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Abstract—The increasingly uncertain dynamics of technological change pose special challenges 

to traditional technology forecasting tools, which facilitates future-oriented technology analysis (FTA) 

tools to support the policy processes in the fields of science, technology & innovation (ST&I) and the 

management of technology (MOT), rather than merely forecasting incremental advances. Through a 

series of technological forecasting studies analyzing the R&D patterns and trends in Dye-sensitized 

solar cell technology over the past several years, we have come to realize that validating previous 

forecasts is useful for improving STI policy processes. Dye-sensitized solar cells are a promising 

third-generation photovoltaic technology that can add functionality and lower costs to enhance the 

value proposition of solar power generation in the early years of the 21st century. Yet, rarely do we 

revisit forecasts or projections to ascertain how well they fared. Moreover, few studies pay much 

attention to assessing FTA techniques. In this paper, we compare recent technology activities with 

previous forecasts to reveal the influencing factors that led to differences between past predictions 

and actual performance. Beyond our main aim of checking accuracy, in this paper, we also wish to 

gain some sense of how valid those studies were and whether they proved useful to others in some 

ways. 
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Highlights: 
1. This paper presents a framework for revisiting technology forecasting activities from the 

perspectives of technology life cycle, basic technology profiling and enhanced technology detection; 

2. It provides an empirical assessment to validate prior forecasts rather than a detailed process 

to conduct technology forecasting or technology foresight; 

3. It attempts to compare recent technology activities with previous forecasts to reveal the 

influencing factors that led to differences between past predictions and actual performance, which 

should provide insights for future-oriented technology analyses; 

4. The focus of the analysis extends beyond identifying hot technical topics to include the leading 

actors, prominent organizations, and countries most heavily engaged in the field; 

5. Emphasis is placed on the leading actors in the current stage, as well as the emerging actors 

who have the potential to play a prominent role in future activities rather than. 
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1. INTRODUCTION 

Newly emerging science and technologies (NESTs) are expected to bring both considerable 

wealth and numerous opportunities and challenges to innovation activities. As NESTs are radically 

novel, relatively fast-growing, and characterized by a certain degree of coherence, these forms of 

technologies tend to be more dependent on intermittent advances [1]. The anticipated (disruptive) 

impacts on markets and on society are more difficult to foresee than a steady and incremental 

innovation process, and the highly uncertain dynamics of NESTs pose special challenges to 

traditional technology forecasting tools. 

In an environment facing the complexity of a growing number of NESTs, decision makers need 

to be able to capture current and strategic intelligence on a range of technologies and make forward-

looking assessments. Over the years, future-oriented technology analysis (FTA) tools have expanded 

beyond merely forecasting incremental advances. Most now purport to inform policy processes for 

those in the fields of science, technology & innovation (ST&I) and the management of technology 

(MOT). Hence, the ability to explore multiple potential innovation pathways [2] has become essential. 

Under such a background, the forecasting innovation pathways (FIP) framework including 4 stages 

and 10 steps has been constructed to analyze NESTs [3]. This framework incorporates “tech mining” 

[4] to ascertain developmental patterns, key participants, and potential application targets by 

analyzing large datasets drawn from ST&I publication and patent databases, as well as contextual 

information resources (e.g., ABI Inform). As a multi-step process for analyzing ST&I information 

resources, “tech mining” provides the empirical knowledge necessary to address, and then help to 

assess, mature or emerging fields of science and technology [5]. To complement the tech mining 

process, expert-based inputs, derived from interactive workshops, help to digest the empirical 

findings and lay out prospective developmental pathways. 

The FIP approach can be treated as a bridge methodology that builds on a strong empirical base 

by incorporating informal expert opinions and aims to elucidate the forward pathways R&D activities 

might take in translating ideas into applications and is a valuable tool for exploring future 

development trajectories [6]. However, we need to accept that the activity of technology forecasting 

is focused on changes in technology; it is not deterministic. That is, technology forecasting does not 

seek to predict a single certain future [7]. Therefore, validating past results is an important step in 

adapting FTA-based methodologies to help analyze complex technologies with significant 

infrastructure in place. 

Photovoltaics is one emerging technology that has gathered much attention over the past several 

years due to its potential for decreasing costs and its broad applicability. Within this innovative 

technology, a promising third-generation form of photovoltaics – Dye-sensitized solar cells (DSSCs) 

– is gathering momentum as an economically and environmentally-viable alternative to traditional 

devices [8]. DSSCs technology has witnessed increasing R&D activity since 1991 and is anticipated 

to continue with rapid commercialization in the future [9]. The program in Science, Technology, and 

Innovation Policy (STIP) at the Georgia Institute of Technology is actively involved in characterizing 

the nanotechnology industry and its dynamics through data mining techniques, such as bibliographic 

database analysis (yielding bibliometric data) and patent database analysis (yielding intellectual 
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property data), as well as through text-mining, interviews, and other research methods [10]. 

Additionally, since 2008, the Innovation Co-Lab (Georgia Institute of Technology STIP, Manchester 

institute of innovation research, University of Manchester, and School of Management and 

Economics , Beijing Institute of Technology) has been analyzing DSSCs R&D activity patterns and 

trends through a series of studies that include: (1) research profiles and technology opportunity 

analysis [11-15]; (2) collaboration networks and patterns [16, 17]; and (3) the FIP approach, which 

includes technology delivery systems [18], estimating innovation risks [19], and technology 

roadmapping of evolutionary pathways [20-24]. 

With this objective in mind, in this paper, we revisit our earlier assessments and projections with 

an updated DSSCs data collection to assess the accuracy of past forecasts and rethink how to improve 

the reliability of technology forecasting. FTA purports to inform MOT and ST&I policy processes. 

Yet, rarely do we revisit forecasts or projections to ascertain how well they fared, nor does previous 

research pay much attention to assessing the efficacy of the forecasting method used. One of our aims 

is to check accuracy, to gain some sense of how valid those studies were and whether they proved 

useful to others in some ways. Additionally, we want to assess the degree to which these analyses did 

or did not make good use of the information available at the time. Moreover, we seek indications of 

which information is key, and how FTA processes can better use that information. 

The remainder of this paper consists of five sections. Following this general introduction, the 

related reviews on technology forecasting are provided in the “Related Literature” section. The 

“Framework and Data” section describes the framework we used for assessing the technology 

forecasts along with the data we used in the analysis. The “Results and Findings” section explores 

how the stage of a technology’s development was identified, the focal countries and regions, the 

prominent technological actors, the distribution of sub-fields, and the past and future potential of 

various sub-technologies through a comparative analysis. The foci of this section is on comparing 

recent technology activities with previous forecasts to reveal the influencing factors that led to 

differences between past predictions and actual performance. The “Conclusions and Discussion” 

section reviews the results in terms of the proposed research questions and identifies the limitations 

and promising opportunities found in this research for the future. 

2. RELATED LITERATURE 

Technology forecasting is treated as a way to help enterprises to formulate technology strategies 

and policies by identifying core and emerging technologies [25]. Much research has been undertaken 

in the study of technology forecasting, and this section provides a review of the relevant technology 

forecasting methods in the literature. 

2.1 Qualitative method: Represented by Delphi technology forecasting approach 

The Delphi method is viewed as an efficient procedure for obtaining a reliable consensus opinion 

from a group of experts through a series of intensive questionnaires interspersed with controlled 

opinion feedback [26]. It is a qualitative decision-making method and the accuracy of the decisions 

are mainly determined by the knowledge level of the experts. Delphi is well suited to technology 
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forecasting, particularly because of its ability to produce long-range and large-scale forecasts, and, 

with this method, core technologies can be identified and forecast relatively easily [27].  

However, conventional Delphi methodologies have some drawbacks and, therefore, several 

alternatives have been developed to overcome these shortcomings. For example, Yun and Soung [28] 

developed a technology forecasting approach based on a semi-Markov model, which primarily 

focuses on capturing the information Delphi surveys skip. To enhance Delphi’s analytical power, 

Hussler, Muller, and Ronde [29] proposed increasing diversity within the panel groups. Bloem da 

Silveira et al. [30] combined other techniques, including morphological analysis, decision matrices, 

interviews, and prioritization analysis, with the Delphi method to construct technology roadmaps. 

More recently, a real-time spatial Delphi technique was introduced to provide an innovative way of 

eliciting expert opinions using a simple and intuitive platform [31]. Wakefield and Watson’s [32] 

reappraisal of Delphi 2.0 perhaps provides one of the best showcases for how a qualitative approach 

such as Delphi can be quite useful for exploring complex issues in a given domain by gathering 

selected experts on a particular topic.  

2.2 Quantitative method: Represented by Science & Technology(S&T) data 

analysis 

Methods based on expert opinions, such as Delphi, provide a subjective consideration of 

contextual changes through the implicit mental models each expert has internalized about the nature 

and likelihood of change. However, these methods tend to be both time-consuming and costly. To 

ameliorate these problems, many in the field of technology forecasting have turned to quantitative 

methods. When measuring a given technology directly is not possible, and a combination of tools can 

be used to help properly forecast technology trends [33]. Qualitative methods are useful when there 

is enough directly measurable data available [34], and science and technology documents, such as 

patents and academic papers, can provide this data to a certain degree [35].  

Many interdisciplinary quantitative research methods have integrated bibliometric and patent 

analysis into technology forecasting. Overall, these approaches can be divided into four types. (1) 

Multi-indicator-based analyses, which introduce new metrics, like citations per patent, information 

about patent families, patent share, increases in the number of patents, and patent activity. For 

example, Choi, You, and Na’s [36] analysis of next-generation mobile communication. (2) Text-

based analysis including machine learning approaches, such as Kyebambe et al. [37], K-medoids 

clustering based on support vector clustering (KM-SVC) [38], and Latent Dirichlet allocation (LDA) 

for topic identification [39]. (3) Citation-based analysis, such as You et al.’s [40] forecast on the 

development trends of coherent light generator technology. (4) Hybrid approaches, such as enhancing 

the future-oriented performance of morphology analysis by combining it with conjoint analysis and 

citation analysis [41], applying co-classification analysis, or applying co-word analysis and main 

pathway analysis to reveal implicit or unknown patterns and discover significant clues about 

technology prospects [42]. 
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2.3 The combination of qualitative and quantitative analysis 

However, exclusively using either a qualitative or a quantitative approach may result in an 

incomplete view of technology forecasting [43]. Technology forecasting is sometimes viewed as an 

effort to collect information to posit about the future, the plausibility and limits of a technology, its 

internal consistency and conformity with models and data, or its consistency with expert judgment 

[44]. Expert knowledge might give a reasonable explanation of qualitative data, but combining expert 

knowledge with a qualitative appraisal can often improve forecast accuracy [45]. As some researchers 

point out, a quantitative approach, such as text mining, can reveal invisible information in patent data, 

and citation analysis may provide insights into the evolutionary pathways of a technology, while 

expert analysis can provide information that a layperson cannot glean [46].  

This type of research has been conducted in several technology fields. For example, Chen, Chen, 

and Lee [47] combined bibliometric & patent analysis with an expert survey to forecast the hydrogen 

energy and fuel cell technology. Zhang et al. [48] generated a global technology roadmap for electric 

vehicles using a hybrid bibliometric and qualitative methodology. 

While much of the research above includes aspects of the design of technology forecasting 

approaches, some studies focus on the selection and comparisons of technology forecasting methods. 

Selecting a forecasting technique that considers the characteristics of the technology and the resources 

needed, such as cost and time, is essential. Intepe, Bozdag and Koc [49] proposed a solution for 

selecting a technological forecasting technique that includes seven selection criteria and twelve 

forecasting alternatives. Cheng, Chen and Chen [50] adopted a fuzzy AHP method to obtain selections 

for technology forecasting methods by professionals. Wilmot [51] published a brief critical analysis 

of how each of the existing methods for technological forecasting might influence the resulting 

conclusions about the nature of future developments.  

From the above reviews, we can see many attempts have been conducted to analyze future-

oriented activities or provide some insights to assist technology forecasting. However, research that 

revisits existing technology forecasts or its methods is relatively rare. By re-examining the analyses 

and conclusions produced with technology forecasting methods, adjustments and suggestions can be 

made to enhance their accuracy and reliability. To this end, this paper is an attempt to assess 

technology forecasting, especially science and technology data-based forecasting, through an 

empirical comparison of our past technological forecasts on DSSCs and a new forecast based on 

actual information that includes a further six years of evolution. 

3. FRAMEWORK AND DATA 

3.1 Conceptual framework 

Technology forecasting focuses on changes in technology, such as its functional capacity, 

timing, or significance. Within the scope of technology forecasting, it is common to answer the 

following questions: (1) “What?”–what technologies or parts of technologies are likely to become 

the most promising sectors? (2) “When?”–when will those technological trends occur? (3) “Who?” 

–who will play a leading role in the R&D and potential market for a given technology? (4) “Where?” 
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–which countries or regions will make outstanding contributions to a technology’s performance? (5) 

“How?”–how will a technology evolve from one stage to the next? (6) “Why?” – why will a 

technology evolve, and why will that change happen during a certain period of time? 

Compared to technology forecasting itself, assessing a technological forecast or the method used 

to produce the forecast seeks to evaluate the activity in technological development from the 

perspective of data collection, technology life cycle analysis, compare basic technology profiling and 

validate enhanced technology detection. The time-lag between past and present provides a window 

for revisiting previous forecasts and analyses. An overview of the framework we used for assessing 

data-driven technology forecasting is shown in Fig 1. 

 
Fig. 1. A brief framework for assessing data-driven technology forecasting 

 

Technology forecasting is likely to be more successful when diverse and effective sources of 

information are integrated to produce a convincing and holistic portrait of possible futures. As data 

sources and data quality become the foundational factors in most data-based technology forecasting 

system, so it is necessary to reconsider whether the search strategy is effective or acceptable in the 

new circumstance. Through experience, we have come to realize that searching for data in a domain 

with many commonly used terms can be particularly challenging. Hence, it is often easier to identify 

relevant research on a technical topic like DSSCs, than one involving a lot of broader computer 

science or managerial terminology, e.g., “Big Data” [52]. Selecting the right data source depends 
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upon the specific technologies and topics being addressed. Further, the research question often drives 

the search for a corresponding data source. However, overall multiple sources of data are often 

beneficial for gathering a greater amount of information and for making more accurate forecasts. 

Patent data is usually the main source of information because it not only provides actual clues about 

the most important discoveries companies and inventors seek to protect, it also provides information 

about technologies that are nearing the market.  

Technology forecasting methods can be classified as either extrapolative or normative – namely, 

by whether they extend present trends or look backward from a desired future to determine the 

developments that were needed to achieve those goals [7]. Given the main purpose of this assessment 

is to revisit previous analyses, using the same or a similar approach as the original study makes for a 

better comparison. However, one visible discrepancy that needs to been explained is that technology 

forecasting based on real activity must pay attention to both the functional capacity and relevant 

characteristic of the technology and also consider the structural interactions between the technology 

and the elements of its context. Technology often presents different development tracks; therefore, it 

is necessary to consider the technology life cycle (TLS) when creating a distinct R&D strategy plan. 

The technology life cycle comprises a pattern of dynamic characteristics pertaining to technology, in 

which its innovative and economic outcomes change over time. Therefore, after obtaining the dataset 

of targeted technology, the first thing is to judge which stage the technology stays. In general, the 

whole life cycle can be divided into seeding phase, growth phase, maturity phase and decline phase. 

When we assess the technology stage, the main object is to analyze whether the cycle is maintaining 

as previously addressed or has shifted to next developmental phase. 

Similar to technology forecasting, the analytical scope of assessing technology forecasts are 

centered on the key questions of “who, what, where, when, and how”. In technology forecasting, one 

always cares more the leading country, the main institution, and the most prominent inventors, based 

on the assumption that they will perform just well going forward as they have in the past. However, 

the process of technological evolution is dynamic, so the role of a technological actor may change 

through various stages of development. Likewise, the best conceptual framework for representing an 

organization’s beliefs, assumptions, and goals may also change. For such a basic profiling respective, 

the main research questions addressed here is what’s role change associated with countries (priority 

country and family country) and regions, inventors and patent assignees among leading, emerging 

and declining status in various stages? Further, the most important purpose of technology forecasting 

is to outline the whole technological picture under the conditions at the time, so what the technological 

fields transform and what the technological foci evolve turn out to be essential and urgent. The further 

exploration on technological fields and technological foci are treated as the enhanced technology 

detection. Along with basic technology profiling, the primary task of those revisits is to answer the 

following three questions:  

 First, What are the differences between past predictions and actual performance? 

These differences can be revealed by applying the same or a similar approach as the past 

forecast to analyze the current situation. Examining past performance to improve present 

performance can also be used to strengthen future approaches to technology forecasting. 

Therefore, examining the results of past forecasts can be beneficial for determining whether 
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they were successful in limiting uncertainty [53]. Comparative processes that involve either 

single or hybrid methods can be used to conduct the analyses from multiple dimensions. 

 Second, what cause these differences? This question seeks to identify to the factors that 

have influenced the results throughout the forecast phases. It is necessary to distinguish 

these factors are internal (such as data limitation) or external (such as misleading methods), 

contextual oversights (e.g. the growth of disruptive technology) or faulty assumptions (e.g. 

unconscious biases). 

 Third, how to narrow the differences and improve the reliability of technology 

forecasting? The narrow range of probable futures presented in a forecast, augmented with 

continued updates, provides a sound basis for moving forward to implementation. Therefore 

assessing a technology forecast means tracking the differences, explaining the uncertainties, 

and bridging the gap by improving the technological parameters, surveying the 

environmental context, and converging diverse approaches based on complementary 

strengths. 

 

This paper attempts to identify the strengths and weaknesses of our previous DSSCs analyses in 

terms of data characteristics, projection accuracy, and the stability of the actors and networks. The 

results should provide insights for improving current FTA methodologies and validating other FTA 

analyses. For this analysis, we mainly selected 2010 as the boundary for comparison between our 

previous studies and this study. 

3.2 Data retrieval 

Obviously, in a data-driven analysis, the quality of the data is critical. Accurate data-based 

forecasting of emerging technologies is still problematic mainly due to the absence of effective data, 

which affected by the selection of data source and the strategy of data retrieval. In the past few years, 

our team has worked with multiple search strategies. Among them, the search strategy for DSSCs has 

been tuned several times. The previous search strategy and the current one are arrayed in Table 1. 

After repeated verification, the search query we favor is: ABD=((Dye* or Pigment*) and (Sensiti*) 

and (Solar* or Photovoltaic*) and (Cell* or Batter*)). 

 
Table 1. The past and current DSSCs search strategies 

Type Search strategy 

Past  ABD=(((dye-sensiti*) or (dye* same sensiti*) or (pigment-sensiti*) or (pigment same sensiti*) or (dye* adj 
sense)) same ((solar or Photovoltaic or photoelectr* or (photo-electr*)) same (cell or cells or batter* or pool*))) 
OR ((ABD=(((dye- ADJ Photosensiti*) or (dye same Photosensiti*) or (pigment- ADJ Photosensiti*) or 
(pigment same Photosensiti*)) same ((solar or Photovoltaic or photoelectr* or (photo-electr*)) same (cell or 
cells or batter* or pool*))) OR ABD=(((dye- ADJ optoelectri*) or (dye same optoelectri*) or (pigment- ADJ 
optoelectri*) or (pigment same optoelectri*) or (dye- ADJ opto-electri*) or (dye same opto-electri*) or 
(pigment- ADJ opto-electri*) or (pigment same opto-electri*)) same ((solar or Photovoltaic or photoelectr* or 
(photo-electr*)) same (cell or cells or batter* or pool*))))) AND (ICR=(H01G* or H01M* or H01L* or G03C*)) 
OR ABD=((((dye or pigment) and sensiti* and (conduct* or semiconduct*)) same electrode*) and electrolyte*) 
AND (PY>=(1991) AND PY<=(2016)); 

Current ABD=((Dye* or Pigment*) and (Sensiti*) and (Solar* or Photovoltaic*) and (Cell* or Batter*)) 

Note: ABD denotes Abstract; ICR represents the International Patent Classification (IPC); PY denotes the publication year. 
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In this paper, we update DSSCs searches from Derwent Innovation, a platform that provides a 

comprehensive patent solution covering more than 50 patent-issuing authorities. The comparative 

search results are shown in Fig. 2. We can see that current retrieval results cover most of the previous 

records and doesn’t present an obvious difference compared with previous one. After manual reading 

the abstract of disparate 333 records (187+146), we conclude that the newly added 187 records are 

mostly indeed belong to the scope of DSSCs (e.g. Manufacturing method of dye sensitive solar panel 

for display substrate of cellular phone, involves coating nano-sized crystalline titania powder on glass 

substrate, and plasticizing titanium film at specific temperature (Patent NO. KR2013050322)) and 

excluded 146 records are mostly outside the category of DSSCs (e.g. Electrochromic device, useful 

e.g. as rearview mirror, comprises first substrate having transparent conductor coated surface, second 

substrate having second conductor coated surface, and electrochromic medium disposed between 

substrates (Patent NO. US2004257633)). Above all, current search terms is much easier to understand 

for such a specific research area. Therefore, we tend to believe our current search terms are effective 

to conduct this research. Ultimately, we retrieved on September 10. 2017, resulting 8155 patent 

records published between 1991 and 2016. 

 
Fig. 2. The comparative search results in literature and patents 

4. RESULTS AND FINDINGS 

4.1 Refine technology life cycle 

Understanding the long-term patterns of innovation is the most fundamental aspect of 

technology forecasting and public policy planning. Technology forecasting calls for a dynamic 

perspective, so identifying the current stage in a technology’s life cycle (TLC) is essential for 

estimating its future development trends [54]. Various growth curves have been used to represent 

TLCs, such as logistic, Gompertz, Weibull Curves and the generalized function (aka Richards’ curve). 

Overall, the analytical results from past literature demonstrate that models based on logistic growth 

curves (S-curves) are a highly effective means of quantifying technology forecasting with cumulative 

publications or patent activity [55]. 

Logistic analysis involves the decomposition of growth and diffusion patterns into S-shaped 

logistic components. Most previous studies tend to apply a logistic model without further 

consideration. However, the technological development trends can sometimes resemble a succession 

of several curves, and the overall logistic behavior of a technology tends to be hard to discern and 

analyze if the selection of growth form is inappropriate. Here, we introduce the online analytics tool- 

Loglet Lab (http://www.logletlab.com ) to assist our analyses. The parameter statistics for the period 
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1991-2010 and 1991-2016 are shown in Table 2. In both stages, the results for most parameters 

indicate that a 1-wave model performed better than a 2-wave model. Thus, we chose the 1-wave 

logistic model. 

 
Table 2. The parameter statistics results of the logistic model for 1991-2010 and 1991-2016 

  1991-2010 1991-2016 

 
Parameter 

1-Wave 2-Wave 1-Wave 2-Wave 
 

Phase 1 Phase 2 Whole fit Phase 1 Phase 2 Whole fit 

SSE 26489 597313 100600 597313 123916 2606835 401407 2697728 

RMS 47 173 120 173 85.4 361 200 322 

MAD 43.7 131 98.8 131 70 278 171 234 

MAPE 0.115 0.535 0.836 0.518 0.0637 0.473 0.646 0.443 

SE 54.3 187 159 207 94.1 392 239 367 

ln[MLE] -63.2 -132 -43.4 -132 -99.7 -148 -67.2 -188 

AICc 135 272 101 283 207 304 144 393 

R2 0.994 0.952 0.967 0.997 0.962 0.996  

Note: RMS - root mean square; MAD - mean absolute deviation; SSL - sum of log of squares; SE - standard error; SSE - 

sum of square errors; AICc - Akaike information criterion for model selection; MLE - maximum likelihood estimation. 

 

Figure 3 plots the composite fit by showing trends based on cumulative activity. The patents 

drawn from the DWPI database in Derwent Innovation exhibited a remarkable increase after 2000. 

Both fits predict sustained growth after 2010, but the fit for 1991-2016 predicts a descending trend 

after 2012. Even though the time lag is a common factor that cannot be ignored, the trend for 

cumulative patents represents an inflection point for slower growth. 

(a) 1991-2010 (b) 1991-2016 

Fig. 3. The composite fit of the DSSCs patents for 1991-2010 and 1991-2016. 

Note: ‘K’ means the “carrying capacity” of the model (the saturation value of the S-shaped logistic); ‘a’ is the “growth 

rate”, which is related to the time for the logistic curve to rise from 10% of k to 90% of ‘k’; ‘T’ is the midpoint of the 

logistic curve (the time when p(t) reaches 50% of ‘k’. 

 

To further judge the DSSCs technology life cycle, we also model growth using S-shaped curves. 

The parameterization of the logistic function, which is useful for time-series datasets, is also added 

to Fig.3. What is surprising is that the midpoints for the two logistic curves and the carrying capacities 
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are different. In general, a technology’s life cycle can always be divided into four stages: the emerging 

stage, the growth stage, the maturity stage, and the saturation stage. The midpoint is treated as the 

sign where a technology enters the maturation stage. Based on this assumption, we can identify that 

DSSCs are currently entering the maturation stage, where management decisions tend to be about 

evolutionary improvements in features, quality, and costs. Moreover, DSSCs are likely to enter the 

saturation stage in around 2018, when other new and emerging solar cell technologies might be 

garnering more attention. Such a conclusion could not be drawn based on the data up to 2010. Further, 

if the technology forecast was made in 2010, the results would probably show that DSSC technology 

would reach maturity in 2010, rather than 2012. However, it is important to note that this problematic 

judgment is likely due to inadequate data rather than forecasting method itself. Therefore, with 

frequent forecasts, it is necessary to limit the time horizon to an appropriate range. 

4.2 Compare basic technology profiling 

4.2.1 The changes in technical powers and technological markets 
At the country level, the priority country and the patent family country are the main dimensions 

of technology forecasting activities. The first priority country generally serves as a proxy for the 

geographical origin of the patents. Considering the high cost of patent applications and maintenance, 

patents pursued in multiple countries tend to have a higher perceived commercial potential. In general, 

more patents applications in a certain country or region reflect a higher perception of a commercial 

market for developing this technology. So, patent family analysis is used to understand the layout of 

a country’s potential markets. 

To better figure out what is gap between what we indicated before and current real situation, we 

select the leading 5 countries/ regions both in priority country and family country and plot the related 

value in different stages. The arrows show the value changed from certain stages to next stages, shown 

as Fig. 4. 
 

(a) The role shift in period 1991-2010 and 2011-2016 (b) The role shift in period 2008-2010, 2011-2013 and 
2014-2016 

Fig. 4. The leading countries/ regions in DSSCs in different periods 
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The work conducted by Zhou et al. [23] and published in 2014 by using the data from 1991 to 

2012 (the data are incomplete for 2011 and 2012, while the data in 2010 are almost complete) figured 

out the following points: 1) the leading countries were different for each period; 2) the DSSCs 

patenting concentration spread from Europe to Japan, to the US, and then on to the whole world; 3) 

Japan and the US are major countries with a lot of DSSCs patents, South Korea has also attracted 

much attention in recent years. 

In the Fig. 4(a) and Fig. 4(b), the x- axis present the respective of patent family country/ regions 

and the y- axis present the respective of priority country/ regions. Both from the respective of priority 

country/ regions and patent family country/ regions, the findings partly accord with previous 

conclusions that Japan win the advantage in the past period, and South Korea plays a more and more 

important role in the recent years. Because Japan holds an absolute technical advantage in the DSSCs 

field with outstanding performance in the application of inventions throughout the period and has 

held the greatest potential market share for the past 20 years. South Korea has also been active in the 

field since 2008, holding a favorable position until recent period. But the emerging role of China is 

missed by previous analysis, which mainly due to the rapid growth is hard to predict in the early stage 

with limited information. In fact, China has played a notable role after 2011 when China’s share of 

patent applications come to increase significantly. In addition, the number of patents that firstly obtain 

priority in US keep relative stable, almost in the every stage. 

Compared with taking the whole stage as a time window, the trend in the recent 3 years can 

better profile the actual situation afterward, both in 1991-2010 and 2011-2016, shown as Fig. 4(b). 

Looking at the observations for 2008, we can sense that both China and South Korea have the 

potential for growth into a promising product market. And, in fact, this prediction is verified by the 

data for 2011-2016. Based on the trends for 2014-2016, China is likely to retain the greatest 

proportion of market share in the near future, and China, Japan, and South Korea will continue to be 

the key players in the technological field of DSSCs. On one hand, it is definitely patenting 

concentration spread from regions to the whole world; on other hand, the Asia become the most 

desired patenting target, which is beyond expectation of previous research. For the kind of the 

omissions and discrepancies in market expansion and application activity, the role shift patterns is 

mainly affected by the national policy, because government play a more and more important role in 

introducing and promoting the development of emerging industries. The government’s featherbeds 

stimulate industry vigorous development, it is the "darling" of attention, but when the change of 

external environment and internal policy changed, the industry fell into the cold winter. 

4.2.2 The alternation of highlighted technological actors 
We now turn to the most prominent organizations in technological exploration and patent 

applications. In our previous two paper published in 2012, the main patent assignees are indicated. 

But as the time period used in these papers is inconsistent, so the leading actors and their roles are 

different. The comparative results of leading patent assignees in DSSCs fields can be seen n Table 3. 
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Table 3. The comparative results of leading patent assignees in DSSCs fields 

Source Guo, Xu, Huang and Porter 

(2012) [18] 

Guo, Ma, Porter and Huang 

(2012) [56] 

Current research 

Time span 1991-2009 1991-2010 1991-2016 

Patent databases DWPI DWPI DWPI 

Leading assignees Samsung SDI Co Ltd (16) 

Konarka Technologies Inc (8) 

Sony Corp (6) 

Fuji Film Corp (6) 

Nanosolar Inc (6) 

Nanosys Inc (6) 

Samsung SDI Co. Ltd (65) 

Nippon Oil Corp (27) 

Fujikura Ltd (17) 

Sony Corp (17) 

Sharp Kk (17) 

Dong Jin Semichem Co. 

Ltd (16) 

Konarka Technologies Inc. 

(11) 

Fujikura Ltd (218) 

Konica Corp (158) 

Fuji Film Corp (157) 

Sony Corp (157) 

Samsung Sdi Co Ltd (151) 

Sharp Kk (144) 

Dainippon Printing Co Ltd (133) 

Dong Jin Semichem Co Ltd 

(112) 

 

The one of works conducted by Guo et al. [18] indicate Samsung Electronics Co Ltd, Konarka 

Technologies Inc, Fuji Film Corp, Nanosolar Inc, Nanosys Inc and Sony Corp ranked the leading 

positions when they conducted internal actor analyses for informing a technology delivery system 

model DSSCs. But one years later, the situation changed, which can be viewed from the other research 

[56]. Except for Samsung SDI Co Ltd, Konarka Technologies Inc and Sony Corp who still stand at 

the leading position, Nanosolar Inc and Nanosys Inc are replaced by Fujikura Ltd, Sharp Kk and 

Dong Jin Semichem Co Ltd. After tracing the message offered by official introduction and 

commercial report, we find some clues related to their backgrounds and development history. 

Nanosolar Inc, a developer of solar power technology, used thin film technology to manufacture CIGS 

solar cells since 2002, but ultimately failed commercially in 2013. Nanosys Inc keep its role in 

designing products for displays based on quantum dots by developing one of the largest quantum dot 

patent portfolios with over 200 issued and pending patents worldwide[57]. The use of inorganic 

semiconductors as effective light sensitizers in a DSSCs configuration have awaken a great interest 

in the past few years, in opposition to the conventional DSSCs, inorganic quantum dots play a direct 

role in the recombination process[58]. For Nanosys, quantum dot enhancement film become its 

development foci, and that might be the most important clue of the role change. 

When we looked for the current leading highlighted technological actors in current stage, 

Fujikura Ltd, Fuji Film Corp, Sony Corp, Samsung Sdi Co Ltd, Sharp Kk and Dong Jin Semichem 

Co Ltd still keep their competitive advantage in the technology battles and commercial competitions. 

Konarka Technologies Inc and Nippon Oil Corp are no longer stand out in recent stage. Konarka 

Technologies Inc, was a solar energy company founded in 2001, obtained the licensee rights to 

DSSCs technology from the Swiss Federal Institute of Technology (EPFL), a pioneer in DSSCs 

research. However, this promising company filed for Chapter 7 bankruptcy protection and laid off its 

approximately 80-member staff in late May 2012 [59]. For the Nippon Oil & Energy Corporation, a 

Japanese petroleum company, its main businesses include crude oil, petroleum products and other 

energy-related activities. In 2008, Japan’s Sanyo Electric Co Ltd has agreed to start talks with Nippon 

Oil Corp over a thin-film solar cell joint venture, and launch a joint company named Sanyo ENEOS 

solar Co Ltd for the production and sale of thin-film solar panels in 2009. However, Sanyo ENEOS 
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Solar has not brought great success for Nippon Oil Corp, and the role of Nippon Oil Corp is replaced 

by other new comers in DSSCs. 

In addition, we not only highlight the leading patent assignees across the whole period of study 

but also on the emerging actors in relatively recent years. The active technology assignees in 1991-

2010 and 2011-2016 are plotted in Fig. 5. These 13 assignees were selected according to their top-5 

ranked performance in the 1991-2010, 2008-2010, 2011-2016, and 2014-2016 periods. The lines in 

the scatter plots indicate the median values of the assignees. The detailed patent activity information 

is provided in Table 4. 

 

(a) The active technology assignees in 1991-2010 (b) The active technology assignees in 2011-2016

Fig. 5. Scatter plots of the active technology assignees for (a) 1991-2010 and (b) 2011-2016 

 

From our observations of the scatter plots and Table 4, we classified these assignees into three 

types:  

 Leading actors, who are active in every interval including recent years. Fuji Film Corp (FUJF) 

is the leading patentee in every period, indicating its strong and persistent ability for 

technological innovation. Other leading patent assignees, such as Konica Corp (KONS) and Fuji 

Film Corp (FUJF) also performed well in patent activity in the past two decades. 

 Declining actors, who performed well in the initial stage but have become relatively inactive in 

the recent stage. Some have not even applied for patents. Sony Corp (SONY) were rather active 

in the early stage but in recent years, have gradually lost their advantage, especially over the past 

three years. The same is true for some other assignees, including Samsung SDI Co Ltd (SMSU), 

Dainippon Printing Co Ltd (NIPQ), Dong Jin Semichem Co Ltd (DOSE), Dokuritsu Gyosei 

Hojin Sangyo Gijutsu So (NIIT), and Irico Group Co Ltd (CCEC). 

 Emerging actors, who were in the shade at the beginning of development but have performed 

noticeably better in recent stages. These actors may not have played a core role in the 

technological market, but they have the potential to impact their particular area in the near future. 

These assignees include Sekisui Chem Ind Co Ltd (SEKI), followed by Merck Patent Gmbh 

(MERE) and Shanghai Inst Ceramics Chinese Acad Sci (CAGU). 
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Table 4. The Top patent assignees in different periods during 1991-2016 

Patents assignees Records 1991-2010 2008-2010 2011-2016 2014-2016 Role 

Fujikura Ltd (FUJD) 218 99 41 119 44 Leading 

Konica Corp (KONS) 158 77 68 81 24 Leading 

Fuji Film Corp (FUJF) 157 60 13 97 56 Leading 

Sony Corp (SONY) 157 77 27 80 3 Declining 

Samsung SDI Co Ltd (SMSU) 151 65 30 86 13 Declining 

Sharp Kk (SHAF) 144 93 31 51 21 Leading 

Dainippon Printing Co Ltd (NIPQ) 133 64 34 69 6 Declining 

Dong Jin Semichem Co Ltd 
(DOSE) 

112 39 39 73 19 Declining 

Sekisui Chem Ind Co Ltd (SEKI) 110 11 8 99 54 Emerging 

Dokuritsu Gyosei Hojin Sangyo 
Gijutsu So (NIIT) 

101 77 31 24 5 Declining 

Merck Patent Gmbh (MERE) 91 15 6 76 37 Emerging 

Irico Group Co Ltd (CCEC) 85 41 41 44 0 Declining 

Shanghai Inst Ceramics Chinese 
Acad Sci (CAGU) 

46 4 4 42 32 Emerging 

 

Look back to the discrepant role changes of leading patent assignees in DSSCs, we can see the 

notable role in previous research has been changed a lot: Samsung Electronics Co Ltd and Sony Corp 

active in patent activity over the next few years, but present a declining trend in most recent years; 

Konarka Technologies Inc and Nanosolar Inc came across the bankruptcy when facing various kind 

troubles in terms of technological bottleneck, slow-development cycle, complex production problems 

and the external competitors; Nanosys Inc paid its most efforts to quantum dot sensitized solar cell 

rather than dye sensitized solar cell. For the super companies, such as Samsung SDI Co Ltd, Sony 

Corp and Fuji Film Corp, they have enough capacity to develop and update technologies, and it is 

relatively easy for them to obtain competitive advantage. But for the domain emerging actors, such 

as Konarka Technologies Inc and Nanosolar Inc, their developments are heavily depend on the 

funding from venture capital firms. Therefore, when we monitor such players, we cannot fully defined 

by this empirical information, but also care about the company background and further check and 

enrich this ‘competitive technical intelligence’ through human expertise. 

4.3 Validate enhanced technology detection 

4.3.1 The transformation in distributed technology fields 
Another essential aspect of technology forecasting is understanding a technical domain at the 

right level of aggregation. The systematic properties of a patent classification system, such as 

International Patent Classification (IPC), is always used to identify the specific detailed technological 

areas that make up different technologies and industries. 

The previous work conducted by Zhou et al. published in 2014 [23] used 8-digit IPCs to trace 

the evolutionary path for DSSCs by dividing patent records into several time intervals and identified 

the subordinate research areas for different time intervals. Based on the revealed linkages between 

these key sub-technologies, they linked the same IPC numbers to different time intervals. These 
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demonstrate the gradual evolutionary pathways for sub-technologies over time. The main opinions 

and predictions are summarized in Table 5. 

 
Table 5. Main analyses and predictions of sub-technology fields using 8-digit IPCs 

IPC Main technology content Analyses and predictions 

H01L-31/04 Semiconductor devices 

adapted as photovoltaic [PV] 

conversion devices. 

It is a core research area within the DSSCs industry and has 

maintained a rapid growth rate. There is a high possibility that it will 

stay in the leading position in this industry for several years to come. 

H01M-14/00 Electrochemical current or 

voltage generators (in energy 

conversion processes). 

Same with H01L-031/04. 

H01G-09/20 Light-sensitive devices. It changes steadily and advances to a different level with each stage. 

The research attention has increased at a relatively constant rate. 

H01L-31/042 PV modules or arrays of 

single PV cells. 

It has become a popular research area. 

H01L-51/42 The technology that employs 

organic materials as the active 

part for solid state devices. 

It is an emerging sub-technology, is rapidly developing. 

C09B-23/00 Methine or polymethine dyes, 

e.g. cyanine dyes. 

It increases slowly but steadily. Nevertheless, this is an important 

area for DSSCs, so attention should be paid to this subfield. 

H01M-10/40 Organic electrolyte 

(transferred to H01M 10/05-

H01M 10/0587). 

It emerges during the period of 2000-2003, but this technology nearly 

disappears after 2008. 

Note: Based on the paper indicated, the data for the time period from 1991 to 2009 are accurate, but for the years 2010 and 
2011, the data values are estimated. The evolutionary trend map for DSSCs technology includes these estimated values. 

 

In table 5, 7 IPCs are list as the heighted sub-technology field. As the H01M-10/40 is transferred 

to H01M 10/05-H01M 10/0587 and no longer existed in the 2010 edition IPC scheme, so the other 6 

IPCs are selected to compare the real situation and previous opinions, as shown in Fig. 6(a). H01L-

31/04 (semiconductor devices adapted as photovoltaics) H01M-14/00 (electrochemical current or 

voltage generators) share the similar trends that they keep leading positions until 2012 and then 

decrease to a very low amount in 2016. There is no doubt they are the core research area within the 

DSSCs industry, but they cannot hold the leading position in the several years to come. H01G-09/20 

(light-sensitive devices), as previous judged, advances at a relatively continuous growth rate and 

become the most heighted IPC in the most recent years. The H01L-31/042 (PV modules or arrays of 

single PV cells) stands out for its impressive increase in 2013 and 2014, but comes across a sharp 

drop subsequently. H01L-51/42 (employs organic materials as the active part for solid state devices) 

disappoints us that it has not reached a rapidly develop, and C09B-23/00 (methine or polymethine 

dyes, e.g. cyanine dyes has not paid enough attention yet. 
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(a) The heighted IPCs in previous research (b) The other emerging IPCs from current view 

Fig. 6. The publication trends of leading IPCs in DSSCs during 1991-2016 

 

In addition to the IPCs heighted by previous research, some emerging IPCs are need to be paid 

enough attention, shown as in Fig. 6(b). The criteria for choosing target IPCs is based on the number 

of patents for the chosen IPCs should be 160 or more, which closes to minimum amount of IPCs 

presented in Fig. 6(a). It indicates that most these chosen IPCs are emerge after 2005, except for 

H01L-51/00 (Solid state devices using organic materials as the active part). H01L, which relates to 

semiconductor devices, is the biggest subordinate emerging research area in the field of DSSCs and 

6 IPCs belongs to this subclass, including H01L-31/18 (Processes or apparatus specially adapted for 

the manufacture or treatment of these devices or of parts thereof semiconductor devices), H01L-

31/0224 (Electrodes of Semiconductor devices), H01L-51/48 (Processes or apparatus specially 

adapted for the manufacture or treatment of such devices or of parts thereof solid state devices), 

H01L-51/44 (Details of solid state devices), H01L-51/46 (Selection of organic materials), and H01L-

31/18. Besides, H01G relates to basic electric elements such as capacitors, rectifiers, switching, light-

sensitive or temperature-sensitive devices of the electrolytic type is another noteworthy subclass, 

including H01G-09/04 (Electrodes of electrolytic capacitors) and H01G-09/04 (Characterised by the 

material of electrodes). Specially, H01G-09/042 is the unique IPC that still keeps the growth trend in 

term of patent number in 2015 and 2016. 

In general, most evolutionary trend for sub-technology fields are heavily depend on the 

technology life cycle. In the early exploring stage, the foci so scattered and hard to pinpoint the 

potential components. When it enters the growth stages, the core devices, processes and apparatus get 

increased attention to promote the whole technology forward. When it comes to the maturity phase, 

the overall growth trends may suffer an obvious decrease but the material-related fields remain 

promising prospect. Therefore, when we make a prediction and judgment, the development stages 

can be carefully observed and the main technology functions are necessary to be identified and 

distinguished. Moreover, the new combinations of technologies (existing and/ or emerging) and many 

socio-economic forces (e.g., fluctuations in demand, regulations, ethical or environmental concerns) 

may also change a development trajectory and technology filed evolutionary trend. 

4.3.2 The evolution of potential technology foci 
One of our previous analyses on DSSCs using the FIP approach provided a framework for 

shaping the potential innovation pathways over a timeframe. This framework helped to locate the 

obstacles and opportunities that are likely to facilitate or inhibit progress along a particular pathway 
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[56]. This framework sets out a prescribed procedure for analysis: the literature is reviewed first, 

followed by an initial database search. The database search results are text mined to identify local 

expertise. Face-to-face interviews with those experts provide input for the first evaluation of the 

analyses. Then, a workshop is conducted to focus on mapping likely innovation avenues following 

the process described and demonstrated by Robinson and Propp [2]. These expert workshops involve 

a wider spectrum of experts and stakeholders for more extended interactions (e.g., a full day). A key 

element of many future-oriented technology analyses is the expert forecasting workshop. These 

workshops provide a means of combining codified and tacit knowledge to explore the plausibility of 

various technology options. They also provide key intelligence for assessing the potential innovations 

that may stem from each option [60]. In tandem, a multi-path map of the technology’s future course 

is developed – in our case DSSCs. Such visualizations stimulate workshop interactions and create a 

framework for drawing out the intelligence held by the experts in the workshop–a scaffold upon 

which to locate their knowledge. The main ideas of the results from the analysis in [58] are presented 

in Table 6. 

 
Table 6. The ingredients of the multipath exploration for DSSCs 

Goals Presenta Short/medium term Long term 

Envisioned application areas Grid-connected Off-grid Personal product 
Anticipated potential product 
platforms 

Conventional solar cells; 
Sillicon thin-film solar 
cells 

3D solar cells;  
Nanoparticle-based solar cells 

Organic solar cells; 
Quantum dot solar 
cells 

Functionalities expected to 
made available 

A Large surface area could 
increase light absorption; 
Provide new film 
deposition methods to 
reduce cost 

Large Surface area could help 
charge separation; 
Multiple excition generation 
(MEG) 

Tailor optical 
properties through its 
size 

Nanostructures that are 
expected to be applied to 
solar cells 

Nanoparticle; 
Quantum dot 

Nanowise; Carbon nanotubes  

Advances in material R&D Titanium dioxide (TiO2); 
Zinc oxide (ZnO); 
Tin dioxide(SnO2) 

Cadmium sulphide (Cds); 
Copper indium diselenide 
(CIS); 
Cadmium Telluride (CdTe) 

 

a. Note: Here, “present” means that time is around 2010.  

 
In this paper, we attempt to validate the results previously derived based on the latest dataset. 

Usually, the “what” question is especially challenging. Some fielded records contain helpful content, 

such as keywords in paper abstracts and classification codes for patents [61]. Hence, we first applied 

natural language processing (NLP) to extract terms and words in the merged titles and abstract fields 

of patents. We then followed “term clumping” steps to clean and consolidate topical content, mainly 

using a combination of thesauri and fuzzy matching routines [62]. After selecting the main technology 

foci in four DSSCs sub-technologies, we made a matrix of these terms by publication year. Here, we 

only care about the materials and products in DSSCs for the comparisons and updates.  

In terms of the advances in materials R&D, the main technology foci of DSSCs materials in four 

sub-technologies for the period of 2001-2016 are presented in detail in Fig. 7. The color in the 
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corresponding grid indicates the relative degree of boom for the whole period. From red to green, the 

degree is in descending order. We established that among the various nano-structured materials that 

are used as a semiconductor layer in DSSCs photoanodes, titanium dioxide (TiO2), zinc oxide (ZnO), 

tin dioxide (SnO2) are still the most important materials, continuing from the early stage to now. But 

the developmental level of cadmium sulfide (Cds), copper indium diselenide (CIS), and cadmium 

telluride (CdTe) fell behind our previous predictions. In addition, we developed a sense that previous 

forecasts appeared rough, with few detailed messages, and were hard to trace. Thus, the time-series-

based examination of sub-technologies offers an inspiring perspective to enhance forecasting for 

potential technology foci. 

 
Fig. 7 (a). The main technology foci of DSSCs photoanode in 2001-2016 

 

 
Fig. 7 (b). The main technology foci of DSSCs sensitizer in 2001-2016 

 

 
Fig. 7 (c). The main technology foci of DSSCs electrolyte in 2001-2016 
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Fig. 7 (d). The main technology foci of DSSCs counter-electrode in 2001-2016 

 

At the level of DSSCs products, previous analyses (Shown in Table 6) indicated that 3D solar 

cells and nanoparticle-based solar cells would likely emerge over the short-to-medium term and that 

organic solar cells and quantum dot solar cells would blossom over the longer term. Fig. 8 presents 

the annual trends for nano-enhanced solar cell-related products. As shown, organic solar cells grew 

rapidly from 2008 but began to decrease from 2013, rather than continuing to develop. In fact, organic 

solar cell research began 30 years ago but has attracted significantly more scientific and economic 

interest over the last decade, triggered by a rapid increase in power conversion efficiency [63]. 

However, as many other new types of solar cells have emerged in the most recent years, its growth 

has turned into decline. Nanoparticle-based solar cells indeed saw remarkable gains over the past 

several years. In addition, the predicted trend for silicon thin-film solar cells and quantum dot solar 

cells were well informed and projected at the right levels. Nanoparticle cells have since seen a decline, 

but quantum dot solar cells have maintained a stable growth rate with a high possibility that they will 

continue to develop and maintain an important position in the future. The development of 3D solar 

cells has not met expectations and has not been widely explored, even though it shows promise for 

improvements in conversion efficiency by absorbing virtually all of the light. 

 
Fig. 8. The growing trends of nano-enhanced solar cell-related products based on insights from DSSCs patents 

 

Tracing the innovation pathways of potential technology foci offers an important tool set to 

approach real improvements in forecasting emerging topics and their potential applications. However, 

the comparative results show there is still a gap that cannot meet the expectation. On one hand, 

previous work like [58] lacks the effective method to provide appropriate level content when facing 

the abstract record results that pertain to a particular technology. On the other hand, combining 

empirical with expert analyses seems promising to address ‘‘what’’ issues, but the clumped phrases 
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are need to appropriately provided for expert review to point out key topics and technologies for 

further scrutiny. Therefore, an effective method to extract technical content for technological 

intelligence turns out to be an alternative solution. For example, topic modeling appears to have utility 

to reduce the cycle time, the complexity, and analyst input required for a technology analysis [61]. 

The approach presents an attractive scalability, suggesting the possibility to move beyond abstracts 

into full text analysis. However, such a method based on analytical software can offer help in most 

time consuming step, but it still be required to produce an effective assessment by human efforts and 

domain knowledge. 

5. DISCUSSION AND CONCLUSIONS 

The paper proposes a framework for assessing data-driven technology forecasting and uses that 

framework to revisit our previous research on DSSCs using an updated patent dataset. After 

addressing the technology life cycle to locate whether the technology keep the phase as previous 

indicated or enter the following develop phase, we compare the basic technology profiling and 

validate enhanced technology detection. We conducted a comparative empirical study to contrast the 

results in terms of the technology’s stage in its country/regional focus and the prominent actors and 

attempted to answer what’s role change among leading, emerging and declining status in various 

stages? In addition, we further explore the evolutions of technological fields and technological foci 

to figure out what are the differences and what causes the differences when the results shows that 

some preceding predictions correspond to actual performance; but others do not. 

We conclude that a number of factors account for these differences: First, data quality is the 

foundation of data-based technology forecasting, including its veracity and completeness. Veracity 

can be enhanced by using an appropriate search strategy on a reliable data source. But insufficient 

data is an innate problem that cannot be totally avoided. For example, inaccuracies in our forecasts 

on DSSCs’s stage in its lifecycle in a previous study were because we could not always obtain the 

most recent data. Therefore, frequent monitoring is an alternative way to deal with this imperfection. 

Second, technology forecasting methods are empirical substitutes for the theory of sociotechnical 

change, and no approach is perfect. We cannot rely heavily on a single method, but rather aggregate 

diverse approaches with complementary strengths need to be used to mitigate the negative effects 

caused by each method alone. Third, future-oriented analyses are characterized by complexity and 

dynamism, so less emphasis needs to be placed on the leading actors or trends in the current stage, in 

favor of the emergent actors and trends, which are more likely to influence the near future.  

Although the development of technology follows a certain path dependence, the evolutionary 

trend sometimes evolved in a jumping way rather than a gradual due to some uncertain external 

factors, and accidental random mutation factors will affect the evolutional path. In the “Managing the 

present from the future” section of Forecasting and Management of Technology, the authors give a 

dozen recommendations for technology forecasting. We agree with their thesis that, “The future is 

very much an open system with fuzzy, impenetrable boundaries in both space and time. Images of 

the future must accommodate uncertainty and be adaptable, yet provide focal points to guide present 

actions.” [53] Technology forecasting offers a relevant opportunity in this direction and is currently 

an up-and-coming area of research. Forecasters can learn much from re-analyzing past predictions, 
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and there is value in paying more attention to the retrospect by assessing what we have done as a 

means to improving what we should and will do going forward. 
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