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Abstract—As uncertainty is inherent in a wide spectrum of
graph applications such as social network and brain network,
it is highly demanded to re-visit classical graph problems in
the context of uncertain graphs. Driven by real-applications,
in this paper, we study the problem of k-core computation on
uncertain graphs and propose a new model, namely ( , )-core,
which consists of nodes with probability at least to be k-
core member in the uncertain graph. We show the computation
of ( , )-core is NP-hard, and hence resort to sampling based
methods. Effective and efficient pruning techniques are proposed
to significantly reduce the candidate size. To further reduce
the cost of k-core computation on multiple sampled graphs, we
design a k-core membership check algorithm following a novel
expansion-based search paradigm. Extensive experiments on real-
life graphs demonstrate the effectiveness and efficiency of our
proposed techniques.

I. INTRODUCTION

A k-core of a graph is the maximal induced subgraph
in which every node has at least neighbors, which has
been used in a wide range of applications such as social
contagion [1], influence spread [2] and graph clustering [3].
Existing works on k-core computation assume that each edge
of the graph always exists, i.e., graph is deterministic. But in
some real-life applications, we need to consider the occurrence
probability of the edges, where a graph is modeled as an
uncertain graph. For instance, when an edge is used to capture
the influence between two people in social networks, it can
be naturally represented by a probability value obtained by
some heuristics or machine learning methods (e.g., [4]). As the
significance of the influences between two users may vary from
person to person, it is a crude approximation of reality by treat-
ing all influences (edges) as the same in existing work on k-
core computation. This motivates us to develop a probabilistic
k-core model as well as efficient algorithms to properly handle
probability values (i.e., uncertainty) of the edges. Similarly,
in Protein-Protein Interaction (PPI) networks [5], an edge
represents the interaction between two proteins associated with
an occurrence probability provided by statistical predictions.
The possible world semantics has been widely applied to

model a variety of problems on uncertain graph. Generally
speaking, a possible world in the context of uncertain graph
is an instance graph with a certain probability to occur. In this
paper, we say a model is global if it tackles the problem on
each individual instance graph and then aggregates the results.
If the computation of each node is based on its current degree
distribution (i.e., the local distribution of the instance graphs),
we say a model is local. Note that the degree distribution of
a node may be updated during the computation. We remark

that two types of models capture the uncertainty of graph
from different perspectives, and both are useful in a variety of
applications.
To our best knowledge, there is only one existing work

which addresses the problem of -core computation on un-
certain graphs. In [6], given the value and a probabilistic
threshold , the k-core on uncertain graph, namely
( , )-core, is computed in a similar way with k-core com-
puting algorithm on deterministic graph. Particularly, a node
is removed if, with probability less than , the degree on
its current degree distribution is no less than . Garas et
al. study the problem of k-core computation in the context
of weighted graph [7]. Inspired by their study, we can have
an expected k-core model on uncertain graph by treating the
edge probability as weight, and details will be presented in
Section II-D. Following exactly the same computing paradigm
with [6], a node is removed if its current expected degree is
smaller than . Both ( , )-core and expected k-core are local
models as their computation is based on degree distributions.
In existing k-core applications, k-core members may be

used together or individually. For instance, the k-core members
can be used together to describe the Internet topology [8] or
form a team [6]. While in some applications, it has been
shown that the k-core membership of a node (user) can
capture the engagement [9] and influence [1], [2] of the
individual node, or serve as upper bound of other models
(e.g., clique, k-truss and k-edge connected component [10]).
In these applications, a node belonging to k-core with large
value usually indicates higher influence or engagement. In

the context of uncertain graph, a natural extension of the k-
core membership is to evaluate the likelihood of a node being
k-core member in possible worlds (i.e., instance graphs). This
motivates us to propose a global model, namely ( , )-core,
to capture the k-core membership of the node such that we
can find important nodes (hubs) among the possible k-core
communities. Specifically, given an uncertain graph with
edges, there are possible worlds and each possible world
is a possible instance graph of the uncertain graph. Given
and probability threshold , we aim to find the nodes with
probability at least to be included in the k-core in possible
worlds 1.
We illustrate the inherent difference of local and global

k-core models with two toy examples. Given an uncertain
graph as shown in Fig. 1(a), which is a ring with many

1Each instance graph in the possible world is a deterministic graph, and
we have the deterministic k-core accordingly.
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Fig. 1. Motivating examples for k-core models

nodes. Suppose the existence probability of each edge is
and the occurrence of an edge is independent to others, we
can see that none of the nodes will be removed in ( , )-
core model for and because each individual
node has the probability to have two
neighbors; that is, every node has sufficient support regarding
degree distributions. While in the global model, although the
occurrence probability of each edge is high, there is a very
small chance to come up with a -core in a possible world
because the absence of any edge will trigger the collapse
of the graph in -core computation, and all nodes will be
eventually removed. With similar rationale, in Fig. 1(b) the
( , )-core consists of nodes for and

. While ( , )-core members are for
and . Here we can see the different criteria to

choose core-members for two models. Particularly, ( , )-core
pays more attention to the local degree distribution and direct
support from k-core members. On the other hand, ( , )-core
focuses on the k-core probability of each individual node, i.e.,
find hub nodes which frequently contribute to possible k-core
communities. For instance, node may contribute to k-core
members regarding sets or and hence the
accumulated probability is relatively high. It is worth noting
that, as ( , )-core aims to find important (hub) nodes for the
possible k-core communities, its core members retrieved may
be loosely connected or even isolated to each other compared
with local models. Thus, ( , )-core is more appropriate for
applications where k-core members are used individually.
In Section II-D and II-E, we further discuss the difference

of the models, and show that both models are useful in real-
life applications. In particular, we remark that the proposed
( , )-core model is useful in the k-core membership related
applications, especially the scenarios in which the possible
world semantics is employed in a global way such as influence
spread on independent cascade (IC) model [11] and uncertain
clique computation [12].

Challenges and Contributions. In the paper, we show that
the k-core computation on probabilistic k-core model is NP
hard. A straightforward solution is to sample the possible
worlds and compute the k-core in each possible world (i.e.,
sampled graph). Then the k-core probability of each node
can be obtained according to the number of times that it
is included by the k-cores in the sampled possible worlds
(graphs). Although the computation of k-core in each possible
world is efficient, we usually need a considerable number
of samples for a decent theoretical accuracy guarantee. As

Notation Definition

uncertain graph with nodes V, edges E,
edges probabilistic functions

, deterministic graph, instance graph, sample graph
number of sample graphs in sampling algorithms
deterministic graph of

, k-core probability of on uncertain graph
probability threshold
( , )-core for given and
estimator of based on sample graphs of

( upper bound of ( )
lower bound of the estimator
the k-core status of a node in sample graph

lower and upper bound of number of supports of
in k-core computation in sample graph
( , )-core candidate nodes

TABLE I
THE SUMMARY OF NOTATIONS

such, the overall computational cost may be expensive. To
tame the computational hardness of probabilistic k-core, we
develop effective upper and lower bounds based on pruning
techniques to significantly reduce the computational cost. To
speed up the k-core computation on each sampled graph, we
propose a novel expansion-search based algorithm to check
the k-core membership of some nodes, which need verification
after applying pruning techniques.
Our principal contributions are summarized as follows.

We proposed a new probabilistic k-core model for the uncer-
tain graph, namely ( , )-core. We also show the difference
between our proposed model and two local k-core models
in terms of model analysis and empirical evaluation.
We show the problem studied is NP-hard. Then we propose
efficient sampling algorithms to compute the probabilistic k-
core. Novel pruning techniques are designed to significantly
reduce the candidate size. A novel k-core membership check
algorithm is proposed to further speed up the computation.
We conduct comprehensive experiments to evaluate the
effectiveness and efficiency of our proposed techniques.

II. PRELIMINARIES

Table I summarizes the mathematical notations used
throughout this paper.

A. Problem Definition

We first briefly recall the problem of k-core computation on
deterministic/certain graphs (i.e., every edge has occurrence
probability 1.0). Let be an undirected and
unweighted deterministic graph, where is the set of nodes
and is the set of edges. We use to
denote the degree of a node regarding a subgraph . Below
is the definition of k-core on deterministic graph.
Definition 1 (k-core): Given a graph , a subgraph is the

k-core of , denoted by , if ( ) for every
; and ( ) is maximal.

Note that we say a subgraph of is a k-core subgraph
if it satisfies the degree constraint, but not necessarily to be
maximal in . It is immediate that k-core subgraph is a
subgraph of k-core due to the maximal property of k-core.
the k-core of a deterministic graph can be obtained by
recursively removing the vertices whose degrees are less than
, with a time complexity of . The core number of a



vertex is the highest core where appears, denoted by
( ).
Below we introduce the model of uncertain graphs.
Definition 2 (Uncertain graph): An uncertain graph

( , , ) is a graph where represents a set of nodes,
represents a set of edges and is a function that maps

every edge in this graph to a real number between [0,1],
denoted by .
We say an uncertain graph is an induced subgraph of
if , , and the occurrence

probabilities of the edges are the same. By ,
we denote the deterministic graph of with
and .
In this paper, we use the well-known possible-world seman-

tics to define our probabilistic k-core model. In the context
of uncertain graph, a possible world is an instance of the
uncertain graph, which is a deterministic graph denoted by

( , ) where are edges of appearing in
this possible world. In this paper, we say is an instance
graph of , denoted by . Same as most of the existing
works on uncertain graph (e.g., [13]), we assume the existence
probability of each edge is independent to each other. Thus,
there are possible worlds (instance graphs) in total. The
possibility of observing an instance graph , denoted by ,
is:

(1)

Following the possible world semantics, we define the -
core probability of a node in the uncertain graph according
to the -core computation in all its instance graphs.

uncertain graph G1 (0.05) G2 (0.05)
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Fig. 2. Example of instance graphs regarding the uncertain graph

Definition 3 (k-core probability): Given an uncertain graph
( , , ) and the degree constraint , the -core

probability of a node regarding , denoted by ,
is the probability that appears in the k-core under possible
world semantics; that is

(2)

where is an indicator function with if node is
in k-core of the instance graph , otherwise .
For presentation simplicity, we use to denote

when there is no ambiguity.
Example 1: In Fig. 2, we show the uncertain graph with

edge occurrence probabilities. There are possible instance
graphs of where and are two of them with probability
0.05 and 0.05, respectively. According to the definition, we
have and .
Now we have the definition of probabilistic k-core on

uncertain graph.

Definition 4 (( , )-core): Given an uncertain graph
( , , ), the degree constraint , and the probability thresh-
old , the ( , )-core of , denoted by , consists of all
nodes with -core probability not less than , i.e.,
for every node .
Example 2: Given uncertain graph in Figure 2, we have

with and .

Problem Statement. Given an uncertain graph , degree
constraint and probability threshold , we aim to develop
efficient algorithm to compute the probabilistic k-core, i.e.,
( , )-core, on uncertain graphs.

B. Problem Complexity

Given a deterministic graph, the k-core can be computed
in linear time. However, with the presence of uncertainty, the
computation of probabilistic ( , )-core is NP-hard.
Theorem 1: The problem of probabilistic k-core computa-

tion is NP-hard.
Proof: The reduction is from the k-clique problem [14],

which checks if there is a clique with size in a given
deterministic graph. Given a deterministic graph ( , ),
we construct the uncertain graph =( , , ) as follows.
Two graphs have the same set of nodes and edges, and we
set for every edge in uncertain graph
where is the number of edges. For probabilistic threshold

, we show that

( , )-core of is not empty -clique exists in
.

“ ”: If there is a -clique in the graph , will be
k-core subgraph2 of with probability at least because
has edges. Note that is a k-core if all of its edges
appear in the instance graph (possible world). The probability

mass of these possible worlds is .
“ ”: Below, we show that ( , )-core of is empty if there
is no -clique in . Let denote the occurrence
probability of a k-core subgraph where where

is the number of edges. The key motivation of the proof
is the fact that a k-core subgraph with minimal number of

edges is a ( ) clique (i.e., ). If is not
a ( )-clique, it has at least nodes (i.e., with smaller

occurrence probability where ). Suppose
be a set of k-core subgraphs in , and we

have at most distinct k-core subgraphs. Since there

is no -clique in , we have . For
any node , its -core probability is bounded by with

. Recall that ,

we have

. So
the ( , )-core of is empty.

C. Some Properties

We show that some of the properties of deterministic k-core
can be naturally extended to ( , )-core.

2We say is a k-core subgraph if every nodes in has at least neighbors.
It would be the k-core or a subgraph of k-core.



Nest property. The derterminstic k-core has the nest property,
i.e., -core -core if . The ( , )-core also has the
nest property in the sense that we have ( , )-core ( ,
)-core for and . This is because we have
-core -core in every possible world.

Upperbound. In [12], the uncertain clique, namely clique
defined based on possible worlds semantics is a global model
where the probability of an clique is a subgraph where
is clique in the possible instance graphs with probability at

least . In the deterministic case, we may safely claim that if
a node is not a k-core member, it cannot contribute to any
( )-clique because ( )-clique is a k-core. With similar
rationale, we have that if a node is not a ( , )-core member,
it cannot contribute to an ( )-clique with . For
instance, if we have (i.e., probability of being
-core member) for , we may immediately exclude
from the computation of -clique if .

D. Discussion of k-core Models

We first formally introduce two local k-core models dis-
cussed in Section I.

Probabilistic degree based k-core model is proposed in [6]
for k-core computation on uncertain graphs. The key is the
concept of -degree for a node and an uncertain graph
, denoted by -deg , which is the largest possible

such that has at least probability to have at least
neighbors, i.e., where
is a random variable for the degree distribution of on
uncertain graph . The computation of the k-core, namely
( , )-core, is immediate by replacing with and the
condition with -deg .

Expected degree based k-core model is a variant of weighted
k-core model [7]. We consider the expected degree of node in
the expected k-core model. The only difference with ( , )-core
algorithm is that we remove a node if .

Discussion. According to the definitions of three models,
the essential difference between our ( , )-core model and
two local models is how to use possible world semantics.
Particularly, our proposed model computes the deterministic
k-core on each instance graph (possible world), and find the
nodes which are likely to be included as k-core members in
instance graphs, i.e., aggregation on the computation of each
individual possible world. While two local models compute
k-core based on the degree distributions. Not surprisingly, our
empirical study on real-life data shows that the results of our
probabilistic model are different with that of two local models.
An alternative global k-core model is to find subgraphs

such that the probability of being k-core in the possible
worlds is no less than , i.e., ( is k-core) . However,
the inherent limit of this model is that there are many possible
sets of (i.e., candidate k-core set) and all of them have
extremely small appearance probabilities. For instance, we
randomly sample possible instance graphs from DBLP
data (See data description in Section VI), and none of the
corresponding -cores is the same to others. Thus it is
difficult to find some “representative” probabilistic k-core sets
in this model. We may alleviate this issue by ignoring the

maximal property of k-core, and consider k-core subgraphs
(i.e., subgraphs where every node has neighbors) in each
possible world. Nevertheless, the large number of possible k-
core subgraphs in each possible world make the computation
prohibitively expensive 3.

E. Application of ( , )-core

Intuitively, compared with two local models, ( , )-core
model is more suitable to the scenarios where the possible
world semantics is applied in a global way. As shown in
Section II-C, ( , )-core can be used for the pruning of nodes
in clique computation. Below is a concrete example.
Example 3: Let be an uncertain complete graph with

nodes and edges with occurrence probability for each
edge, it is immediate that the existence probability of a -

clique of is . Regarding ( , )-core with k=n-1, we

have for any node which is exactly
same as the -clique probability. For ( , )-core model, a node
will be returned if and , which is much

larger than . Thus, for any value with
, ( , )-core can prune all nodes from the computation

of -clique while ( , )-core cannot prune any node.
Similarly, ( , )-core model shows a good performance on

the influence evaluation of the nodes following the IC model,
which is a well-known influence model using possible world
semantics in a global way. Specifically, the influence of a node
on IC model is the average number of reachable nodes of

in all instance graphs. The following example demonstrates
that the ( , )-core model is more likely to find influential
nodes.
Example 4: As shown in the Introduction, to find three

most influential nodes in Fig. 1(b), and will
be returned by ( , )-core and ( , )-core models, respectively.
Intuitively, nodes and are better positioned (closer to the
graph center and well connected to nearby nodes) in terms
of influence compared with nodes and . It turns out that,
under IC model, the influence of , , , is , ,
and , respectively.
In the experiments, we justify this observation on Twitter

data in the second case study. We also show that ( , )-core
model can better evaluate the engagement in the first case
study.

III. BASIC SAMPLING ALGORITHM

In this Section, we introduce the basic sampling technique
to compute ( , )-core with theoretical guarantee.
It is computational prohibitive to calculate k-core probabili-

ties of the nodes directly based on Equation 2. As the number
of possible words is , where m is the number of edges.
Therefore, we resort to the Monte Carlo sampling method,
which has been widely used to solve problems on uncertain
data. Algorithm 1 outlines the basic sampling algorithm. Each
instance graph is sampled with probability . In

3According to our initial study, it is difficult to develop efficient k-core
subgraph enumeration algorithm, because given a node is chosen, we
cannot trivially identify the candidate nodes for the following k-core subgraph
computation. Note that for the problem of clique, we can immediately narrow
down the search space to the neighbors of .



practice, we generate each sampled graph by independently
choosing every edge according to its occurrence probability.
The k-core probability of each node is obtained based on the
count of k-cores of the sampled possible worlds (sampled
graphs). Let denote the estimator of the k-core probability
of (i.e., ), which is estimated by

(3)

at Line 8 where is the number of sampled graphs in which
is in k-core and is the total number of samples. It is easy

to see that the expectation of is . Based on the well-
known Hoeffding’s inequality [15] and union bound [16], we
have that is -approximation of (i.e.,
) for every node with confidence , when the
number of samples is set to where is the number
of nodes in , approximate error and confidence fall in

. The time complexity of the algorithm is since
the -core can be computed in time for each sampled
graph.

Algorithm 1: Basic Sampling( , , , , )

Input : an uncertain graph, degree constraint
: probabilistic threshold, : approximate error
: confidence

Output: ( )
for all nodes ;1

number of sample graphs required;2

sample instance graphs;3

for each instance graph in do4

k-core of ;5

for each node do6

;7

:= for each ;8

return nodes with9

IV. PRUNING TECHNIQUES

To achieve a decent estimation theoretical guarantee, we
usually need a considerable large number of samples. In the
paper, we use to denote the upper bound of the k-core
probability of a node (i.e., ). For the estimator , we
use and to denote its lower and upper bounds.
Clearly, we can safely exclude a node from ( , )-core if

. In the sampling based algorithm, a node can
also be excluded if . Similarly, we can confirm a
node belong to ( , )-core if . In this Section,
we design three pruning techniques to derive tight lower and
upper bounds to reduce the computational cost of Algorithm 1.

A. Deterministic K-core based Pruning

Let denote the deterministic graph which treats every edge
of the uncertain graph as a deterministic edge. Clearly, for
any instance graph , we have . In the following,
we show how to prune some nodes based on the k-core of .
Theorem 2: Given an uncertain graph and its determin-

istic graph , if a node is not included in k-core of , it
can be excluded from further computation.

Proof: Given two deterministic graphs and , with
, we show that , i.e., the k-core of

is a subset of k-core of . As , for each node
, we have where

denote the neighbors of in graph . Let and be the k-
core of and , it is immediate that nodes in is a -core
subgraph in . Due to the maximal property of k-core, we
have . This implies that if a node is removed in the
k-core computation of , it must also be removed from .
For any instance graph , we have , therefore,
we can safely exclude the nodes not in from the
in the k-core computation. Thus, for a non k-core node of

, we have and it does not contribute to the k-
core computation in any instance graph of . Consequently,
the theorem holds.
In the following pruning techniques, we assume all nodes

not in k-core of are already removed from for presen-
tation simplicity.

B. Probabilistic Upper Bound based Pruning

We investigate how to compute the k-core probability upper
bound of a node based on its neighborhood information in
. Note that we rely on probabilistic theory and do not need

to sample the uncertain graph (i.e., materialize some instance
graphs). Thus, the probabilistic upper bound derived is
for the k-core probability of each node .
For each instance graph , we can immediately remove

a node from k-core of if it has less than neighbors. This
implies that

(4)

because here we already assume that neighbors of are always
in k-core in any instance graph. Thus, we can exclude
from ( , )-core if has at least neighbors with probability
less than ; that is, . Thanks to
the independent assumption among edges, we can quickly
compute following the classic dynamic
programming methods for uncertain data [6].
Based on the above degree distribution computation on

neighbor edges, we can come up with an upper bound of k-
core probability, , for every node . The following
theorem suggests that we can further refine based on
the upper bounds of its neighbors.
Theorem 3: Let , , , be the neighbor nodes of the

node , we have .
Proof: We use to denote the event that the edge

occurs and is a k-core member. The occurrence probability
of is the probability mass of the instance graphs in
where edge occurs and is a member of k-core. We
have since two events may
depend on each other.
Let be an indicator random variable for the event ,

where if event occurs, and otherwise.
Let . To be included in k-core of
an instance graph, a node needs at least supports from k-
core nodes. According to the definition of k-core probability
in Equation 2, we have . Then we have

according
to Markov Inequality [17]. So the theorem holds.



Algorithm 2: Calculate Probabilistic Upper bound ( )

Input : uncertain graph
Output : for every node
for each node do1

Pr( ) ; ;2

;3

while there exists a node with do4

;5

Update according to Theorem 3;6

if is decreased by at least at Line 6 then7

for every neighbor of ;8

Computing Probabilistic upper bounds. Based on Inequal-
ity 4 and Theorem 3, Algorithm 2 describes the calculation
of k-core probability upper bounds for nodes in . Lines 1-3
initialize the probabilistic upper bounds by Inequality 4 using
dynamic program techniques [6]. The time cost is
where is the average degree. We use a flag to indicate if

needs to be updated. At each iteration (Lines 4-8), we
update following Theorem 3 if there is a tighter upper
bound, and the change will not be propagated to neighbors if
the decrease is not significant4. The time cost in each iteration
is .

a
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1.0

0.25

Initial : p+(d) = 0.5

c

b

d

updated : p+(d) = 0.375

f

e

e
1.0 1.0 

1.0 1.0

Initial : p+(c) = 0.25

Initial : p+(b) = 1.0

Fig. 3. Example of probabilistic upper bound pruning

Below is an example of probabilistic upper bound.
Example 5: Given the uncertain graph in Figure 3 with
, we have , , and at the
initial stage (Line 2 of Algorithm 2). By applying Theorem 3,
we have . Thus,
is updated from to .

C. Sampling based Upper/Lower Bounds for Pruning

In addition to the probabilistic bound, we also investigate
how to obtain lower and upper bounds for k-core probability
estimator when we partially compute the sampled graphs.
As shown in Section III, we can compute k-core in each
individual sampled graph, and then come up with the k-
core probability of a node based on its estimator .
In Section V-B, we propose a new computing paradigm to
compute such that we can reduce the computing cost. The
key is to take advantage of the upper/lower bounds obtained
from partially computed data, instead of simply sampling all
edges and then computing the complete k-core in each sampled
graph.
In a sample graph , we use to denote three possible

status of a node :
(1) : confirmed in k-core of .
(2) : excluded from k-core of .
(3) : needing further computation.

4In our implementation, we set to .
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Fig. 4. Example of sampling based upper/lower bounds

Similarly, each edge in also has three status:
(1) chosen: chosen in .
(2) unchosen: not chosen in .
(3) untouched: not sampled yet.
Given a node , we can derive the lower/upper bounds

for based on the status of its neighbor nodes and edges in
a set of sampled graphs. In sample graph , we use and

to denote the upper and lower bounds of k-core support
from its neighbors. As shown in Figure 4(b), if there is a
neighbor with status (i.e., is k-core) and the edge
is chosen (i.e., solid line) in , is a k-core support of
regardless of the following computation because will never
change status in . Thus, both and increases one
for this. There are three scenarios in which may support
where will increase one: ( ) the edge is chosen but
is ; ( ) the edge is not sampled yet (i.e., dashed line), and

is ; and ( ) the edge is not sampled yet and is
. In the remaining five scenarios, cannot provide support

to , and hence does not contribute to and . Clearly,
we can set to if . Similarly, is set
to if . Note that, if , we do not need
to sample any of its untouched neighbor edges. Fig 4(c)-(e)
show situations where changes to , and with k
= 2.
According to the status of a node in the sample graphs
, , , , we can obtain the upper and lower bounds

of by counting the number of and . Let and
denote the number of and , respectively, we have

(5)

(6)

The correctness of the above two Equations is immediate based
on definition of in Equation 3. Then we can safely (1)
exclude the node from ( , )-core if ; and (2)
add the node to ( , )-core if .

V. ADVANCED SAMPLING ALGORITHMS

A. Motivation

As discussed in Section II-D, the key challenge of ( , )-
core computation is that, even we already find a candidate
set , we cannot simply exclude other nodes from following
computation because they may contribute to the verification
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Fig. 5. Motivation of advanced sampling algorithm

of these candidates. To verify a candidate, the existing k-core
algorithm on sample graph (i.e., deterministic graph) follows a
peeling-like computing paradigm. In practice, users often use
a considerably large to get a cohesive subgraph, resulting
in a k-core with much smaller size than the original graph.
This implies that the majority of the edges and nodes will be
accessed in each sample graph because all nodes with lower
core values must be processed before the nodes in k-core are
identified.
This motivates us to develop a new sampling algorithm

which will carefully explore nodes and edges to avoid unnec-
essary computation. Figure 5 illustrates the key idea of our
advanced sampling algorithm which consists of three steps:
(1) Pruning. By applying the deterministic k-core prun-
ing (Section IV-A), probabilistic upper bound pruning (Sec-
tion IV-B) and sampling-based pruning technique (Sec-
tion IV-C), we can identify a set of result candidate
based on their k-core probability upper-bound such that

for any node ; In Figure 5, we assume
.

(2) Initial Computing. Conduct the basic sampling technique
(Algorithm 1 in Section III) on such that most of the nodes

in are either confirmed (i.e., ) or pruned (i.e.,
)5. In Figure 5, we assume the dark gray nodes (e.g.,

, , , and ) are confirmed, and node is pruned from result.
(3) Verification. Verify the remaining nodes, denoted by ,
to complete the ( , )-core computation. Although the nodes
outside of may be involved in the verification phase, our
algorithm aims to access as few as possible. Toward this end,
we develop a new k-core computing paradigm for sample
graphs, namely k-core membership check (Section V-C). In
Fig. 5, we assume has two the light gray node and
nodes are visited in the verification.

B. Advanced Sampling technique

Algorithm 3 outlines the framework of our Advanced Sam-
pling algorithm. In the pruning phase (Lines 1-2), we exclude
the non-promising nodes from the result candidate and keep
remaining nodes in . In the initial computing phase (Lines 3-
6), the basic sampling algorithm is conducted on , which
is a deduced uncertain graph of according to nodes in .
Note that, we need to count the nodes in for the
computation of . Based on each computed sample graph
, we construct a partially computed sample graph where

and are set to the same values for node , and
we do not need to re-sample the edges in . For the remaining
nodes , we simply set and .
Then, for each we can compute and
based on the sampling based lower/upper bound techniques

5Note that we need consider neighbor nodes for

(Section IV-C). We use a set to keep the nodes in which
need verification. In verification phase (Lines 8-19), we apply
proposed k-core membership check algorithm (Details will be
introduced in Section V-C) on sample graphs with focus
on verifying whether a node in is a k-core member in
each sample graph based on and . The algorithm
terminates when is empty as all nodes with are
included in the result set .

Correctness. According to the correctness of the pruning rules
and k-core computation in each sample graph 6, the advanced
sampling algorithm is the same as the basic algorithm in terms
of k-core probability estimation. Every node with
will be included in the result. Thus, Algorithm 3 can also
achieve -approximate with confidence for every node
in .

Time Complexity. The dominant costs of Algorithm 3 are
initialization (Line 5) and k-core membership check (Line 8).
The cost of initialization is by where is the number of
sample graphs. As the time cost of each k-core membership
check computation is as shown in Section V-C, the
worst case time complexity of algorithm is the same as
Algorithm 1. Nevertheless, our empirical study shows that the
advanced sampling algorithm is much more competitive due
to advanced techniques proposed.

Algorithm 3: Advanced Sampling( , , , , )

Input : an uncertain graph, degree constraint
: probabilistic threshold, : approximate error
: confidence

Output : ( )
deterministic graph of ;1

deterministic k-core pruning on (Theorem 2);2

the induced uncertain subgraph of based on nodes in ;3

apply probabilistic upper bound pruning on4

(Algorithm 2) ;
Apply Basic Sampling (Algorithm 1) on ;5

nodes need to be verified; nodes confirmed;6

for each do7

K-core membership check( , );8

for each node do9

if then10

(Equation 5);11

else12

(Equation 6) ;13

if then14

Move node from to ;15

else if then16

exclude from ;17

if then18

return19

C. K-core Membership Check

The key of the verification phase is the k-core membership
check of the nodes in on sample graphs . We illustrate
two possible search paradigms in Fig 6. The existing k-
core computation on sample graph (i.e., deterministic graph)
follows a peeling-based search order. Let denote all the

6Correctness of target k-core computation will be presented in Section V-C
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nodes of , which are included in the circle with solid line.
We assume ones with higher core number are closer to the
center. Given a degree constraint , denote the nodes in
k-core, covered by the circle with dash line. As shown in
Fig. 6(a), we need to access all nodes outside of to identify
if node is a k-core member due to the nature of the peeling-
based computing paradigm. As an alternative, we may identify
the membership of a in an expansion by recursively checking
if there are enough k-core supports. With a good chance, we
may stop by only exploring a small set of nodes as shown in
Fig. 6(b).
Intuitively, the goodness of two search paradigms depends

on the size of . Expansion-based search is expected to have
a good performance if the size of is small. On contrary,
if the size of is large, the peeling-based search is a better
choice because it can identify all nodes in within one round
regardless the size of . As shown in Fig. 6(b), there is an
expansion region for each vertex . A large number of
vertices in will lead to many overlaps among these regions
(i.e., visit vertices/edges multiple times).

Check k-core membership in sample graph
Algorithm 4 illustrates the pseudo-code of our k-core mem-

bership check method on a partially computed sample graph
and a set of nodes to be verified. A priority queue,

denoted by , is employed to access nodes in sequence, which
is initialized by the nodes in at Line 1. The key of a node
is its status, status and have higher priority than .
We use to denote if all edges of node has been
sampled. Line 38 terminates the algorithm whenever the status
of nodes in are clear ( or ). Note that we can claim
all nodes with status is k-core member if since all
nodes have been processed (Lines 39-40).
For a node popped, Lines 5-31 process its neighbor nodes

according to their status of the node and the edge. A flow
chart is also depicted in Fig. 7 for better understanding of the
algorithm. In the flow chart, an edge is represented by a solid
line with a tick if it is recently chosen by sampling at Line 6.
Note that we do not need to sample an existing edge again if
it is already chosen, which is represented by a solid line alone.
An edge with dash line and a cross means that this edge is
rejected in sampling at Line 6. Because the untouched edges
always contribute to the upper bounds of two corresponding
nodes, whose upper bounds will be both decreased by one
whenever the edge is rejected and hence removed from
(e.g., Line 11, Line 16, and Line 21). We do not need to
discuss the case of edge rejection in the following part.
For each neighbor node of , we carefully update their

Algorithm 4: K-core membership check( , )

Input : : a partially computed sample graph of
: a set of nodes need membership check

Output : check if each node in is in k-core of
Push the nodes in ; for ;1

while do2

; ;3

for each neighbor of do4

if is untouched and then5

Choose with ;6

switch do7

case do8

if then9

if is unchosen then10

Decrease(v) ;11

else12

Increase(v) ;13

case do14

if then15

Decrease(v);16

case do17

if is unchosen then18

; remove from ;19

if then20

Decrease(v);21

else if is recently chosen then22

if then23

;24

else if then25

;26

remove If is or ;27

if then28

; Push to ;Goto Line 2;29

else if then30

; Push to ;Goto Line 2;31

if then32

for each neighbor of do33

Push to if and34

;

else35

Remove from ;36

if none of the nodes in is then37

return38

for all nodes with do39

;40

lower and upper bounds of k-core support (i.e., , ,
and ) as shown in Fig. 7. Then their status may be

updated accordingly. As mentioned in Section IV-C, the k-
core membership of node is confirmed (i.e., ) if

. A node is excluded from k-core (i.e.,
) if . Otherwise, the membership of is unclear,

with .

Clearly, we only need to maintain the lower/upper bounds
for nodes whose k-core memberships are unclear, i.e., with
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status . As shown in Fig. 7, we update and when
(left side of the edges). The same rule goes to

when (right side of the edges). Generally, given
a node , its bounds will be updated in two ways: (1) active:
when is popped from (i.e., in the algorithm); and (2)
passive: is updated by neighbors (i.e., in the algorithm).

Active update ( , Lines 18-31). If the edge is
chosen in this iteration (i.e., solid line with a tick), Line 24
(resp. Line 26) increases (resp. decreases) (resp. )
by one if (resp. ). Lines 28-31 may set the
status of to or following the active update, and then
put to the because it will propagate this information
to its neighbors. The remaining unvisited edges will not be
processed until is popped with status or . If
remains after processing all neighbors, Line 34 ensures the
unsampled neighbors (i.e., nodes has not been pushed) with
status are in for further processing. Note that may
be passively updated later due to the change of other nodes.

Passive update ( is or , Lines 9-16). The
lower/upper bounds of a node may be updated passively
when its neighbor is activated (i.e., popped from ).
Algorithm 5 and Algorithm 6 illustrate the details of the update
(i.e., increase of and decrease of ). In addition to
update lower/upper bounds, the node will be pushed to
for status information propagation purpose if its status is set
to or . Below are details.

(1)Pass (Lines 9-13). The increase of is invoked by
when edge is chosen.

(2)Pass (Lines 15-16). will be decreased by one if
is .

Note that we ensure a sampled edge will be removed
from further computation if the status of or is clear at
Lines 36 and 27.

Correctness. The status and lower/upper bounds of the nodes
in have been initialized at the beginning of membership
check. In the following computation, the bounds and status
may be updated in an active or passive way. As shown in the
flow chart in Fig. 7, we ensure that the status and upper/lower

Algorithm 5: Increase( )

Input : : the node in sample graph
;1

if then2

;3

if is not in then4

Push to ;5

Algorithm 6: Decrease( )

Input : : the node in sample graph
;1

if then2

;3

if is not in then4

Push to ;5

bounds of each node are correctly maintained upon each
possible update 7. For any two nodes with edge , if
is untouched, both and count . Once is rejected,
both will decrease by one and is removed. Suppose the is
sampled by , if one of the status of and is clear ( or ),
their lower or upper bounds will be updated accordingly, and
will be removed to avoid duplicate computation. If the status

of remains , will be left for possible passive updates.
Note that if all nodes are sampled and queue is empty, it is
immediate that all the nodes with status are k-core members
in . The computation is driven by the k-core membership
check of nodes in , and all following invoked updates are
correctly handled. Thus, we can eventually correctly confirm
memberships of the nodes in .

Time Complexity. As there are three types of key for priority
queue , the maintenance cost is per update. Each node
can be popped from at most twice during the computation,
one with status and another with status or . Thus, each
edge will be processed at most twice, and the time complexity
of the k-core membership check algorithm is .

VI. EXPERIMENT

In this section, we evaluate the effectiveness and efficiency
of proposed techniques on comprehensive experiments.

A. Experimental Setting

Algorithms. We evaluate the efficiency of the following two
techniques for ( , )-core computation in the experiments.

BSampling. The basic sampling technique proposed in
Algorithm 1 (Section III).
ASampling. Our advanced sampling technique proposed in
Algorithm 3 ( Section V-B).

We also implement the ( , )-core [6] and the expected -
core (Section II-D) computing algorithms for the comparison
of k-core models.

Datasets. We deploy four graph datasets to evaluate effective-
ness and efficiency of all techniques. Table II shows important
statistics of these graphs.

7We do not need to maintain lower/upper bounds if the status of a node is
or .



Dataset #Nodes #Edges

Flickr 105,938 2,316,948 43.7 546 226
DBLP 1,566,919 6,461,300 8.3 611 115

Email Eron 36,692 183,831 10.0 1383 44
Yelp 552,339 1,781,908 6.5 3812 106

TABLE II
STATISTICS OF DATASETS

Flickr (https://www.flickr.com) is an online community. Its
service is widely used by photo researchers and bloggers.
As shown in [18], the edge probability is set to the Jaccard
coefficient to the interest groups shared by the two users. We
set Flickr as our default dataset.
DBLP (http://dblp.uni-trier.de) is a computer science bibliog-
raphy website. Nodes represent authors and edges represent
co-authorship. As shown in [18], the edge probability is
derived based on an exponential function based on the number
of collaborations.
Email Eron (http://snap.stanford.edu) covers all the email
communication within a dataset of around half million emails.
This dataset is obtained by integrating data from the Stanford
Network analysis Project.
Yelp (https://www.yelp.com.au/dataset/challenge) publishes
crowd-sourced reviews about local businesses and the online
reservation service Yelp Reservations. We use extracted data
from [19]. In this extracted dataset, nodes represent users and
edges represent friendship. For the Email Eron and yelp data,
we set the edge probability by assigning a random value from
the interval [0,1].

Settings. In experiments, the degree constraint varies from
to with default value . The probabilistic threshold

ranges from to , with default value . By default,
we set and . All programs were implemented
in standard C++ and compiled with Visual Studio 2017. All
experiments were performed on a machine with Intel Core i5-
6500 3.20 GHz and 16GB DDR3-RAM in Windows 10 Pro.

B. Probabilistic K-core model comparison

We evaluate the dissimilarity of three probabilistic k-core
models based on the Jaccard distance of the corresponding
k-core nodes. Given two sets of nodes and , the Jaccard
distance between two nodes is defined as . Higher
values indicate larger difference between two sets.
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Result comparison with ( , )-core and expected k-core
models. We compare the differences between ( , )-core and
( , )-core in Fig. 8 by reporting the dissimilarity of the k-
core nodes obtained from two models. Two graphs, Flickr and
DBLP, are deployed for comparison. We increase the degree
constraint and probabilistic threshold , where and

in ( , )-core and ( , )-core models, respectively. It is
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reported that, for the same and probabilistic threshold value,
the nodes included by two models do not have large overlaps.
To compare the k-core result of ( , )-core with expected

k-core model, we apply the possible world semantics to the
expected k-core model in a similar way with ( , )-core model
in Equation 2. Let denote the core number of in
an instance graph , then we have the expected core number
of , denoted by is

(7)

Then for a given , the new expected k-core model includes
nodes with . Fig. 9 shows that the result
comparison of two expected k-core models are very different
on four datasets, especially when grows.
We also evaluate core members of three models under differ-

ent setting of and probability threshold values. Particularly,
let (resp. ) denote a set of ( , )-core (resp. ( , )-core)
results on DBLP and Flickr datasets by varying from
to and ( ) from 0.05 to 0.95. We calculate the pairwise
Jaccard distances, denoted by , for every pair of sets from

and , and report the (min), , , ,
and 100% (max) ranked Jaccard distances. Similarly, we also
compare expected -core model with ( , )-core model by
varying from to . Fig. 10 shows that different models
may end up with very overlapping result sets8. as well as
very small overlapping results for different parameter settings.
Nevertheless, the overall difference is significant between
( , )-core and other two local models.
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8For instance, the result of ( , )-core is the same as ( , )-core on DBLP
data when , , , and .
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C. Efficiency

In this subsection, we evaluate time efficiency of two
algorithms (BSample and ASample) by reporting the CPU time
for ( , )-core computation under different settings.
Fig. 11 reports running time of two algorithms on Flickr

and DBLP with varying from to . It is shown that the
performance of BSample has been significantly outperformed
by that of ASample due to the lack of efficient pruning
techniques and k-core computing algorithms in sample graphs.
Under the same theoretical guarantee with BSample, ASample
takes much less running time than that of BSample. This
demonstrates the effectiveness and efficiency of our proposed
pruning and k-core membership check techniques. ASample
achieves better performance when grows because the size
of the candidate set decreases upon the growth of , and also
leads to a few nodes to be verified for ASample Algorithm.
Similar trend is also observed in Fig. 12, where Eron and Yelp
are evaluated with probabilistic threshold ranging from
to . Note that a higher probabilistic threshold will lead to
a smaller number of k-core candidates in set .
We evaluate the techniques proposed in this paper by

incrementally including them. By BSample-P, we denote the
BSample algorithm with deterministic k-core pruning tech-
niques which remove the nodes not in k-core of the deter-
ministic graph . By BSample-PU, we denote the BSample-
P algorithm with upper bound techniques. Note that our k-
core membership check algorithm (Algorithm 4) is not used
in BSample-P and BSample-PU. Fig. 13 reports running time
of four algorithms (BSample, BSample-P, BSample-PU, and
ASample) on Flickr graph regarding different and values.
It is shown that all techniques make their contributions to im-
prove the performance of ASample Algorithm. Particularly, the
contribution of k-core membership check technique becomes
more significant for large and values due to the advantage
of smaller number of nodes to be verified.
Fig. 14 evaluates the pruning power of our proposed prun-

ing techniques by reporting the size of ( , )-core candidate
set size. It is shown that both deterministic k-core pruning
techniques and our upper bounds based pruning techniques
can significantly reduce the candidate size.
Fig. 15 reports the running time of ASample against the

number of samples on Flickr with and . We also
report the running time of ( , )-core ( ) and expected
-core algorithms. As expected, the performance of ASample
degrades linearly with the number of samples and two local
models have better efficiency, especially the expected -core
model. It is worth noting that the result of ASample tend to be
quite stable after sample size is larger than . For instance,
the Jaccard distance of the results between sample sizes
and is only .
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D. Case Studies

To compare probabilistic -core models in real-life appli-
cations, we use two case studies to evaluate the influence and
engagement of the users with three k-core models.

Engagement. We use public available social network data
Brightkite (http://snap.stanford.edu/data/loc-brightkite.html) to
evaluate the engagement of the users. It consists of
nodes, edges, and checkins during April

and October . We assume a user turns to inac-
tive (i.e., disengaged) after his/her last checkin. Particularly,
we generate probability of each edge based on the Jaccard
similarity between the neighborhood of two edge nodes. We
first retrieve users for expected k-core model with = ,
then find ( , )-core ( = and = ) and ( , )-core ( =
and = ) with similar sizes and , respectively. And
the common users of three models are removed for better
comparison. Fig. 16 reports the percentage of users remaining
engaged after August in every two months. It is shown
that ( , )-core model can better capture user engagement
compared to other two models.

Influence spread. We use a public available directed Twitter
graph (http://snap.stanford.edu/data/egonets-Twitter.html) with

nodes and edges) to valuate the influ-
ence spread for three uncertain k-core models. Following the
weighted cascade model [11], we set probability of an edge
( , ) as where is the in-degree a node. We use
the popular independent cascade (IC) model to evaluate the
influence spread of an user. The influence of a node is the
average number of reachable nodes in all possible worlds,
which is a global model in this sense. To apply k-core models
on Twitter graph, we only consider the out degree of the
nodes, and boost the probabilities of edges by taking square
root for a wider range of possible k values during the k-
core computation. We choose the users within expected k-core
with varying from to , and tune the and probability
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thresholds values to achieve similar size. Fig. 17 reports the
average influence of the core members for three models with
respect to the size. It is shown that ( , )-core model can
better capture the nodes with high influence, specially when
the desired number of core members is small.

E. Related Work

In this section, we review previous work which is closely
relevant to our problem.
Uncertain Graphs. A large number of classical graph prob-
lems have been studied in the context of uncertain graphs.
For instance, Jin et al. [13] investigate the distance-constraint
reachability problem in uncertain graph. Potamias et al. [18]
introduce a framework which can address k nearest neighbors
(kNN) queries on uncertain graphs. The problem of reverse
kNN on uncertain graph is investigated in [20]. Papapetrou et
al.[21] consider discovering and mining frequent patterns in
uncertain graph. Recently, truss decomposition of probabilistic
graphs are studied by [22].
K-Core Computation. Seidman [23] first introduced k-core
computation which is a fundamental graph problem. An effi-
cient linear-time in-memory algorithm is proposed by Batagelj
and Zaversnilk [24] for core decomposition. For large graphs,
Wen et al. [25] and Cheng et al. [26] propose I/O efficient al-
gorithm for core number computation. Distributed algorithm is
proposed by [27]. K-core problem is also studied in weighted
graphs [7] and multi-dimensional graphs [28]. As to our best
knowledge, [6] is the only existing work on uncertain k-core
whose model is inherently different from ours.

VII. CONCLUSION

In this paper, we study the problem of probabilistic k-core
computing on uncertain graphs. We propose a new k-core
model, namely ( , )-core, based on the well-known possi-
ble world semantics. Particularly, we aim to find important
nodes which contribute to the k-core communities with high
probabilities on the uncertain graph. By semantic analysis and
empirical study, we show that the new model provides a new
perspective to model the k-core on uncertain graphs. We show
the problem is NP-hard, and then efficient pruning techniques
are proposed to significantly reduce the candidate size. We also
develop an interesting k-core membership check algorithm to
further speed up the computation. Extensive experiments on
real-life graphs show that the our proposed techniques can
significantly improve the efficiency of the baseline solutions.
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