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Abstract 

 

Conventional storage of platelet concentrates limits their shelf life to between 5 and 7 days 

due to the risk of bacterial proliferation and the development of the platelet storage lesion. 

Cold storage and cryopreservation of platelets may facilitate extension of the shelf life to 

weeks and years, and may also provide the benefit of being more haemostatically effective 

than conventionally stored platelets. Further, treatment of platelet concentrates with 

pathogen inactivation systems reduces bacterial contamination and provides a safeguard 

against the risk of emerging and re-emerging pathogens. While each of these alternative 

storage techniques is gaining traction individually, little work has been done to examine the 

effect of combining treatments in an effort to further improve product safety and minimise 

wastage. This review aims to discuss the benefits of alternative storage techniques and how 

they may be combined to alleviate the problems associated with conventional platelet 

storage. 
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Introduction  

Platelets have a primary role in mediating haemostasis, where they are essential to maintain 

the integrity of the vascular system [1]. Platelet concentrates are primarily transfused 

prophylactically to prevent the onset of bleeding in patients with thrombocytopaenia [2-4]. 

Additionally, platelets may be transfused therapeutically for the treatment of active bleeding 

[3, 4]. Conventionally, platelets are stored at room temperature (20-24°C), in gas permeable 

bags, with constant agitation [5]. This prevents platelets from aggregating and preserves 

platelet viability by maintaining appropriate gas exchange. Under these conditions, the 

platelet shelf life is limited to 5-7 days depending on the governing regulator. This limitation 

is imposed to minimise the deterioration in platelet quality that occurs during storage, as well 

as the risk of bacterial growth. 

 

The platelet storage lesion  

During the storage period, platelets undergo numerous changes, referred to collectively as 

the platelet storage lesion, which results in deterioration of platelet function and viability [6]. 

While platelet collection and processing steps required to manufacture platelet concentrates 

induces a degree of platelet activation, the aim of ex vivo storage is to maintain them in a 

relative resting state (Figure 1). Unfortunately, current strategies result in a progressive 

activation during storage, demonstrated by upregulated release of alpha granules, altered 

glycoprotein expression and increased procoagulant activity over the storage period [6-9]. 

Additionally, glycolysis may be upregulated, leading to increased lactic acid production and a 

concomitant fall in pH if insufficient buffering capacity is present [10, 11]. Platelet structure 

and function is altered when the pH falls to 6.8 [5, 12], with a loss of viability below pH 6.0 

[5]. Historically, similar changes were once reported when the pH exceeded 7.5 [13]. 
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However, these results were obtained using outdated methods of platelet manufacture, 

storage containers and agitation techniques and more recent studies do not support an upper 

limit for the pH [14, 15]. The platelet storage lesion therefore poses a challenge when 

considering the shelf life of platelet products at the time of transfusion. 

 

The development of the platelet storage lesion can result in undesirable outcomes following 

transfusion. Notably, the release of soluble platelet mediators during storage increases the 

risk of certain transfusion reactions, with reports suggesting that up to 30% of patients 

receiving a platelet transfusion will present with symptoms including fever, chills, cold and 

discomfort [16]. However, the incidence of more severe transfusion reactions, including 

anaphylaxis, TACO or TRALI, is rare, occurring in approximately 1% of patients receiving a 

platelet transfusion [17]. The effectiveness of a platelet concentrate also decreases as the 

product ages, demonstrating in vitro impairment of aggregation responses and weaker clot 

formation [9, 18, 19]. Consequently, the platelet storage lesion results in platelets with 

reduced in vivo recovery and survival, and lower haemostatic activity [19, 20].  

 

Globally, many blood services face logistic challenges due to the short shelf life of platelets. 

The day-to-day demand for platelet products is somewhat unpredictable, making it 

problematic to balance an adequate inventory without incurring excessive wastage. This 

problem is further compounded by the ‘just-in-case’ approach, which necessitates the 

immediate availability of platelet products for medical and surgical procedures, even if only a 

small proportion is transfused. Furthermore, the short shelf life is particularly challenging 

when considering the supply of platelet products to remote, rural and military settings [21-

23]. The transport of platelet products is further complicated as room temperature stored 
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platelets also require constant agitation to maintain adequate gas exchange. Combined, it is 

evident that the development of strategies to overcome the current challenges associated 

with conventional platelet storage is a pressing issue in the transfusion community. This 

review will discuss the alternatives that are currently of interest and highlight how, 

individually or combined, these techniques could alleviate the burdens associated with the 

currently accepted methods of platelet storage.  

 

Cold Stored Platelets  

Cold storage is not a new method of storing platelets, but is undergoing a resurgence of 

interest. Cold storage involves keeping platelets in a refrigerator (2-6 °C) without agitation 

and was the convention until the 1970s. It was subsequently shown that platelets stored at 

room temperature had better in vivo survival following transfusion [24, 25]. While circulation 

time is reduced following cold storage it is becoming evident that storage at low temperatures 

may provide other benefits.  

 

Cold storage of platelets has the potential to substantially increase the shelf life of platelets, 

with in vitro studies showing that platelets stored out to 21 days maintain functionality [26-

28]. The extension of shelf life can be attributed to a decreased metabolic rate, leading to 

lower glucose consumption, decreased lactic acid production, and better maintenance of pH 

[26, 29]. Cold storage also has the benefit of significantly inhibiting bacterial growth within 

platelet products. Storage of platelets at 4 °C retards the growth of many bacterial species, 

decreasing the probability of transfusion-associated sepsis [30, 31].  
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When stored in the cold, platelets undergo a number of changes. Firstly, they are found to 

undergo an irreversible morphological change from their resting discoid shape to a more 

spherical form [32]. Granule and cytokine release is reduced compared to room temperature 

stored platelets, while microparticle formation is increased [26, 33]. The expression of surface 

receptors is also altered when platelets are cold stored. Integrin αIIbβ3 undergoes a 

conformational change to its activated conformation [17, 26, 28]. Furthermore, cold storage 

induces increased surface expression of P-selectin and externalisation of phosphatidylserine, 

both markers of platelet activation [28, 34, 35]. While phosphatidylserine is commonly 

considered a marker of platelet activation, it is also associated with apoptosis [36]. Platelet 

refrigeration leads to deglycosylation and clustering of GPIbα, resulting in the exposure of N-

acetylglucosamine (GlcNAc) and galactose [37, 38]. Recognition of exposed GlcNAc by the 

αMβ2 integrin on macrophages in the liver, leads to rapid removal of platelets from circulation 

[39]. Furthermore, galactose becomes exposed as the storage progresses, which facilitates 

platelet clearance by hepatic Ashwell-Morell receptors [40].  

 

While cold stored platelets have a reduced circulation time of between 2 to 4 days as 

compared to 7 to 9 days for room temperature platelets, they appear to be more 

haemostatically active [24, 25]. This increase in haemostatic activity is evidenced by improved 

in vitro aggregation responses to agonists including ADP, collagen and epinephrine, as well as 

increased clot forming potential [29, 34, 41]. Cold platelets also significantly reduce bleeding 

time in patients taking aspirin [42] and are more efficient at stopping bleeding in 

thrombocytopenic patients [24]. Additionally, recent analysis of an ongoing study 

demonstrates a trend towards reduced postoperative bleeding following transfusion of cold 

stored platelets in patients undergoing cardiothoracic surgery [43]. This improved function 
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may be beneficial when treating active bleeding, as the shortened lifespan of cold stored 

platelets would be of little incident as the platelets would be consumed during the 

progression of haemostasis. The transfusion environment and the understanding of cold 

stored platelets have shifted significantly since the decision was made to move away from 

cold storage. As such, further work on cold stored platelets in the context of the 

contemporary transfusion medicine environment is warranted. 

 

Cryopreserved Platelets  

Cryopreservation is also not a new method for storing platelets, being first developed in the 

1970s [36]. Despite early investigations yielding positive results, their use was never widely 

adopted as a conventional method for platelet storage. The currently accepted method of 

cryopreservation involves the addition of dimethyl sulfoxide (DMSO) to a final concentration 

of 5-6 %, followed by pre-freeze removal of the DMSO containing supernatant [44-46]. 

Hyperconcentrated platelet units are then frozen at -80 °C where they have a shelf life of at 

least two years [46, 47]. In preparation for transfusion, cryopreserved platelets are rapidly 

thawed and resuspended in a suitable media. Several media have been investigated for their 

suitability as a reconstitution solution including saline, 100% plasma, 30% plasma/70% SSP+, 

or 100% platelet additive solution (PAS), such as SSP+ [29, 44, 48-51]. Once thawed and 

resuspended, cryopreserved platelets typically have a 6 hour shelf life [52].  

 

Cryopreserved platelets differ significantly from conventionally stored platelets. Notably, 

cryopreserved platelets appear to lose multiple receptors including GPIbα, GPVI, and integrin 

αIIbβ3 [40, 44, 48-50, 53]. Cryopreserved platelets are significantly more activated than room 

temperature stored platelets, as evidenced by increased surface levels of CD62P, along with 
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phosphatidylserine externalisation and extensive microparticle shedding [39, 44, 48-50, 53]. 

Further, platelet degranulation is also evident, with increased supernatant concentrations of 

cytokines including sCD62P, PF4, PDGF-AB, RANTES, TGF-β and EGF present in the platelet 

supernatant [33, 44, 49, 50, 53].  

 

Despite the altered phenotype, cryopreserved platelets appear to be haemostatically 

functional. In vitro studies have demonstrated that cryopreserved platelets mediate 

accelerated clot formation and produce greater amounts of thrombin more rapidly than room 

temperature stored platelets [29, 48, 50, 53, 54]. Importantly, in a randomised controlled 

trial, cryopreserved platelets were found to reduce nonsurgical blood loss in patients 

undergoing cardiac surgery [55]. Further, preliminary evidence from the clinical use of 

cryopreserved platelets in trauma patients indicates their effectiveness [33]. The efficacy and 

safety of cryopreserved platelets has also been supported by Noorman et al., who have 

described cryopreserved platelets as being safe and at least as effective as standard blood 

products in the treatment of active haemorrhage [22]. The renewed clinical interest may pave 

the way for the development and implementation of cryopreserved platelet products for 

routine use in more countries.  

 

In preparation for transfusion, cryopreserved platelets are thawed, resuspended, and 

available for immediate use or can be stored at room temperature. The post thaw shelf life is 

limited to 6 hours as a risk of bacterial proliferation exists due to the ‘open’ system that is 

often used to prepare cryopreserved platelets. This restriction dictates that cryopreserved 

platelets are basically thawed on demand, immediately prior to transfusion. However, this is 

not always feasible, or a patient may require fewer transfusions than originally anticipated. 
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In these situations, the product would be discarded. The ability to extend the shelf life of 

thawed cryopreserved platelets to 24 hours or beyond, may decrease wastage and improve 

inventory management as fluctuations in product demand could be better maintained.  

 

Bacterial, viral and emerging pathogens  

Bacterial contamination of platelet concentrates remains a major challenge in transfusion 

medicine, and is the primary motivator for the limitation on shelf life. The storage of platelet 

concentrates at room temperature increases the risk of bacterial proliferation [56]. Bacteria 

found in platelet units typically originate from the donor’s skin, which may be introduced at 

the time of donation, despite the best efforts to employ aseptic techniques and skin 

disinfection [57]. Ideally, any bacteria present will be detected upon screening, limiting the 

risk of transfusing contaminated units. However, not all countries screen platelet 

concentrates for the presence of bacteria or do not screen for both aerobic and anaerobic 

bacterial species [58]. There are also limitations in the bacterial screening systems, resulting 

in both false positive and negative results [59, 60]. Thus, determining an appropriate balance 

between the platelet shelf life and allowing sufficient time to culture samples for bacterial 

testing is a significant challenge. As a result, platelet concentrates may already be transfused 

before a result is obtained [61]. Bacterial contamination of platelet units is estimated to occur 

in 1/1000-1/10000 platelet units, depending on the country and method of production [62-

65], and a recent study reports that 1/4 contaminated platelet units results in a symptomatic 

septic transfusion reaction when transfused [66].  

 

In Australia, all blood donors are screened for HIV, Hepatitis B, Hepatitis C, Human T-

lymphotropic virus (HTLV-1 and -2), and syphilis at every donation. Despite screening, a 
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thorough donor questionnaire and deferrals, the safety of the blood supply retains some 

vulnerability from window period infections and emerging pathogens [67-69]. Each year the 

list of newly described infectious disease agents grows, but resurgence of known pathogens 

in certain populations may also occur. There are several well documented pathogens, 

including West Nile virus [70, 71], dengue virus [72, 73] and chikungunya virus [74, 75] that 

pose a risk as transfusion transmitted infections and have required the implementation of 

preventative measures. More recently, the Zika virus has joined the ever-growing list of 

emerging pathogens [76, 77]. The risk of emerging pathogens therefore highlights significant 

vulnerabilities for the safe production of blood products globally, demonstrating the need for 

additional and overarching safeguards to ensure its safety.  

 

Pathogen inactivation  

Pathogen inactivation systems are able to inactivate a broad range of pathogens, including 

bacteria, viruses and parasites. Pathogen inactivation involves exposing platelets to 

ultraviolet (UV) light, with or without the addition of a photosensitising agent, which damages 

nucleic acids to inactivate pathogens by impairing protein assembly and cell replication. 

Additionally, pathogen inactivation treatment also inactivates leukocytes, which negates the 

need for gamma-irradiation [78]. Globally, many countries, including Belgium, Norway, and 

Spain have introduced pathogen inactivation technologies into routine practise [58]. 

Currently, there are three pathogen inactivation systems: INTERCEPT Blood System 

(Intercept; Cerus, Concord, CA, USA), Mirasol Pathogen Reduction Technology System 

(Mirasol; Terumo BCT, Lakewood, CO, USA) and the THERAFLEX UV-Platelets System 

(THERAFLEX; Macopharma, Tourcoing, France). Of these systems, both the INTERCEPT and 

Mirasol systems have regulatory approval in several countries, while THERAFLEX is currently 
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undergoing clinical evaluations. While these systems all work to achieve the same end result, 

the method by which they inactivate pathogens varies in the wavelength of UV light used, 

photosensitising agent, as well as the mode of action. 

 

The INTERCEPT system functions by exposing pathogens to UVA light (320-400 nm) in 

combination with a photosensitising agent, amotosalen, which intercalates into DNA and 

RNA, leading to irreversible covalent crosslinking of nucleic acids with the amotosalen [79]. 

Following treatment, residual amotosalen and amotosalen photoproducts are removed via 

adsorption using a compound adsorption device [80].  

 

The Mirasol system functions by exposing pathogens to broad spectrum UVA/UVB light (280-

360 nm) in the presence of the photosensitising agent riboflavin (vitamin B2) [81, 82]. 

Interactions between riboflavin and nucleic acids under UV light leads to oxidation and strand 

breaks, primarily at guanine residues, preventing subsequent replication or repair [82]. 

Vitamin B2 is generally considered safe, meaning that removal following treatment is not 

required [83]. 

 

Uniquely, the THERAFLEX UV-Platelets System does not use a photosensitising agent, but 

rather works by exposing platelets to 200-280 nm (target wavelength 254 nm) UV light while 

under strong agitation to ensure sufficient light penetration [84, 85]. This treatment causes 

the formation of cyclobutane pyrimidines and pyrimidine (6-4) pyrimidone dimers, inhibiting 

nucleic acid elongation during transcription [85-87]. 
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All three systems have been shown to be efficacious against a wide range of pathogens, 

capable of inactivating a broad spectrum of bacteria, viruses, parasites and leukocytes. The 

three pathogen inactivation systems effectively inactivate many common species of bacteria, 

with the exception of bacterial spores [78, 79, 81, 83, 88-90]. Further, these systems are also 

capable of inactivating a comprehensive range of both DNA and RNA-based viruses, including 

enveloped, non-enveloped, cell-associated and cell-free viruses [80, 81, 86, 91]. Furthermore, 

all systems are capable of inactivating an extensive range of parasitic species, including 

Trypanosoma cruzi, Plasmodium falciparum and Babesia microti [81, 92-94]. However, each 

system displays limitations in inactivation capacity; with INTERCEPT and Mirasol showing 

variable effectiveness against parvovirus and hepatitis viruses, while THERFLEX has only a 

moderate capacity for inactivating HIV [85, 86, 95, 96]. Notably, pathogen inactivation also 

has the potential to inactivate emerging pathogens that are not routinely included in blood 

donor screening panels, including dengue virus, chikungunya virus and Ross River virus [77, 

97]. 

 

Pathogen inactivation treatment of platelets has been shown to exacerbate the platelet 

storage lesion, causing a myriad of in vitro changes. After treatment with the INTERCEPT or 

Mirasol systems, platelets metabolism is accelerated, resulting in a decrease in pH, increased 

surface expression of CD62P and phosphatidylserine, as well as increased platelet 

degranulation [98-104]. However, the extent of these changes appears to be affected by the 

proportion and type of platelet additive solution used. The in vitro functional capacity of 

platelets also appears affected, with the general consensus being that agonist-induced 

platelet aggregation is negatively affected by pathogen inactivation [37, 100, 103-106]. 

Similarly, clot formation is also reduced in pathogen inactivated platelets, with reports 
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demonstrating a reduction in clot strength, reduced surface coverage and thrombus growth 

[37, 106]; although evidence to the contrary has also been reported [13, 107, 108]. In addition 

to the metabolic and activation changes observed by the other systems, THERAFLEX 

treatment of platelets induces activation of integrin αIIbβ3, which may impact platelet 

aggregation and thrombus formation [85, 109-111]. Although the changes exhibited after 

pathogen inactivation are indicative of increased activation and acceleration of the platelet 

storage lesion, pathogen inactivated platelet concentrates still conform to institutional 

component specifications [112]. 

 

While extensive haemovigilance studies have demonstrated that Mirasol and INTERCEPT 

pathogen inactivated platelets have a similar safety profile to untreated platelets [113, 114], 

there is conflicting evidence regarding the in vivo survival and efficacy of these platelets [98, 

115-122]. Further, a recent systematic review has suggested that transfusion of pathogen 

inactivated platelets increases transfusion requirements and the risk of developing platelet 

refractoriness [123], although there are also data to the contrary [124, 125]. Several multi-

centre studies (PREPAReS, EFFIPAP, MIPLATE) using the INTERCEPT and Mirasol systems are 

ongoing or recently completed and it is anticipated that this data may assist in clarifying the 

efficacy of pathogen inactivated platelets [123, 126, 127]. While the THERAFLEX system has 

not yet received regulatory approval for treatment of platelets, a phase I clinical trial of 

THERAFLEX-treated platelets in healthy volunteers demonstrated that THERAFLEX-treated 

platelets were cleared from circulation at a similar rate to untreated platelets, and did not 

cause any adverse reactions when transfused [128]. A phase III trial is currently underway 

(EudraCT 2015-001035-20). 
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Assessment of the potential benefits of combining storage techniques  

Pathogen inactivation of platelet concentrates reduces the risk of transfusion transmitted 

infections. However, it may be possible to extend the shelf life of platelet components by 

combining pathogen inactivation with other novel storage techniques. As highlighted in Table 

1, novel storage modalities offer several advantages over conventional room temperature 

platelet storage but significant investigation into the feasibility of combining these techniques 

is still required. The results of such studies will likely vary depending on several parameters 

including the plasma content of the platelet concentrates, the pathogen inactivation 

technology applied and the length of storage examined. Based on the outcomes of individual 

treatments/storage, the final column of Table 1 speculates as to the anticipated results if the 

indicated treatments were to be combined. It is hypothesised that the refrigerated storage of 

pathogen inactivated products may provide protection against the accelerated platelet 

metabolism induced by pathogen inactivation treatment and thus slow the development of 

the platelet storage lesion. Further, the functionality of cold stored pathogen inactivated 

platelet components may be enhanced compared to conventional room temperature stored 

platelets given the improvements observed when these techniques are applied individually 

[29, 34, 109, 110]. Importantly, while cryopreserved platelets already have a significantly 

longer shelf life while frozen, the ability to combine this technique with pathogen inactivation 

may improve product safety and enable an extension of shelf life of the thawed product. 

Further, the in vitro functionality of pathogen inactivated cryopreserved platelets is 

anticipated to be similar to untreated cryopreserved platelets, although altered compared to 

conventionally stored platelets [29, 52, 109, 110]. While it is anticipated that combining 

pathogen inactivation with alternate storage modalities will be safe and efficacious, this 

cannot be accurately determined without clinical trials.  
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The possibility of combining cold storage or cryopreservation with pathogen inactivation is a 

newly emerging area of research. A single study has reported that apheresis platelets treated 

with the Mirasol system and subsequently cold-stored maintained better platelet counts, 

metabolism and function over storage than treated controls stored at room temperature 

[129], demonstrating that combining the two treatments is possible and may in fact be 

beneficial. Similarly, buffy coat-derived platelets treated with the INTERCEPT system prior to 

cryopreservation had a similar post thaw recovery and maintained their haemostatic 

potential when compared to untreated controls [130]. As such, additional investigations 

combining pathogen inactivation systems with subsequent storage at cold temperatures 

(refrigeration and cryopreservation) are warranted.  

 

It would be of interest to determine whether the post thaw shelf life of cryopreserved 

platelets may be extended by storing thawed platelets in the cold (cryo-cold; Table 1). Some 

of the benefits of cold storage (outlined above) may be translatable to thawed cryopreserved 

platelets. Cryopreserved platelets experience an accelerated metabolic rate during post-thaw 

storage [29, 49], which could be reduced if the thawed platelets are stored under refrigerated 

conditions. Additionally, cryopreserved platelets demonstrate significant granular release 

[44, 49, 50, 53], which may potentially be mitigated if cryopreserved platelets are stored in 

the cold once thawed, as is seen with standard cold-stored platelets [33, 34]. Importantly, 

cold storage significantly inhibits bacterial proliferation [30, 31], the risk of which currently 

restricts the post-thaw shelf life of cryopreserved platelets. Taken together, these findings 

support the plausibility of cold storing thawed cryopreserved platelets and hence further 

investigation may be warranted.  
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Future directions 

The ability to combine pathogen inactivation with cold storage or cryopreservation could 

potentially alleviate many of the major concerns associated with conventional storage of 

platelet products. Storing platelets in colder temperatures, whether by refrigeration at 4 °C 

or cryopreservation at -80 °C, offers the potential of an extended shelf life of several weeks 

to years, respectively. Whilst refrigerated storage of platelets is simple and appropriate 

transport and storage conditions are readily available, implementing cold storage may be 

logistically challenging due to the likely requirement of a dual inventory [131]. Although 

cryopreserved platelets are more labour intensive and expensive to manufacture, the 

significant increase in shelf life may be enough to outweigh this initial cost. The 

implementation of cold storage or cryopreservation as a routine storage option would 

alleviate the logistical issues surrounding platelet supply to remote, rural and military 

operations. While these techniques are gaining momentum individually, the possibility of 

combining these techniques with pathogen inactivation technologies would enable a 

safeguard against the risk of emerging pathogens and prevent platelet concentrates from 

being a potential source of infection, and deserve further attention.  
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Figure 1. Schematic comparison of resting and activated platelets. The resting platelet is discoid in shape and expresses a multitude of surface 

receptors. Several receptors including GPIb-IX-V, GPVI, integrin αIIbβ3, P2Y1, and P2Y12 are essential for platelet adhesion, activation and 

aggregation. Additionally, the resting platelet contains alpha granules that are released during platelet activation. Over storage, a degree of 

platelet activation occurs. As the platelet product ages, platelets release their granular content, causing an increased surface expression of P-

selectin (CD62P) and the release of cytokines into the platelet supernatant. Platelet activation also causes a conformational change in certain 

platelet glycoproteins, including integrin αIIbβ3 facilitating fibrinogen binding. The dense tubular system is filled with calcium (Ca2+) which is 

released during platelet activation and facilitates phosphatidylserine externalisation and microparticle formation, making the platelet product 

more procoagulant. The rate of glycolysis is also upregulated over storage, increasing the concentration of lactate and lowering the pH. Platelets 

stored in the cold, cryopreserved or pathogen inactivated share some common characteristics of the activated platelet, although the degree of 

change is variable.  
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Table 1. The effects of novel storage modalities on platelet metabolism, activation, function, and product safety compared to room 

temperature stored platelet components.  

 

Quality Parameter Cold Storage Cryopreservation† 

Pathogen Inactivation 

(Intercept, Mirasol, or 

THERAFLEX) 

Potential outcomes of 

combining techniques 

Metabolism 

Glycolysis Decreased [26, 29, 34]  Increased [29, 49] 

Increased [86, 100, 102, 103, 

110, 111, 132] 

Unchanged [132]  

Cold-PI: decreased 

Cryo-PI: increased  

Cryo-cold: decreased  

pH* 
Decreased [29] 

Unchanged [26, 34] 

Increased [29, 44] 

Decreased [50] 

Unchanged [53] 

Decreased [84, 86, 100, 102, 

103, 106, 110, 111, 132] 

Unchanged [105, 132] 

Cold-PI: unchanged 

Cryo-PI: unchanged 

Cryo-cold: unchanged  

Activation 

markers 

CD62P 
Increased [28, 34] 

Unchanged [27, 35] 
Increased [50, 53, 103] 

Increased [86, 100, 101, 103, 

111, 132] 

Unchanged [102, 110, 121, 

132] 

Cold-PI: increased 

Cryo-PI: increased 

Cryo-cold: increased 

Phosphatidylserine Increased [28, 34, 35] Increased [44, 48, 50, 53, 103] 

Increased [100-102, 110, 111, 

132] 

Unchanged [84, 86, 103, 121] 

Cold-PI: increased 

Cryo-PI: increased 

Cryo-cold: increased 

Activated integrin αIIbβ3 Increased [26, 28, 35] Decreased [49, 50, 53] 
Increased [105, 110, 132] 

Unchanged [102, 121] 

Cold-PI: increased 

Cryo-PI: decreased 

Cryo-cold: decreased 

Function ADP-induced aggregation Increased [29, 34, 41] 
Decreased [29, 44, 49, 50] 

Increased [53] 

Increased [105, 106] 

Unchanged [100, 103, 110] 

Cold-PI: increased 

Cryo-PI: decreased 
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Cryo-cold: decreased 

Collagen-induced aggregation Increased [29, 34, 41] Decreased [29, 44, 49, 50, 53] 

Increased [86, 106]  

Decreased [100, 103, 105] 

Unchanged [84, 110] 

Cold-PI: increased 

Cryo-PI: decreased 

Cryo-cold: decreased 

Thromboelastography (TEG) 
R time: decreased [29, 34, 41] 

MA: Unchanged [29, 34, 41] 

R time: decreased [29, 48, 50, 

53] 

MA: decreased [29, 48, 50, 

53] 

R time: unchanged [106, 110] 

MA: decreased [106] 

MA: unchanged [110] 

Cold-PI: R time decreased, MA 

unchanged 

Cryo-PI: R time decreased, MA 

decreased  

Cryo-cold: R time decreased, 

MA decreased 

Product 

safety and 

shelf life 

Bacterial proliferation Decreased [30, 31] Unknown 
Nil or negligible [79-81, 84-86, 

89-92]  

Cold-PI: nil or negligible 

Cryo-PI: nil or negligible 

Cryo-cold: decreased 

May require gamma 

irradiation 
Yes Yes No [78] 

Cold-PI: no 

Cryo-PI: no 

Cryo-cold: yes 

Is the product safe and 

efficacious? 
Yes [24, 42]  Yes [22, 55] Yes [115, 116, 120, 128]  

Cold-PI: undetermined 

Cryo-PI: undetermined 

Cryo-cold: undetermined  

Shelf life At least 2 weeks [26-28] 
Frozen: 2 years [46] 

Thawed: 6 hours [52] 
5-7 days [58] 

Cold-PI: at least 2 weeks 

Cryo-PI: at least 24 hours 

(thawed) 

Cryo-cold: at least 24 hours 

(thawed) 
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The described changes (decreased, increased, unchanged) are compared to conventional room temperature stored platelets on the same days 

of storage for liquid stored platelets (cold storage or pathogen inactivation) or between pre-freeze and post-thaw samples for cryopreserved 

platelets.  

Abbreviations: Cold-PI = cold storage + pathogen inactivation; cryo-PI = cryopreservation + pathogen inactivation; cryo-cold = cryopreservation 

+ post-thaw cold storage; R time = reaction time; MA = maximum amplitude 

*differences due to proportion/type of additive solution 

†differences may be due to the type of resuspension media 
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