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The minimum spanning tree- (MST-) based clustering method can identify clusters of arbitrary shape by removing inconsistent
edges. The definition of the inconsistent edges is a major issue that has to be addressed in all MST-based clustering algorithms. In
this paper, we propose a novel MST-based clustering algorithm through the cluster center initialization algorithm, called cciMST.
First, in order to capture the intrinsic structure of the data sets, we propose the cluster center initialization algorithm based on
geodesic distance and dual densities of the points. Second, we propose and demonstrate that the inconsistent edge is located on the
shortest path between the cluster centers, so we can find the inconsistent edge with the length of the edges as well as the densities
of their endpoints on the shortest path. Correspondingly, we obtain two groups of clustering results. Third, we propose a novel
intercluster separation by computing the distance between the points at the intersection of clusters. Furthermore, we propose a
new internal clustering validation measure to select the best clustering result. The experimental results on the synthetic data sets,
real data sets, and image data sets demonstrate the good performance of the proposed MST-based method.

1. Introduction

Clustering aims to group a set of objects into clusters such
that the objects of the same cluster are similar, and objects
belonging to different clusters are dissimilar. Clustering is
an active research topic in statistics, pattern recognition,
machine learning, and data mining. A wide variety of cluster-
ing algorithms have been proposed for different applications
[1]. The different clustering methods, such as partitional,
hierarchical, density-based, and grid-based approaches, are
not completely satisfactory due to the multiplicity of prob-
lems and the data distributions [2–4]. For instance, as a
well-known partitional clustering algorithm, the K-means
algorithm often assumes a spherical shape structure of the
underlying data, and it can detect clusters with irregular
boundaries. Most of the hierarchical clustering algorithms
cannot satisfy the requirement of clustering efficiency and
accuracy simultaneously [5]. DBSCAN is a classical density-
based clustering algorithm that can find clusters with arbi-
trary shapes. However, it needs to input four parameters

which are difficult to determine [4]. CLIQUE combines grid-
based and density-based clustering algorithms, and it works
efficiently for small data sets. However, its cluster boundaries
are either horizontal or vertical, owing to the nature of
the rectangular grid [5]. Sufficient empirical evidence has
shown that minimum spanning tree (MST) representation is
invariant to detailed geometric changes in the boundaries of
clusters.Therefore, the shape of the cluster boundary has little
impact on the performance of the algorithm, which allows us
to overcome the problems commonly faced by the classical
clustering algorithms [6].

The MST-based clustering algorithm is able to achieve
the clustering result provided that the inconsistent edges
between the clusters have been determined and removed.
Hence, defining the inconsistent edge is one of the main
problems to be solved in this paper. If we tackle this issue
from the view of the length of edges as well as the density
of points, the MST method commonly requires a set of
parameters whose tunings are problematic in practical cases,
whichwill bring the clustering result instability. Furthermore,
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many factors including the arbitrary shape of clusters and
the different densities and noise make this problem more
complex. We found that the shortest path between the cluster
centers contains the inconsistent edge; that is, the search
scope of inconsistent edges can be narrowed to the shortest
path between the cluster centers. Based on this finding,
we propose the cluster center initialization algorithm based
on the geodesic distance and dual densities of points. In
this method, the Euclidean distance between the vertices is
modified with the geodesic distance in the MST. Global and
local densities of the vertices are defined through adjusting
the variance in the Gaussian function. Correspondingly, two
groups of K cluster centers under different densities are
achieved. Next, we find the K-1 shortest paths among the
K(K-1)/2 paths between any pair of K cluster centers. Any
K-1 inconsistent edges are determined and removed with
consideration of the length of each edge as well as the
densities of the two endpoints on the shortest path. Hence,
we obtain two groups of clustering results. Then, we define
a novel intercluster separation with the distance between the
points at the intersection of clusters. The optimal clustering
result is determined by combining intercluster separation
and intracluster compactness. The key contributions of this
paper include the following: (i) propose the use of cluster
center initialization in MST-based clustering, (ii) give a
cluster center initialization algorithm that takes advantage
of geodesic distance, and (iii) develop a new intercluster
separation.

The rest of this paper is organized as follows: in Section 2,
we review some existing work on MST-based clustering
algorithms. We next present our proposed cluster center
initialization method in Section 3. In Section 4, we give
the definition of inconsistent edges. Section 5 presents a
new internal clustering validation measure. In Section 6,
we analyze the time complexity of the algorithm. Section 7
presents the experimental evaluations. Finally, Section 8
concludes our work and discusses future work.

2. Related Work

A spanning tree is an acyclic subgraph of a graph G, which
contains all the vertices from G. The minimum spanning
tree (MST) of a weighted graph is the minimum weight
spanning tree of that graph. The cost of constructing an MST
is O(𝑚 log 𝑛) with the classical MST algorithm, where m is
the number of edges in the graph and n is the number of
vertices [7]. Enormous amounts of data in various application
domains can be represented in a graph. The set of vertices
in the graph represents the points in the data set and
the edge connecting those vertices reveals the relationship
between points. Usually, MST-based clustering algorithms
consist of three steps: (1) construct a minimum spanning
tree; (2) remove the inconsistent edges to get a set of
connected components (clusters); (3) repeat step (2) until the
terminating condition is satisfied. Since Zahn first proposed
the MST-based clustering method, recent efforts focused on
the definition of the inconsistent edges [8]. Under the ideal
condition that the clusters are well separated and there exist

no outliers, the inconsistent edges are the longest edges [8].
However, the longest edge does not always correspond to the
inconsistent edge if there are outliers in the data set. Xu et al.
used an MST to represent multidimensional gene expression
data [9]. They describe three objective functions. The first
algorithm removes the k-1 longest edges so that the total
weight of the K subtrees is minimized. The second objective
function is to minimize the total distance between the center
and each point in a cluster. The third objective function is to
minimize the total distance between the “representative” of
a cluster and each point in the cluster. The clustering result
is vulnerable to the outliers when removing the inconsistent
edges according to the lengths of edges. To solve this problem,
Laszlo et al. proposed an MST-based clustering algorithm
that puts a constraint on the minimum cluster size rather
than on the number of clusters [10]. Grygorash et al. proposed
a hierarchical MST-based clustering approach (HEMST)
that iteratively cuts edges, merges points in the resulting
components, and rebuilds the spanning tree [11].

In addition to the inconsistent edges, the definition of
the density of points is also one of the crucial factors
that affect the performance of the clustering result. The
traditional MST-based clustering algorithms only exploit the
information of edges contained in the tree to partition a data
set, which will make these algorithms more vulnerable to
the outliers. The recent MST-based methods tend to define
the inconsistent edges based on the local density around the
point. Some methods define the density of points with the
degree of the vertex. Chowdbury et al. proposed a density
oriented MST-based clustering technique that assumes that
the boundary between any two clusters must belong to a
valley region (a region where the density of the data points
is the lowest compared to those of the neighboring regions)
and that the inconsistency measure is based on the finding of
such valley regions [12]. Luo et al. proposed an MST-based
clustering algorithm with neighborhood density difference
estimation [13]. Wang et al. proposed to find a local density
factor for each data point during the construction of an
MST and discarding outliers [14]. Zhong et al. proposed a
graph-theoretical clustering method based on two rounds of
minimum spanning trees to deal with separated clusters and
touching clusters [15]. For some specially distributed data,
such as uniform distributed data, if only the local density of
the point is taken into account, it cannot be guaranteed that
the best clustering result will be achieved. To address this
problem, we propose to calculate the global and local density
of the point. Some MST-based algorithms are combined with
other methods, such as information theory [16], k-means
[17], and multivariate Gaussians [18].

3. The Proposed Cluster Center
Initialization Method

3.1. Density Peaks Clustering. Among the recent cluster cen-
ter initialization methods, density peaks clustering (DPC)
has been widely used [19]. We propose a new cluster center
initialization method based on DPC in this paper. Here, we
briefly describe DPC.
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It is assumed in DPC that the cluster centers are char-
acterized by a higher density than their neighbors and by
a relatively large distance from points with higher densities.
DPC utilizes two quantities: one is the density 𝜌𝑖 of point xi
and the other is its distance 𝛿𝑖 from points of higher densities.

The density 𝜌𝑖 of point xi is defined as

𝜌𝑖 = ∑
𝑗

exp(−𝐷 (𝑥𝑖, 𝑥𝑗)22𝜎2 ) (1)

where 𝐷(𝑥𝑖, 𝑥𝑗) is the Euclidean distance between points xi
and xj, and 𝜎 is variance. Algorithm 1 shows the definition of𝜎.

The distance between the point xi and the other points
with higher densities, denoted by 𝛿𝑖, is defined as

𝛿𝑖 = {{{{{
min
𝑗:𝜌𝑖<𝜌𝑗

(𝑑 (𝑥𝑖, 𝑥𝑗)) , if 𝜌𝑖 < 𝜌𝑗
max
𝑗

(𝑑 (𝑥𝑖, 𝑥𝑗)) , otherwise
(2)

When the density 𝜌𝑖 and the distance 𝛿𝑖 for each point
have been calculated, the decision graph is further generated.
The points with relatively high 𝜌𝑖 and 𝛿𝑖 are considered as
cluster centers.

3.2. Geodesic-Based Initialization Method. In the DPC
method, the precondition to find the correct cluster centers
is that the distribution of cluster centers conforms to the
abovementioned assumptions. However, many studies show
that the two assumptions have certain limitations in different
scenarios. As can be seen from Figure 1(a), for the Three
circles data set which is from [20], three cluster centers
(represented as solid triangles) obtained by the DPC method
lie in the red cluster and green cluster, respectively, yet none
lie in the blue circle. As shown in Figure 1(b), there is only
one point with a relatively large value of 𝜌𝑖 and 𝛿𝑖 which lies
in the red cluster. This is due to the fact that both the green
cluster and the blue cluster are nonconvex shaped, and the
densities of points in the blue cluster are smaller than that
in the green cluster, which leads to the result that no cluster
center lies in the blue cluster.

TheDPCmethod exploits the Euclideandistance between
the two points as the distance measure.This distance measure
is suitable for the data sets with convex shape, yet is not
suitable for the data sets with nonconvex shape. To address
this issue, this paper adopts a new distance metric-geodesic
distance.

Let X be a data set with K clusters and n data points,
that is, 𝑋 = {𝑥𝑖, 𝑥𝑖 ∈ 𝑅𝑃, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛}. Data set X is
represented by an undirected completed graph 𝐺 = (𝑉, 𝐸),
where 𝑉 = {V1, V2, . . . , V𝑛}, |𝐸| = 𝑛(𝑛 − 1)/2. Each data point
xi in data set X corresponds to a vertex V𝑖 ∈ 𝑉. For the sake
of convenience, the vertex vi in graph G is represented by
xi. Let 𝑇 = (𝑉, 𝐸𝑇) denote the MST of 𝐺 = (𝑉, 𝐸), where𝐸𝑇 = {𝑒1, 𝑒2, ⋅ ⋅ ⋅ , 𝑒𝑛−1}, 𝑒𝑖 ∈ 𝐸(𝐺).
Lemma 1. There is one and only one path between each pair of
vertices in T.

Definition 2 (geodesic distance). Suppose 𝑝 = {𝑝1, 𝑝2, ⋅ ⋅ ⋅ ,𝑝𝑙} ∈ 𝑉 is the path between two vertices xi and xj in T, where
edge (𝑝𝑘, 𝑝𝑘+1) ∈ 𝐸𝑇, 1 ≤ 𝑘 < 𝑙 − 1. The geodesic distance
between two vertices xi and xj is defined as

𝐷𝑔 (𝑥𝑖, 𝑥𝑗) = 𝑙−1∑
𝑘=1

𝐷 (𝑝𝑘, 𝑝𝑘+1) (3)

where 𝐷(𝑝𝑘, 𝑝𝑘+1) is the Euclidean distance between two
points xi and xj.

The Euclidean distance between pairwise points is
replaced by geodesic distance, which leads to the result that
the distance between pairwise points in the same cluster
becomes smaller, while the distance between pairwise points
from the different cluster is larger. For example, we employ
statistical tests for the Three circles data set. We divide the
interval [0, 1] for the normalized distance measure into ten
subintervals of equal length. Then we count the number of
pairwise points in the same or from different clusters whose
Euclidean distance or geodesic distance drops into each
subinterval, respectively. It can be seen from Figure 2 that,
with respect to the Euclidean distance and geodesic distance,
a large quantity of pairwise points in the same cluster
drop into the first four subintervals, which implies that the
difference between both of them is small. In contrast, as for
the Euclidean distance and geodesic distance, the differences
of distribution of pairwise points from the different clusters
are significant. The former is concentrated in the 2nd-7th
subintervals, while the latter is distributed among all of the
subintervals. The reason is that the shape of the Three circles
data set is nonspherical. For the distance metric between
pairwise points from the different clusters, the corresponding
result is smaller when provided with the Euclidean distance
and larger when provided with the geodesic distance.

After the geodesic distance is defined, the density 𝜌𝑖 of
point xi is redefined as

𝜌𝑖 = ∑
𝑗

exp(−𝐷𝑔 (𝑥𝑖, 𝑥𝑗)22𝜎2 ) (4)

The size of the density 𝜌𝑖 is related to 𝜎 in (4), and 𝜎 is
proportional to s inAlgorithm 1 mentioned in Section 3.1; that
is, the larger s is, the larger 𝜎 will be, and vice versa.

In addition, the distance 𝛿𝑖 between the points xi and the
other points with higher densities is redefined as

𝛿𝑖 = {{{{{
min
𝑗:𝜌𝑖<𝜌𝑗

(𝐷𝑔 (𝑥𝑖, 𝑥𝑗)) , if 𝜌𝑖 < 𝜌𝑗
max
𝑗

(𝐷𝑔 (𝑥𝑖, 𝑥𝑗)) , otherwise
(5)

For the purpose of adapting the selected cluster centers
to data sets with arbitrary shape, we introduce the concept
of global density and local density. The variance 𝜎 can be
seen as the scale factor. The smaller the value of 𝜎 is, the
smaller the scale is. Hence, the corresponding density 𝜌𝑖 can
be seen as the local density around the point xi. In contrast,
the larger the value of 𝜎 is, the larger the scale is. And the
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(1) Input: Data set 𝑋 = {𝑥𝑖, 𝑥𝑖 ∈ 𝑅𝑃, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛}, the total number of points n, a predefined parameter 𝑠(2)Output:The value of 𝜎(3) Begin(4) Calculate and sort the pairwise distance between points in ascending order, that is, {𝑑1, 𝑑2, ⋅ ⋅ ⋅ , 𝑑𝑛(𝑛−1)/2}(5) Calculate 𝑡ℎ = [𝑠 ∗ 𝑛(𝑛 − 1)/2] (“[]” represents a rounding operation)(6) Calculate 𝜎 = 𝑑𝑡ℎ(7) End
Algorithm 1: Pseudocode of the Definition of 𝜎.
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Figure 1: Three circles data set.
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Figure 2: The histograms of two distance measures for pairwise
points in the same and different clusters.

corresponding density 𝜌𝑖 can be seen as the global density
around the point xi.The parameter s is set as 2% and 20% after
a number of experiments in this paper, with which we can
obtain the local density and global density of the point. The
pointswith relatively higher𝜌𝑖 and 𝛿𝑖 are considered as cluster
centers, and correspondingly two groups of cluster centers are
achieved.

4. The Definition of Inconsistent Edge

For the data set with K categories, the MST-based clustering
method attempts to partition theMST intoK subtrees, {𝑇𝑖}𝐾𝑖=1,
by removing the K-1 inconsistent edges.

Lemma 3. The inconsistent edge between two vertices must
be in the path connecting two cluster centers of the different
clusters to which the two vertices belong.

Proof. Suppose data set X contains two clusters A and B
whose cluster centers are Ca and Cb, respectively. Construct
the MST 𝑇 = (𝑉, 𝐸𝑇) for data set X. Given 𝑒𝑎𝑏 ∈ 𝐸𝑇
connecting a vertex 𝑎 ∈ 𝐴 to a vertex 𝑏 ∈ 𝐵, 𝑒𝑎𝑏 is an
inconsistent edge. According to Lemma 1, there is one and
only one path between points Ca and a,Cb and b, represented
as𝑝𝐶𝑎𝑎 = {𝑝𝑎1, 𝑝𝑎2, ⋅ ⋅ ⋅ , 𝑝𝑎𝑙} ∈ 𝐴,𝑝𝐶𝑏𝑏 = {𝑝𝑏1, 𝑝𝑏2, ⋅ ⋅ ⋅ , 𝑝𝑏𝑚} ∈𝐵. Correspondingly, the path between clusters Ca and Cb is𝑝𝐶𝑎𝑎 ∪ 𝑒𝑎𝑏 ∪ 𝑝𝐶𝑏𝑏. Thus, 𝑒𝑎𝑏 belongs to the path between Ca
and Cb.

There are 𝐾(𝐾 − 1)/2 paths among K cluster centers.
Next, we need to find K-1 paths from them. The inconsistent
edge must lie in the intersection of each pair of adjacent
clusters. Obviously, the geodesic distance between the cluster
centers of the two adjacent clusters is smaller than that of
two nonadjacent clusters. Therefore, the methodology for
selecting K-1 paths is to construct the MST Tc, 𝑇𝑐 ⊂ 𝑇,
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Figure 3: The clustering results of the Two moons data set.

according to the geodesic distances of 𝐾(𝐾 − 1)/2 pairs of
cluster centers in T, and, correspondingly, K-1 edges in Tc
correspond to the paths in T.

After determiningK-1 paths, the next task is to find theK-
1 inconsistent edges on each of the K-1 paths. Generally, the
inconsistent edge has two features: (1) Its length is longer. (2)
The densities of the two end points are smaller. Based on this
fact, we define a new parameter for the edge 𝑒𝑖𝑗 connecting xi
and xj in the path.

𝜍𝑖𝑗 = 𝐷 (𝑥𝑖, 𝑥𝑗)𝜌𝑖 + 𝜌𝑗 (6)

where 𝐷(𝑥𝑖, 𝑥𝑗) is the Euclidean distance between points xi
and xj and 𝜌𝑖 and 𝜌𝑗 are the local or global density of points
xi and xj, respectively. For the K-1 paths, find and remove
the edge with the largest value of 𝜍𝑖𝑗, and correspondingly we
obtain K clusters.

5. Internal Clustering Validation Index

To adapt to the data sets with various characters, we obtain
two groups of cluster centers under local density and global
density, and then finally we achieve two groups of clustering
results. We can exploit internal validation measures to deter-
mine the optimal result from the two clustering results when
the external information is not available.

In general, the intercluster separation and intracluster
compactness are used as the internal validation measures,
where intercluster separation plays a more important role
[21]. The calculation of intercluster separation can be catego-
rized into two classes: one is to take the distance of a single
pair of points as the intercluster separation. For example,
the maximum orminimum distance between pairwise points
or the distance between the cluster centers is taken as the
intercluster separation. Another is based on the average
pairwise distance between points in the different clusters.
Let us analyze the two categories. In the first category, the
distance between the single pair of points cannot represent

the distance between two clusters. The result of intercluster
separation in this method is unavoidably wrong if there exist
outliers in the data set. And, for the second category, the
average distance between pairwise points reflects the average
value of pairwise distance of points, which cannot reflect
accurately the distance between clusters. Yang et al. [22]
proposed an internal clustering validation index based on
the neighbors (CVN), which can be exploited to select the
optimal result among the multiple clustering results. Similar
to CVN, Liu et al. [21] proposed the internal clustering
validation index (CVNN), which exploits the intracluster or
intercluster relationship between the point and its neighbors.
It is required to take the relation between each point and
its neighbors into consideration to calculate the intercluster
distance with CVN or CVNN. But in fact, we need not
consider all points of the data set. Figure 3 illustrates the
clustering results with the proposed method on the Two
moons data set, respectively, where s=2% and 20%.According
to Figure 3, we can see that the proposed method gives the
optimal clustering result in Figure 3(b) and the undesirable
clustering result in Figure 3(a). The main basis for judging
by human eyes whether the cluster result is correct or not is
the size of the distance between the points at the intersection
of the two clusters, and the distance between the points far
from the intersection of the two clusters is not considered.
As shown in Figure 3, the green circles denote the points at
the intersection of the two clusters. As shown in Figure 3(a),
the distance between the points from the different clusters
is smaller than the distance in Figure 3(b); that is, the
intercluster distance in Figure 3(b) is greater than that in
Figure 3(a).Thus, we select the clustering result in Figure 3(b)
as the optimal solution.

Based on the above idea, we propose using the intercluster
distance based on the distance between the points at the
intersection of two different clusters. Let us consider the
example in Figure 3(a).There are two clusters whichwe called
the red cluster and the blue cluster. First, we calculate the
minimumgeodesic distance fromeachpoint in the red cluster
to all of the points in the blue cluster. Then, we sort all of the
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(1) Input: Data set 𝑋 = {𝑥𝑖, 𝑥𝑖 ∈ 𝑅𝑃, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛}, the total number of points n, the number of clustersK,
the clustering result {𝐶𝑙𝑢𝑠𝑡𝑒𝑟1, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟2, ⋅ ⋅ ⋅ , 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐾}, K-1 inconsistent edges 𝐸𝑖𝑛𝑐 = {𝑒1, 𝑒2, ⋅ ⋅ ⋅ , 𝑒𝐾−1}, the
geodesic distance 𝐷𝑔(𝑥𝑖, 𝑥𝑗) between points xi and xj(2)Output: Intercluster separation Sep(3) Begin(4) Construct K-1 pairs of adjacent clusters (𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑗) according to 𝑒𝑖 ⊂ 𝐸𝑖𝑛𝑐 ( The two end points
of ei belong to Clusteri and Clusterj .)(5) Calculate the intercluster distance 𝑠𝑒𝑝𝑖𝑗 between adjacent clusters𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖 and 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑗

(5.1) Select a pair of adjacent clusters (𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑗)
(5.2) Calculate the minimum geodesic distance min𝑥𝑖∈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖 {𝐷𝑔(𝑥𝑖, 𝑥𝑗) | 𝑥𝑗 ∈ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑗} from each point in

the 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖 to all of the points in the 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑗
(5.3) Sort all of the minimum geodesic distances min𝑥𝑖∈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖 {𝐷𝑔(𝑥𝑖, 𝑥𝑗) | 𝑥𝑗 ∈ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑗} in ascending order
(5.4) Sum up the top 20% minimum geodesic distances {𝐷𝑔𝑖1, 𝐷𝑔𝑖2, ⋅ ⋅ ⋅ , 𝐷𝑔𝑖𝜒1} (Here, suppose there are a

total of 𝜒1 minimum geodesic distances)
(5.5) Similar to Step (5.4), for the adjacent clusters (𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑗, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖), sum up the top 20% minimum

geodesic distances {𝐷𝑔𝑗1, 𝐷𝑔𝑗2, ⋅ ⋅ ⋅ , 𝐷𝑔𝑗𝜒2}. (Here, suppose there are a total of 𝜒2 minimum geodesic
distances)

(5.6) Calculate the distance 𝑠𝑒𝑝𝑖𝑗 = (∑𝜒1𝑜=1𝐷𝑔𝑖𝑜 + ∑𝜒2𝑝=1𝐷𝑔𝑗𝑝)/(𝜒1 + 𝜒2) between 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖 and 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑗(6) Calculate the average of the K-1 𝑠𝑒𝑝𝑖𝑗(7) End
Algorithm 2: Pseudocode of Intercluster separation.

minimum geodesic distances in ascending order and sum up
the top 20%minimum geodesic distances. Next, we exchange
the red cluster and the blue cluster. And similarly, we sum up
the top 20% minimum geodesic distances. The average of the
two previous results is taken as the distance between the red
cluster and the blue cluster. For the two clusters which are
located at the end points of the inconsistent edge, we calculate
the intercluster distance according to the above method.
Finally, we take the average of all intercluster distances as the
intercluster separation. The detailed algorithm is shown as in
Algorithm 2.

Next, we define the intracluster compactness CP. Numer-
ous measures estimate the intracluster compactness based
on the average pairwise distance. Hence the compactness of𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖 with ni points can be defined as

𝑐𝑝𝑖 = 2𝑛𝑖 (𝑛𝑖 − 1) ∑
𝑥𝑖,𝑦𝑖∈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖

𝐷𝑔 (𝑥𝑖, 𝑦𝑖) (7)

The intracluster compactness of data set X is

𝐶𝑃 = 1𝐾
𝐾∑
𝑖=1

𝑐𝑝𝑖 (8)

where K is the cluster number.
The smaller the value of CP according to (7) and (8), the

more compact the data set. We calculate the value of CP for
the clustering results of Figure 3 with the above method. The
value of CP for Figures 3(a) and 3(b) is 1.5835 and 1.8233,
respectively, which indicates that the intracluster distance for
Figure 3(a) is smaller than that of Figure 3(b). The value of
cpi for the red cluster and the blue cluster in Figure 3(a) is
0.3997 and 2.7673, respectively, and the value of cpi for the red
cluster and the blue cluster in Figure 3(b) is 1.9575 and 1.6892,

respectively. For Figure 3(a), the value of cp of the blue cluster
is greater than that of the red cluster. Thus, the value of CP is
still smaller than the corresponding result of Figure 3(b). In
conclusion, the previous method has its limitations.

This paper redefines the intracluster distance based on
the greater pairwise geodesic distance between the points
in the cluster; that is, the average of the greater pairwise
geodesic distance is taken as the intracluster distance. For the
intracluster compactness of the data set, we assign a weight to
each intracluster distance before summing them up to avoid
the aforementioned wrong result. The detailed algorithm is
shown as in Algorithm 3.

We propose the internal clustering validation index ICV
by combining intercluster separation Sep and intracluster
compactness CP:

𝐼𝐶𝑉 = 𝑆𝑒𝑝𝐶𝑃 (9)

In (9), the greater the value of Sep is, the smaller the
value of CP is, and the greater the value of ICV is, which
indicates the better clustering result. Hence, the clustering
result corresponding to the greater value of ICV is taken as
the optimal result.

6. Complexity Analysis

The flowchart of cciMST is illustrated in Figure 4. The
computational complexity of cciMST is analyzed as follows.

Firstly, we do initialization work. We construct the MST
for data set X with K clusters and n data points by using
the Prim algorithm, which requires 𝑂(𝑛2) calculations. In the
calculations of all pairwise Euclidean distance and geodesic
distance of data points, 𝑂(𝑛2) and 𝑂(𝑛) are required.
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(1) Input: Data set 𝑋 = {𝑥𝑖, 𝑥𝑖 ∈ 𝑅𝑃, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛}, the total number of points n, the number of clustersK,
the clustering result {𝐶𝑙𝑢𝑠𝑡𝑒𝑟1, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟2, ⋅ ⋅ ⋅ , 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐾}, K-1 inconsistent edges 𝐸𝑖𝑛𝑐 = {𝑒1, 𝑒2, ⋅ ⋅ ⋅ , 𝑒𝐾−1}, the
geodesic distance 𝐷𝑔(𝑥𝑖, 𝑥𝑗) between points xi and xj(2)Output: Intracluster compactness CP(3) Begin(4) Sort the pairwise geodesic distances of all points from 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖∈{1,2,⋅⋅⋅ ,𝐾}(5) Extract the top 20% maximum geodesic distance {𝐷𝑔𝑖1, 𝐷𝑔𝑖2, ⋅ ⋅ ⋅ , 𝐷𝑔𝑖𝜔𝑖 } (here, suppose there are a total of𝜔𝑖 maximum geodesic distances)(6) Calculate the average of the 𝜔𝑖 maximum geodesic distances(7) Calculate the intracluster distance for the 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖, 𝑐𝑝𝑖 = (𝐷𝑔𝑖1 + 𝐷𝑔𝑖2 + ⋅ ⋅ ⋅ + 𝐷𝑔𝑖𝜔𝑖 )/𝜔𝑖(8) CalculateΩ = 𝜔1 + 𝜔2 + ⋅ ⋅ ⋅ + 𝜔𝐾(9) Calculate the intracluster compactness of data set X, 𝐶𝑃 = ∑𝐾𝑖=1(𝜔𝑖/Ω)𝑐𝑝𝑖 (𝜔𝑖/Ω is the weight of Clusteri)(10) End

Algorithm 3: Pseudocode of Intracluster compactness.

Next, we determine the cluster centers. The time com-
plexity of calculating the densities 𝜌𝑖 and distance 𝛿𝑖 of
all data points is 𝑂(𝑛2). It is required to sort all pairwise
geodesic distances in ascending order to obtain the variance𝜎 according to (4), which takes 𝑂(𝑛 log 𝑛) time. The time for
the selection of K data points with larger values of 𝜌𝑖 and 𝛿𝑖
as cluster centers can be ignored due to 𝐾 ≪ 𝑛.

Then, we determine the inconsistent edges. It takes2𝑂(𝐾2) to construct the MST Tc for two groups of K cluster
centers and determine the edge with the largest value of 𝜍𝑖𝑗.

Finally, we select the optimal clustering result with inter-
nal validation measure. It will take 𝑂(𝑛2) calculations for the
calculation of Sep, as well as the calculation of CP. Both of
the clustering results need to calculate the value of ICV, and
hence the time complexity is 2𝑂(𝑛2).

Therefore, the whole time complexity of the proposed
algorithm is 7𝑂(𝑛2) + 𝑂(𝑛) + 𝑂(𝑛 log 𝑛) + 2𝑂(𝐾2).
7. Experimental Result

7.1. Experimental Setup. We evaluated cciMST on four syn-
thetic data sets DS1-DS4, six real data sets, and seven images.
The four synthetic data sets are taken from the literature [15,
17, 19]; see Figure 5. The six real data sets are taken from the
UCI data sets [23], including Iris,Wine, Zoo, Liver-disorders,
and Pendigits. The seven images are taken from the Berkeley
image segmentation data set [24]. The descriptions of the
four synthetic data sets and the six real data sets are shown
in Table 1. The experiments were conducted with MATLAB
2016a which has offered convenient functions. CciMST is
compared to the following five clustering algorithms:

(1) k-means [25].
(2) Single linkage [26].
(3) Spectral clustering [27].
(4) Density peaks clustering (DPC) [19].
(5) Spliting-and merg clustering (SAM) [17].

In the above five algorithms, k-means is one of the
partitional clustering algorithms and single linkage is one

of the hierarchical clustering algorithms. Both of them are
traditional clustering algorithms. Spectral clustering is one
of the graph-based clustering algorithms. DPC is a clustering
algorithm by fast search and find of density peaks. SAM is
a split-and-merge hierarchical clustering method based on
MST. For k-means and spectral clustering, we take the best
clustering result out of 1000 trial runs in terms of the external
clustering validity index. The parameter of 𝜎 in spectral
clustering is set as 0.

To evaluate the goodness of clustering results, we exploit
four external clustering validation indices (CVI): accuracy
(AC), precision (PR), recall (RE), and F1-measure (F1) [28].
The larger the values of AC, PR, RE, and F1, the better the
clustering solution. Suppose that a data set contains K classes
denoted by𝐶1, 𝐶2, ⋅ ⋅ ⋅ , 𝐶𝑘. Let pi denote the number of points
that are correctly assigned to class Ci. Let qi denote the points
that are incorrectly assigned to the class Ci. Let ri denote the
points that are incorrectly rejected from the class Ci. AC, PR,
RE, and F1 are defined as follows:

𝐴𝐶 = ∑𝐾𝑖=1 𝑝𝑖|𝐷| (10)

𝑃𝑅 = ∑𝐾𝑖=1 (𝑝𝑖/ (𝑝𝑖 + 𝑞𝑖))𝐾 (11)

𝑅𝐸 = ∑𝐾𝑖=1 (𝑝𝑖/ (𝑝𝑖 + 𝑟𝑖))𝐾 (12)

𝐹1 = 2 × 𝑃𝑅 × 𝑅𝐸𝑃𝑅 + 𝑅𝐸 (13)

7.2. Experimental Results on the Synthetic Data Sets

DS1.This data set contains four parallel clusters with different
densities. The clustering results are illustrated in Figure 6.
Single linkage, SAM, and cciMST can identify the proper
clusters. k-means can discover the sphere-shaped clusters
properly, whereas it produces unsatisfactory partitions for
the non-sphere-shaped clusters. For the spectral clustering
algorithm, the similarity matrix is constructed by a Gaussian
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Table 1: Description of the four synthetic data sets and the six real data sets.

Data set Number of Instances Number of Attributes Number of Classes
DS1 512 2 4
DS2 299 2 3
DS3 1502 2 2
DS4 788 2 7
Iris 15 4 3
Wine 178 13 3
Zoo 101 16 7
Soybean 47 35 4
Liver-disorders 145 5 2
Pendigits 3498 16 10
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Figure 4: Flowchart of cciMST.

kernel function with Euclidean distance. However, its clus-
tering result is similar to that of k-means. DPC determines
the cluster centers through the decision graph constructed
by 𝜌𝑖 and 𝛿𝑖. Wrong cluster centers will lead to the incorrect
clustering result.

DS2. This data set is composed by one Gaussian distributed
cluster and two ring clusters surrounding the first one.
Figure 7 illustrates the clustering results. K-means, spectral
clustering, and DPC cannot provide improper clustering
results. Single linkage, SAM, and cciMST can identify the
three clusters properly.

DS3. This data set contains two clusters shaped like crescent
moons. The clustering results are illustrated in Figure 8. K-
means, DPC, and SAM produce unsatisfactory partitions.
In the clustering process of SAM, the data points in the
subsets produced by k-means are reallocated to maintree.
As shown in Figure 9, a data point in each of clusters
C2 and C3 is redistributed into cluster C1, which leads
to the improper clustering result. Single linkage, spectral
clustering, and cciMST can identify the two clusters prop-
erly.

DS4. This data set contains seven Gaussian distributed
clusters. Figure 10 illustrates the clustering results. Except k-
means and single linkage, the rest of the clustering algorithms
can identify the clusters properly.

7.3. Experimental Results on the Real Data Sets. From Tables
2–7, the optimal result for the corresponding index is denoted
in bold. For the Iris data set, Table 2 indicates that cciMST
has the best performance and that the performance of SAM
is slightly weaker than that of cciMST. In the case of the
Wine data set, the corresponding clustering performances
are shown in Table 3. Except for the PR index, the AC,
RE, and F1 values of cciMST are higher than those of the
other five methods. Moreover, the clustering performances
of spectral clustering, DPC, and SAM are better than that of
k-means and single linkage. For the Zoo data set, it can be
seen from Table 4 that the performances of cciMST, SAM,
and k-means are better than those of the other three methods.
For the Soybean data set, Table 5 indicates that cciMST and
DPC outperform the others. It can be seen from Table 6
that spectral clustering outperforms the other methods on
the Liver-disorder, and the performance of cciMST is slightly
lower than that of spectral clustering. For the Pendigits data
set, Table 7 indicates that cciMST outperforms the other
methods.
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Figure 8: Clustering results on DS3.

Table 2: Clustering performances on Iris.

Index k-means Single linkage Spectral clustering DPC SAM cciMST
AC 0.8572 0.6800 0.8895 0.90667 0.9533 0.9600
PR 0.8572 0.6800 0.8895 0.90667 0.9533 0.9600
RE 0.8688 0.8367 0.8978 0.92708 0.9562 0.9619
F1 0.8630 0.7502 0.8936 0.91676 0.9548 0.9609
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Figure 10: Clustering results on DS4.

Table 3: Clustering performances on Wine.

Index k-means Single linkage Spectral clustering DPC SAM cciMST
AC 0.6525 0.4269 0.7078 0.7079 0.6236 0.7135
PR 0.6321 0.3615 0.7029 0.7030 0.7944 0.7212
RE 0.6826 0.4709 0.7300 0.7258 0.6730 0.7470
F1 0.6559 0.4090 0.7162 0.7142 0.7287 0.7338

Table 4: Clustering performances on Zoo.

Index k-means Single linkage Spectral clustering DPC SAM cciMST
AC 0.7304 0.6733 0.5087 0.5644 0.6634 0.8218
PR 0.6507 0.4508 0.3941 0.5094 0.5130 0.6397
RE 0.6151 0.4738 0.4196 0.3941 0.6481 0.5875
F1 0.6310 0.4620 0.4064 0.4444 0.5727 0.6125
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Table 5: Clustering performances on Soybean.

Index k-means Single linkage Spectral clustering DPC SAM cciMST
AC 0.7525 0.8085 0.7162 0.8936 0.7872 0.8936
PR 0.7599 0.775 0.6681 0.9162 0.8438 0.8750
RE 0.7647 0.9135 0.6407 0.9052 0.8015 0.9297
F1 0.7621 0.8386 0.6536 0.9107 0.8221 0.9015

Table 6: Clustering performances on Liver-disorders.

Index k-means Single linkage Spectral clustering DPC SAM cciMST
AC 0.6964 0.6345 0.7117 0.5310 0.6069 0.6966
PR 0.6105 0.5182 0.6634 0.5869 0.5788 0.6106
RE 0.7514 0.8147 0.7006 0.5994 0.5737 0.7516
F1 0.6737 0.6335 0.6814 0.5931 0.5753 0.6738

Table 7: Clustering performances on Pendigits.

Index k-means Single linkage Spectral clustering DPC SAM cciMST
AC 0.6631 0.1124 0.6800 0.7064 0.6635 0.8385
PR 0.6632 0.1086 0.6798 0.7037 0.7353 0.8390
RE 0.6760 0.6105 0.6855 0.6723 0.6613 0.8607
F1 0.6694 0.1844 0.6826 0.6876 0.6963 0.8497

7.4. Image Segmentation Results. To further evaluate the
clustering performance of cciMST on real data sets, we
perform image segmentation experiments on the Berkeley
Segmentation Data set 300 (BSDS300) [24]. BSDS300 con-
sists of 200 training and 100 testing natural images of size
481∗321. As shown in Figure 11, seven images are extracted
from the BSDS300. The first image has various colors of
peppers, broccoli, and wooden frames. The second image
has a deer, grass, and trees. The third image contains the
sky, houses, and grass. The fourth image is composed by
flowerbeds and concrete. The fifth image contains bears and
sea. The sixth image is composed by sky, mountains, and
trees. The seventh image has two horses and grass with
different colors.

First, the seven images are segmented by simple linear
iterative clustering (SLIC) [29] and the number of superpixels
is 250. Then, the image is transformed from RGB to Lab
space. We compute the normalized 4-bins histogram for
each color channel of Lab space. Next, we concatenate
the three histogram vectors and take them as one data
point in the data set. Hence, an image has 250 data points
described by 12 attributes. The 250 data points of each
image are clustered using the six methods: k-means, sin-
gle linkage, spectral clustering, DPC, SAM, and cciMST,
respectively. The clustering results are shown in Figure 11.
For the first image, DPC, SAM, and cciMST can properly
detect pepper, broccoli, and wooden frames, while single
linkage cannot properly detect wooden frames. For the

second image, the segmentation results of cciMST are the
best. In the case of the third image, cciMST can segment
houses, sky, and grass satisfactorily. The segmentation per-
formance of SAM is slightly lower than that of cciMST,
and SAM is unable to properly separate the houses from
the grass. For the fourth image, the segmentation results
of SAM and cciMST are consistent with the perception
of the human vision. DPC and cciMST properly segment
the bear’s body, but improperly segment the legs of the
bear. For the sixth image, DPC and cciMST can properly
detect the sky, mountains, and trees. K-means, DPC, and
cciMST can segment properly the horses in the seventh
image.

8. Conclusions

Our MST-based clustering method tries to identify the
inconsistent edges through the cluster centers. We exploit
the geodesic distance between the two vertices in the
MST as the distance measure. We also introduce the
concept of global and local density of vertices. In addi-
tion, we propose the novel internal clustering validation
index to select the optimal clustering result. The experi-
mental results on synthetic data sets, real data sets, and
image data illustrate that the proposed clustering method
has the overall better performance. The future goal is
to further improve the computational efficiency of the
method.
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Figure 11: Image segmentation results (The first column displays the original images and the second-seventh columns display the
segmentation results with k-means, single linkage, spectral clustering, DPC, SAM, and cciMST).

Data Availability
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in Matlab and available at https://github.com/Magiccbo/
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