is further assumed here. The 2537A was calibrated

prior to each burn using an internal mercury permeation source maintained at

50 ◦C. The stability of this permeation source was verified before and after the

experiment using manual injections of mercury vapour to within 2 %.

The second sampling method, “bag” sampling, employed US EPA method190

18 lung sampling, whereby 5 or 10 l Tedlar bags were subjected to differential

pressure in order to sample air from within the downstream section. Using

differential pressure avoids the problem of contamination from the air pump

and the advantage of this sampling method over continuous sampling is that the

sampling period was able to be shortened to 1 min. After completion of each195

experimental burn, air samples were analysed for mercury concentration using

the same 2537A used for continuous sampling. CO2 and CO concentrations

were quantified using a Fourier Transform Infrared Spectrometer coupled to a
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multi-pass optical cell (White cell FTIR). Mole fractions were retrieved from

the FTIR spectra using the Multiple Atmospheric Layer Transmission (MALT)200

model [31, 32]. Accuracies of these retrievals were checked using a calibration

mixture and were found to be better than 10 % for CO and better than 5 % for

CO2 over the range of observed values. Tedlar bags were then flushed with N2

and evacuated by pump in preparation for the next experimental burn.

An open-path FTIR system was deployed at the exhaust outlet of the wind205

tunnel, approximately 0.5 m downwind of the other sampling locations. This

FTIR system is described in detail in Paton-Walsh et al. [59]. Briefly, it consists

of a Bomem MB-100 Series FTIR spectrometer (1 cm−1 resolution) equipped

with a built-in infrared source and fitted with a liquid nitrogen cooled Mercury

Cadmium Telluride (MCT) detector and a Meade 12” (305 mm) LX200 tele-210

scope. The built-in infrared source modulates the infrared radiation within the

spectrometer before it is sent out through the telescope to retro-reflectors that

were positioned opposite the cross-section area of the wind tunnel. The radia-

tion is returned through the telescope and the fraction of the radiation that is

reflected by the external beam splitter is focused onto the detector. This set-up215

gave average mole fractions of selected species across the width of the plume

with sampling frequency of 20 s.

Emission ratios of GEM to CO2 and CO were calculated using linear least

squares regressions for enhanced GEM concentrations against measured en-

hancements of CO2/CO. Uncertainties were quantified as the standard error220

of the slope. Emission factors for CO2 and CO were calculated from open-path

measurements using Eq. 3 [79] and emission factors for GEM were obtained

from these by multiplying by observed emission ratios (see Eq. 2). These emis-

sion factors for GEM were compared to an emission factor calculated from the

loss of mercury mass from the fuel (EFTHg/fuel), using Eq. 4. The modified225

combustion efficiency (MCE) was calculated using Eq. 5 [33, 83] to quantita-

tively describe the relative influence of flaming and smouldering combustion on

atmospheric emissions [16]. The Byram fire line intensity was calculated for each

burn by multiplying the lower heating value of the fuel by the fuel consumed
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and the rate of spread [11].230

EFy = FC · FV · 1000 · MWy

12
· Cy (3)

EFTHg/Fuel =
∑
f

[THgf ] · Ff −
∑

r[THgr] · Lr

L
(4)

MCE =
∆CO2

∆CO2 + ∆CO
(5)

Here FC is the fractional carbon content of the fuel, FV is the fraction of fuel

carbon volatilised, MWy is the molecular weight of species y = CO2/CO, Cy is

the percentage of observed emitted carbon species that were in the form species

y, [THg]f,r is the total mercury content of each fuel type f = leaves/bark/twigs/coarse

material or r = fine/coarse combustion residue and Ff is the fractional mass of235

fuel type f .

2.4. Biomass burning plumes at CGBAPS

In January and February of 2016, the north-west of Tasmania experienced

extensive bushfire burning, with over 140 fires covering > 97,000 ha reported

[30, 2]. Throughout this period CGBAPS, located on the north-west cape of240

Tasmania’s main island, was intermittently exposed to air masses affected by

these fires. Instrumental setups at CGBAPS have been described in detail

earlier [67, 45]; briefly GEM was sampled at this site from a 10 m mast using

a Tekran 2537B and CO/CO2 were sampled from a 70 m mast and quantified

using a Picarrro G2301.245

Figure 2a shows the time series of these three species during this period. Con-

centrations for all species were resampled to match the lowest frequency data

(1 hour−1). Identification of biomass burning plume strike events was achieved

using the selection process described by Desservettaz et al. [16], whereby burning

events underwent a first round of selection by identifying enhancements in CO.250

A second round of selection was employed, ensuring concomitant enhancement

of both CO2 and GEM. The third round of selection described by Desservettaz
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et al. [16] (identification of mixed plumes) was not employed. As such, these

events may be indicative of emissions from multiple fires. Background concen-

trations of the three species were calculated as the average taken 2 hours before255

and after the identified event. Emission ratios and MCE were then calculated

in the same manner as for the experimental burns.

Air mass back trajectories were computed for plume strike periods using the

NOAA Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT)

Model [17, 18, 19, 70]. Actively burning regions on corresponding days were260

identified using National Aeronautics and Space Administration (NASA) Mod-

erate Resolution Imaging Spectroradiometer (MODIS) hotspot data. Figure 2b

shows trajectory and hot spot data, along with selected vegetation community

data [6]. Two vegetation and soil sampling sites within a Eucalyptus obliqua

rainforest were selected based on these data and accessibility (Site 2, Fig. 1 and265

Fig. 2b). These sites were both within ∼300 m proximity to a road that served

as a fire break during the burning event, with vegetation on one side visibly

burned whilst the other side remained intact. Fine surface fuels (fallen leaves,

twigs, bark) as well as soils at depths of 0–2 and 5–10 cm were collected. Sample

collection took place in May 2017 using trace metal sampling techniques and270

samples were analysed for total mercury content using the technique described

in Section 2.1.

3. Results

3.1. Total mercury in fuels and mercury emission factors

Total mercury concentrations measured in Site 1 fine fuels ranged from275

0.38 µg kg−1 to 100.14 µg kg−1. Split according to fuel type (Table 2), leaves

contained the highest concentrations, followed by bark and twigs. Relative mass

loading for fine materials was 40.5 % (leaves), 7.3 % (bark) and 51.7 % (twigs),

resulting in mean total mercury loads of 32.5 µg, 2.0 µg and 6.0 µg respec-

tively, per kilogram of total fine fuel. Total mercury loads from coarse fuels280

were significantly smaller and ranged from 0.8 µg kg−1 to 5.0 µg kg−1.
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Total mercury concentrations in leaves from Site 2 were lower than from

Site 1, whilst bark and twigs showed comparable concentrations. Soil total mer-

cury concentrations showed relatively large variability between the unburned

and burned sites (mean values at 0–2 cm were 29.4 µg kg−1 and 49.3 µg kg−1285

respectively). Relative concentrations between the upper and lower soils sam-

pled were similar for both sites (∼5 µg kg−1 higher for soils 0–2 cm from the

surface than 5–10 cm).

Mean mercury loss from combustion was considerable, with 95 % and 97 %

of mercury lost from fine and coarse fuels, respectively. There was a very mi-290

nor difference in mean total mercury loss between heading and backing flaming

modes for fine fuels (96 % loss for heading and 92 % for backing), though no

such difference was observed for coarse fuels. Due to the low mercury concentra-

tions in coarse fuels, emission factors based on fuel mass balance (EFTHg/fuel)

effectively decreased with increasing coarse fuel loads. These values were 28.7295

± 8.1 µg kg−1, 24.9 ± 7.4 µg kg−1, 20.0 ± 6.6 µg kg−1 and 15.9 ± 5.9 µg kg−1

for fuel loads with 0.0 kg m−2, 0.2 kg m−2, 0.6 kg m−2 and 1.2 kg m−2 coarse

fuels, respectively.

3.2. Overview of experimental burns

An overview of the fire behaviour measurements is presented in Table 3.300

Moisture contents at the beginning of each burn ranged between 10.0 and 12.7 %.

Maximum temperatures (given for each thermocouple in the working section,

not aggregated across burns as a whole) were generally higher for heading fires

than for backing, though were not statistically different. End of forward spread

(EOFS) was defined as the point in time when the apex of the head fire reached305

the end of the fuel bed and was used to determine the rate of spread (equal

to the length of the fuel bed divided by EOFS). Due to the parabolic head

fire shape [13], areas of unburned material along the flanks of the fire remained

at EOFS. Heading fires progressed along the fuel bed at a much faster (∼9

times) rate than backing fires, consequently showing considerably higher Byram310

fire line intensities. Based on the Byram fireline intensities, these burns are
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best described as low–moderate intensity, typical for prescribed burning [76].

Flaming combustion durations for heading fires increased slightly with higher

coarse loading (Fig. 3), partly due to longer flaming periods of coarse fuels and

partly due to a slowed rate of spread. Three distinct periods of the experimental315

burns were defined: flaming progression (FP) from ignition to EOFS, flaming

stationary (FS) from EOFS to the cessation of all flaming combustion (note

that “stationary” here refers to the apex of the fire and not the still-progressing

flanks) and smouldering (SM) from the end of flaming combustion until the end

of the experimental burn.320

Carbon release during combustion from all experimental burns was largely

in the form of CO2 and CO, with CO2 representing the majority of this release

(92 to 97 % C) and CO representing 3 to 7 %. Figure 3 shows that, for heading

fires, peak CO2 occurred before peak CO. The timing of these peaks did not

consistently coincide with either EOFS or flame duration, however the period325

between the peaks did increase with increasing coarse fuel loads. Patterns for

CO2 and CO concentrations during backing fires showed an initial peak following

ignition preceding a steady decline for the duration of the burn. Distinct ranges

of MCE were observed by the open-path instrument during each combustion

stage, with FP showing an MCE range of 0.96 to 1, FS a range of 0.88 to 0.96330

and SM a range of 0.80 to 0.88.

Figure 3 shows that release of GEM during heading fires occurred predomi-

nantly during the flaming progression stage, with a peak in GEM observed prior

to EOFS and very low concentrations following the end of all flaming combus-

tion. The timing in peak GEM was earlier for bag data than for continuous335

data — this was attributed to the long sampling period of the 2537A (2.5 min)

relative to the changes in GEM release from flaming combustion. Bag sampling

frequency was kept at 1 min−1 during flaming combustion and so finer detail

during this stage could be resolved. GEM enhancements during backing fires

exhibited a minor peak during the first 5–10 minutes of combustion and a slow,340

continual decrease during the extended flaming combustion phase. This pattern

did not change considerably across coarse fuel loads and so data for all backing
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fires are shown here as an aggregate. GEM represented the majority of liber-

ated mercury for all experimental burns, with PBM accounting for < 1 % of

mercury emission. Emission of PBM showed no relationship with fire spread or345

fuel loading.

3.3. GEM emission ratios

For experimental burns the mean GEM emission ratio with respect to CO2

(ERGEM/CO2) was 5.95 ± 0.02 ×10−9 and with respect to CO (ERGEM/CO)

was 0.82 ± 0.01 ×10−7 (Table 4). Emission ratios obtained with both bag and350

continuous sampling methods showed good agreement and are reported here as

an aggregate total. Distinct differences in both ERGEM/CO2 and ERGEM/CO

were observed for each of the experimental burn stages with larger values ob-

served during the initial stages of the burns (Table 4, Fig. 4a,b). This is

consistent with the GEM enhancement time series showing that most GEM was355

released during the flaming progression stage of the experimental burns.

No such distinction between combustion stages was able to be resolved in

the CGBAPS plume strike data, with GEM enhancements showing more linear

relationships with both CO2 and CO enhancements across all plume events

(Fig. 4c,d). ERGEM/CO2 from the CGBAPS plume strike data was significantly360

higher than that observed during the experimental burns (9.77 ± 0.08 ×10−9).

The value for ERGEM/CO from CGBAPS, at 0.58 ± 0.01 ×10−7, was slightly

lower than that from all experimental burn data but comparable with that

calculated from flaming stationary observations. We note that only data from

plume strike events 1 and 5 can reasonably be believed to have originated from365

eucalpyt forest biomass burning (see Fig. 2b). Removing data from events 2–4

(likely from heathland and grassland burning) did not significantly alter the

resulting ER values.

Mercury emission factors based on emission ratios were calculated from

the experimental burn data only and showed similarly large variability with370

burn stage, with values for both EFGEM/CO2 and EFGEM/CO decreasing with

burn stage progression (Table 5). Mean overall emission factors were higher for
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EFGEM/CO2, though both were within the range of uncertainty of EFTHg/fuel.

EFGEM/CO2 significantly overpredicted GEM release during the flaming pro-

gression stage, though showed good agreement during the flaming stationary375

stage. EFGEM/CO showed good agreement with EFTHg/fuel during the flam-

ing progression and flaming stationary stages, though with uncertainties an

order of magnitude higher than for EFGEM/CO2. Both emission factors signif-

icantly under-predicted GEM release against mass balance techniques during

the smouldering stage.380

4. Discussion

4.1. Mercury in dry sclerophyll fuels and emission factors

Observations of total mercury concentrations within eucalypt vegetation in

the literature are rare but are in good agreement with those reported here (Ta-

ble 2). Hellings et al. [35] observed concentrations of 78.5 ± 2.1 µg kg−1 in385

Australian Eucalyptus leaves, similar to that seen in leaves from Site 1. Total

mercury concentrations in eucalypt bark reported by these authors, at 50.1 ±

2.5 µg kg−1, were slightly higher than those observed here. Packham et al.

[58] similarly measured total mercury concentrations in biomass of 78, 80 and

83 µg kg−1 within three Walker fire regions [78] corresponding to native tem-390

perate broadleaf forest. Higher total mercury values within plant leaves have

been observed elsewhere and are attributed to uptake of atmospheric mercury

via stomatal and foliar exchange [23, 9]. Preferential storage of mercury within

the leaves of eucalypts leads to emission factors across the entire fuel bed that

are significantly lower than the maximum observed mercury concentrations.395

Clearly, the very low mercury content within the coarse fuels lead to an effec-

tive decrease in the mercury emission factor with increasing coarse fuel loading.

The contribution to atmospheric emissions of coarse woody debris in Australian

eucalypt forests is poorly known [77], due to the focus on fine fuels as the driver

of fire propagation [42]. Field observations have further shown high variability400

in both fuel loading from coarse material and volatilisation of coarse material
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during biomass burning events [61]. Due to the low total mercury concentra-

tions in coarse woody debris, the large disparity in burning efficiency of this

material, and the large uncertainties in coarse fuel loading within Australian

dry sclerophyll forests, we refrain from including coarse fuels in our estimate of405

mercury emission factors. As such, we conservatively offer an emission factor

value of 28.7 ± 8.1 µg kg−1 as an upper estimate of mercury emission from

Australian dry sclerophyll litter fuels.

Volatilisation of mercury from soils is another significant emission contribu-

tion during biomass burning. THg concentrations in Site 2 soils (Table 2) were410

comparable to those reported by Hellings et al. [35], who observed concentra-

tions of 30.1 ± 1.5 µg kg−1 in soil with particle diameter above 212 µm and

61.7 ± 3.6 µg kg−1 below this diameter. Packham et al. [58] observed a soil

total mercury concentration of 47 µg kg−1 at one Australian native temperate

broadleaf sites and a concentration of 125 µg kg−1 at a second site, although415

stating that proximity to an old gold mine likely skewed this latter result. The

similar differences in concentrations between upper (0–2 cm) and lower (5–10

cm) soil depths at the burned and unburned sampling sites suggests that volatil-

isation of mercury from the soil was low during this particular fire. The general

validity of this result is difficult to quantify without more extensive spatial sam-420

pling, however Biswas et al. [8] suggested that between 15 and 66 % of soil

mercury may be released during biomass burning events. Using the higher of

the two soil concentrations from Site 2, this would equate to an estimated soil

mercury emission factor between 4.4 and 32.5 µg kg−1.

In the absence of locally-derived emission factors, the work of Friedli et al.425

[27, 25] is commonly referred to in modelling of mercury release from biomass

burning in Australia. These emission factors include a “global average” of

112 µg kg−1 [27] and diversified emission factors for tropical (19 µg kg−1),

extratropical (242 µg kg−1) and non-forest (41 µg kg−1) regions [25]. For dry

sclerophyll forests, we have shown through our own sampling and comparison430

with other values in the literature that mercury emission factors are consider-

ably lower than both the global average and that for extratropical forests of
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242 µg kg−1. Applying a mercury emission factor of 28.7 µg kg−1 would result

in estimates of mercury release from eucalypt forest biomass burning between

74 and 88 % lower than previously reported.435

4.2. GEM and PBM emission ratios

In the emission time series (Fig. 3) it is apparent that the majority of GEM

release occurs under flaming combustion, a stage characterised by the most effi-

cient combustion (higher MCE) and the highest proportion of fuel carbon loss.

As CO2 emission represents the largest proportion of fuel carbon loss through-440

out all burn stages, a stronger linearity between ∆GEM and ∆CO2 is observed,

relative to ∆GEM/∆CO (Fig. 4a,b). Applying ERGEM/CO2 values from all

burn stages or during the flaming progression stage however significantly over-

estimates GEM release against mass balance techniques (Table 5). Values for

ERGEM/CO2 in the literature are rare, with only one other study publishing a445

value of 1.19 ×10−9 [10]. All ERGEM/CO2 values observed here are significantly

higher than this value, with the exception of smouldering-stage combustion,

which was found to not be an accurate predictor of mercury release (Table 5).

CGBAPS plume strike data similarly gave a mean ERGEM/CO2 value close to

an order of magnitude higher than that reported by [10]. The separation of450

burn stages was not able to be resolved in the CGBAPS field data, with nei-

ther ∆GEM/∆CO2 nor ∆GEM/∆CO values showing relationships with MCE

similar to those seen in the experimental burns (Fig. 4e,f).

Brunke et al. [10] also reported an ERGEM/CO value of 2.10 ×10−7, within

the range of 0.79 ×10−7 to 2.39 ×10−7 from other reported values in the litera-455

ture [27, 64, 81, 21]. Our own measurements of ERGEM/CO span a range greater

than this within a single experimental burn ensemble (0.08 ± 0.01 ×10−7 for

smouldering combustion to 2.51 ± 0.03 ×10−7 for flaming propagation). This re-

sult highlights the need for careful consideration of plume strike observations and

we suggest reporting where possible both ERGEM/CO2 as well as ERGEM/CO460

values, along with MCE. Within our experimental burn data, ERGEM/CO values

during the flaming stationary stage accurately predict GEM release against mass
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balance techniques (albeit with large uncertainty) and both ERGEM/CO values

— and relationships between the ∆GEM/∆CO ratio and MCE — are similar

to the CGBAPS field data. For this reason, we speculate that the ERGEM/CO465

obtained from CGBAPS plume strike data (0.58 ×10−7) is a more appropriate

value to adopt than the global average of Friedli et al. [25] (1.54 ×10−7). Again,

this is 62 % lower than currently accepted values in the literature, highlighting

that biomass burning emission of GEM in dry sclerophyll forests is currently

overestimated.470

With release of PBM below detection limits for many of the experimental

burns, we are unable to provide an emission ratio for particulate mercury re-

lease. Obrist et al. [56] observed changes in the relative emission of gaseous and

particulate mercury with combustion phase, highlighting increased PBM emis-

sion from smouldering-dominated fires in a laboratory-scale experiment. They475

explored emissions from fuels with initial moisture contents ranging between

9 and 95 %. For fuels with moisture content below 30 % they saw very little

release of PBM, at times below detection limits. As starting fuel moisture here

was kept consistent and relatively low, the very small PBM releases observed

are consistent with this result.480

Fire intensities during wild burning events are strongly related to fuel mois-

tures [29], and fuel moistures in this experiment were chosen such that the

Byram fireline intensities of the experimental burns are similar to those observed

during prescribed burning. Conditions during prescribed burns are chosen such

that the resulting burn intensity is low and therefore controllable. Many wild-485

fire burning events in Australia can also be considered low intensity, with an

estimated ∼50 % showing Byram fire line intensities around 300 kW m−1 [29],

within the range of intensities seen during heading experimental burns. Larger,

more intense fires generally take place under drier conditions. For this reason

we speculate that the very low release of PBM during dry sclerophyll forest490

biomass burning is broadly applicable; as such we would expect PBM to gener-

ally represent a very small proportion of mercury emission from wildfire burning

in Australian dry sclerophyll forests. Estimating the moisture content of fuels is
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still an important step in resolving relative partitioning during mercury biomass

burning emissions modelling.495

4.3. Directions for future Australian research

There has been a considerable range of biomass burning mercury emis-

sion estimates for the Australian continent produced in the literature. Us-

ing three biomass burning inventories, Simone et al. [65] provided estimates of

7, 30.0 and 30.2 Mg Hg a−1, based on the ERGEM/CO value of 1.54 ×10−7500

reported by Friedli et al. [25]. Estimates of total mercury release from the

Australian continent using emission factors include those by Nelson et al. [55]

(42 Mg Hg a−1 using an average emission factor of 112 µg kg−1) and Friedli et al.

[25] (19 Mg Hg a−1 using diversified emission factors for tropical, extratropical

and non-forest regions). We have shown here, through both experimental and505

field observation data, that these emission factors and emission ratios signifi-

cantly overpredict mercury release for dry sclerophyll forests.

This significant downward adjustment is an important result for predicting

mercury emissions from burning of dry sclerophyll forests. However according

to AVHHR satellite data, biomass burning of temperate broadleaf forests ac-510

counted for only 0.7 % of the total across Australia on an areal basis over the

years 1997–2011 [47]. Larger gains in constraining estimates of mercury release

from biomass burning across the Australian continent can be made by focussing

on tropical/subtropical grassland and savanna, and desert/xeric shrub ecore-

gions, which combined account for over 97 % of burned area. In addition to the515

large relative burned areas, total mercury concentrations within vegetation and

soils in these regions are currently subject to large uncertainty. Packham et al.

[58] observed vegetation concentrations of 212 and 290 µg kg−1 for tropical

grassland and shrubland ecoregion samples, respectively, and soil concentra-

tions of 105 µg kg−1 for tropical grassland ecoregion samples. These results520

agree well with the 198 µg kg−1 mercury emission factor given by Friedli et al.

[25] for tropical regions. Howard et al. [40] however observed vegetation and soil

concentrations in a tropical grassland site of only 9 µg kg−1, stating that these
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samples were taken in an area that had undergone burning within the previous

12 months. Clearly further vegetation and soil sampling in these ecoregions can525

assist in constraining Australian biomass burning mercury emission estimates.

5. Conclusions

Mercury and greenhouse gas emissions from the burning of dry sclerophyll

surface fuels were measured in the CSIRO Pyrotron combustion wind tunnel.

This experimental setup provided a unique ability to observe changes in relative530

emissions due to fire progression throughout the burns. Heading and backing

fires were considered both with and without the addition of coarse fuels. Due

to the relatively low mercury concentrations in these fuels, increasing the coarse

loading lead to an effective decrease in mercury concentration across the en-

tire fuel bed. PBM represented less than 1 % of emitted mercury, which we535

attributed to the consistent and relatively low fuel moistures used in this ex-

periment. As this experiment was designed to simulate fire intensity conditions

during prescribed burns (i.e. higher fuel moisture than during large wildfires),

we hypothesise that wildfire burning events will likely emit similarly small per-

centages of PBM.540

Volatilisation of mercury was found to occur predominantly during the early

flaming combustion phase of the burns when flame temperatures are highest.

Values of ERGEM/CO2 significantly over-predicted mercury release during the

early stages of the burn, whilst ERGEM/CO values in the early stages agreed

well with mercury release predicted from mass balance techniques. As the onset545

of smouldering combustion occurred after this early volatile period, mercury

emissions at this stage were low, with both ERGEM/CO2 and ERGEM/CO sig-

nificantly under-predicting mercury release. ERGEM/CO values observed during

experimental burns spanned a range greater than those reported in the litera-

ture, however those obtained during the flaming stationary stage of the burns550

(0.56 ± 0.01 ×10−7) were deemed to give the most realistic representations of

mercury release from the fuels. Comparison with plume strike data collected
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from CGBAPS (0.58 ± 0.01 ×10−7) confirmed this as the most appropriate

value for estimating mercury release. These values are ∼62 % lower than the

global average used previously in Australian biomass burning mercury release555

modelling.

Fuel mercury concentrations at the two eucalypt sites agreed well with each

other and with other values for eucalypt vegetation and soils reported in the

literature. Based on our observations, we offer a conservative mercury emission

factor of 28.7 ± 8.1 µg kg−1 for surface fuels, noting that inclusion of coarse fu-560

els in our calculations leads to a decrease in this estimate. Our estimated range

of mercury emission factors for eucalypt soils is between 4.4 and 32.5 µg kg−1.

Both of these values are again considerably lower than previous emission factors

used in modelling emission of mercury from biomass burning in Australia. This

is an important result for mercury emission modelling efforts however we note565

that, in terms of total area burned, eucalypt forests represent a relatively minor

source of biomass burning emissions across the Australian continent. Future in-

vestigations into Australian mercury biomass burning release should be focused

on the tropical grassland and desert shrub ecoregions, as these are the regions

that are burned most extensively and frequently, thus potentially being regions570

of high atmospheric mercury turnover.
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Guérette, E.-A. [2014], ‘New emission factors for Australian vegetation fires

measured using open-path Fourier transform infrared spectroscopy – Part

1: Methods and Australian temperate forest fires’, Atmospheric Chemistry

and Physics 14(20), 11313–11333.800

[60] Pirrone, N., Hedgecock, I., Cinnirella, S. and Sprovieri, F. [2010], Overview

of major processes and mechanisms affecting the mercury cycle on different

spatial and temporal scales, in ‘EPJ Web of Conferences’, Vol. 9, EDP

Sciences, pp. 3–33.

[61] Possell, M., Jenkins, M., Bell, T. L. and Adams, M. A. [2015], ‘Emissions805

from prescribed fires in temperate forest in south-east Australia: implica-

tions for carbon accounting’, Biogeosciences 12(1), 257–268.

[62] Rea, A. W., Lindberg, S. E. and Keeler, G. J. [2001], ‘Dry deposition and

foliar leaching of mercury and selected trace elements in deciduous forest

throughfall’, Atmospheric Environment 35(20), 3453–3462.810

[63] Selin, N. E. [2009], ‘Global biogeochemical cycling of mercury: A review’,

Annual Review of Environment and Resources 34(43–63).

[64] Sigler, J. M., Lee, X. and Munger, W. [2003], ‘Emission and long-range

transport of gaseous mercury from a large-scale Canadian boreal forest

fire’, Environmental Science and Technology 37(19), 4343–4347.815

[65] Simone, F. D., Cinnirella, S., Gencarelli, C. N., Yang, X., Hedgecock, I. M.

and Pirrone, N. [2015], ‘Model study of global mercury deposition from

biomass burning’, Environmental Science and Technology 49(11), 6712–

6721.

[66] Simone, F. D., Gencarelli, C. N., Hedgecock, I. M. and Pirrone, N.820

[2016], ‘A modeling comparison of mercury deposition from current anthro-

pogenic mercury emission inventories’, Environmental Science and Tech-

nology 50(10), 5154–5162.

30



[67] Slemr, F., Angot, H., Dommergue, A., Magand, O., Barret, M., Weigelt,

A., Ebinghaus, R., Brunke, E.-G., Pfaffhuber, K., Edwards, G., Howard,825

D., Powell, J., Keywood, M. and Wang, F. [2015], ‘Comparison of mercury

concentrations measured at several sites in the Southern Hemisphere’, At-

mospheric Chemistry and Physics 15, 3125–3133.

[68] Smith-Downey, N. V., Sunderland, E. M. and Jacob, D. J. [2010], ‘Anthro-

pogenic impacts on global storage and emissions of mercury from terrestrial830

soils: Insights from a new global model’, Journal of Geophysical Research:

Biogeosciences 115(G3), 11 pp.

[69] Stamenkovic, J. and Gustin, M. S. [2009], ‘Nonstomatal versus stomatal

uptake of atmospheric mercury’, Environmental Science and Technology

43(5), 1367–1372.835

[70] Stein, A., Draxler, R., Rolph, G., Stunder, B., Cohen, M. and and, F. N.

[2015], ‘NOAAs HYSPLIT atmospheric transport and dispersion modeling

system’, Bulletin of the American Meteorological Society 96, 2059–2077.

[71] Streets, D. G., Devane, M. K., Lu, Z., Bond, T. C., Sunderland, E. M. and

Jacob, D. J. [2011], ‘All-time releases of mercury to the atmosphere from840

human activities’, Environmental Scince and Technology 45(24), 10485–

10491.

[72] Streets, D. G., Horowitz, H. M., Jacob, D. J., Lu, Z., Levin, L., Ter Schure,

A. F. H. and Sunderland, E. M. [2017], ‘Total mercury released to the

environment by human activities’, Environmental Science and Technology845

51(11), 5696–5977.

[73] Sullivan, A. L., Knight, I. K., Hurley, R. J. and Webber, C. [2013], ‘A

contractionless, low-turbulence wind tunnel for the study of free-burning

fires’, Experimental Thermal and Fluid Science 44, 264–274.

[74] Sullivan, A., Surawski, N., Crawford, D., Hurley, R., Volkova, L., Weston,850

C. and C.P.Meyer [2018], ‘Effect of woody debris on the rate of spread of

31



surface fires in forest fuels in a combustion wind tunnel’, Forest Ecology

and Management 424, 236–245.

[75] Surawski, N. C., Sullivan, A. L., Meyer, C. P., Roxburgh, S. H. and Pol-

glase, P. J. [2015], ‘Greenhouse gas emissions from laboratory-scale fires855

in wildland fuels depend on fire spread mode and phase of combustion’,

Atmospheric Chemistry and Physics 15(9), 5259–5273.

[76] Tolhurst, K. G. and Cheney, N. P. [1999], ‘Synopsis of the knowledge used

in prescribed burning in victoria.’.

[77] Volkova, L. and Weston, C. [2013], ‘Redistribution and emission of forest860

carbon by planned burning in Eucalyptus obliqua (l. hérit.) forest of south-
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Table 1: Overview of burned area derived from AVHHR 1997-2011 data [47] and mean total

mercury concentrations [58] reproduced for vegetation and soils, categorised by Australian

ecoregions [57]. Parentheses denote number of sample locations. ∗Value of 125 µg kg−1

removed, due to possible geogenic source contamination. †Values obtained from Howard et al.

[40]. ‡Values obtained from Howard and Edwards [39]

Total Area Area Burned Vegetation [THg] Soil [THg]

Gha Gha a−1 µg kg −1 µg kg−1

Tropical and Subtropical 2.77 0.03 — —

Moist Broadleaf Forests

Temperate Broadleaf 53.48 0.28 80 (3) 47∗ (1)

and Mixed Forests

Tropical and Subtropical 188.41 27.37 212 (1) 105 (1)

Grasslands and Savannas 9† (1) 9† (1)

Temperate Grasslands, 48.96 0.06 52 (1) 145 (1)

Savannahs and Shrublands

Montane Grasslands 0.99 0.05 18‡ (1) 48‡ (1)

and Shrublands

Meditteranean Forests, 74.08 0.43 213 (2) 90 (1)

Woodlands and Scrub

Deserts and 321.69 12.74 290 (1) —

Xeric Schrubs
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Table 2: Total mercury (THg) concentrations in different fuel types. Values are means ± one

standard deviation.

Site 1 Site 2 (unburned) Site 2 (burned)

µg kg−1 µg kg−1 µg kg−1

Leaves 72.9 ± 10.9 47.8 ± 3.5 —

Bark 25.0 ± 11.1 24.5 ± 4.0 —

Twigs 10.1 ± 5.4 11.2 ± 4.1 —

Coarse (6–25 mm) 4.3 ± 3.8 — —

Coarse (25–50 mm) 6.1 ± 8.1 — —

Fine fuel residue 1.6 ± 1.6 — —

Coarse fuel residue 0.3 ± 0.2 — —

Soil (0–2 cm) — 29.4 ± 17.7 49.3 ± 29.0

Soil (5–10 cm) — 25.3 ± 11.8 45.4 ± 4.8

Table 3: Overview of fire behaviour parameters. Median with range in parentheses.

Fuel MC EOFS Flaming Max. point Rate of Byram

duration temperature spread intensity

% min:sec min:sec ◦C m h−1 kW m−1

Heading 11.5 4:55 9:06 726 47.7 211.5

(10.0–12.7) (2:19–6:55) (6:20–11:20) (107–958) (36.7–112.6) (115.7–478.4)

Backing 11.9 22:41 28:37 621 5.0 20.1

(10.2–12.7) (19:46–26:54) (27:44–29:30) (127–886) (4.6–6.2) (13.1–25.6)
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Table 4: Mercury emission ratios for all fire stages. Calculated as the least squares slope of

GEM/y with standard error.

All Data Flaming Flaming Smouldering Cape Grim

Progression Stationary

GEMCO2 (×10−9) 5.95 ± 0.02 6.55 ± 0.05 4.70 ± 0.07 1.46 ± 0.10 9.77 ± 0.08

GEMCO (×10−7) 0.82 ± 0.01 2.51 ± 0.03 0.56 ± 0.01 0.08 ± 0.01 0.58 ± 0.01

MCE range 0.80–1.00 0.96–1.00 0.88–0.96 0.80–0.88 0.79–0.97

Table 5: Mercury emission factors for all fire stages. Emission factor calculated from mass

balance technique (EFTHg/fuel) included for reference.

EFTHg/fuel All Data Flaming Flaming Smouldering

Progression Stationary

GEMCO2 / µg kg−1 28.7 ± 8.1 37.4 ± 0.7 42.8 ± 0.8 29.0 ± 1.3 7.8 ± 1.0

GEMCO / µg kg−1 28.7 ± 8.1 31.5 ± 7.0 28.8 ± 14.7 25.7 ± 10.1 8.7 ± 10.5
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Figure 1: Map of Australian biomes as defined by Olson and Dinerstein [57], along with

average annual fire frequency as determined by Maier [47]. Based on raster data at 1 km2

resolution. Due to the sampling algorithm, generally only fires of size 4 km2 or larger are

counted. Numbers 1 and 2 show locations of fuel sampling sites.
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Figure 2: a. time series of GEM, CO2 and CO as observed at CGBAPS during 25th January

– 14th February, 2016. Vertical lines denote the start and end times of identified plume strike

events. b. HYSPLIT back trajectories corresponding to identified plume strike events, along

with MODIS hot spot data for corresponding days.
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Figure 3: Left: time series of GEM enhancements for a. Load 1, c. Load 2, e. Load 3, g.

Load 4 and i. backing fires. Right: CO2 (yellow) and CO (blue) enhancements for the same

fires. Black lines denote median values, shading denotes range of values. Vertical lines show

median times of EOFS and Fines Out.
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Figure 4: Above: GEM enhancements against a. CO2 and b. CO enhancements. Lines

show least-squares regressions for FP (dotted), FS (dashed) and SM (solid) stages. Middle:

GEM enhancements against c. CO2 and d. CO enhancements for plume strike events ob-

served at CGBAPS. Lines show linear least-square regressions ± standard error. Below: e.

∆GEM/∆CO2 and f. ∆GEM/∆CO ratios for each observation against modified combustion

efficiency for experimental burn (circles) and CGBAPS plume strike (diamonds) data. Here

FP, FS and SM categories are defined according to MCE ranges and refer to experimental

burn data only.
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