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Beyond Average: Contemporary statistical techniques for analysing student 

evaluations of teaching 

Student Evaluations of Teaching (SETs) have been used to evaluate Higher Education 

teaching performance for decades. Reporting SET results often involves the extraction 

of an average for some set of course metrics, which facilitates the comparison of 

teaching teams across different organisational units. Here, we draw attention to 

ongoing problems with the naive application of this approach. Firstly, a specific 

average value may arise from data that demonstrates very different patterns of 

student satisfaction. Furthermore, the use of distance measures (e.g. an average) for 

ordinal data can be contested, and finally, issues of multiplicity increasingly plague 

approaches using hypothesis testing. It is time to advance the methodology of the 

field. We demonstrate how multinomial distributions and hierarchical Bayesian 

methods can be used to contextualise the SET scores of a course to different 

organisational units and student cohorts, and then show how this approach can be 

used to extract sensible information about how a distribution is changing in time. We 

present a report designed to facilitate sense-making for the more complex statistical 

methodology that we propose, and demonstrate how it can be used to ensure that 

this more complex methodology is still appropriately used in decision making. 

 

Keywords: student evaluations of teaching (SET); distributions; contextualisation; 
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Measuring student satisfaction with teaching 

Student Evaluations of Teaching (SETs) have been used as an evaluation mechanism for decades. A 

wide variety of different formats have been used, from verified scales supported by educational 

theory, to ad hoc questions that are deemed important by an organisation and chosen with no 

attempt to demonstrate validity (Marsh, 2007). The way in which SETs are used in an organisation 

also varies substantially. They can be used: as diagnostic formative feedback to improve teaching 

and learning; for personnel decisions based around teaching effectiveness; by students to select 

courses; for quality assurance purposes and public accountability; and to feed the ongoing research 

in the area (Johnson, 2000; Marsh, 2007). This range of possibilities means that any given institution 

might use its particular SET regimen in a number of different ways, some of which can have a 

significant impact upon the professional lives of academic staff.  



While SETs were traditionally administered in a face-to-face format at the end of a teaching 

period, they are increasingly moving online into both formal and informal modes (Alderman and 

Melanie, 2012; Otto, Sanford Jr, and Ross 2008). This exacerbates a number of existing concerns 

about response rates (Zumrawi, Bates, and Schroeder, 2014), various forms of bias (Marsh, 2007; 

Spooren, Brockx, and Mortelmans, 2013), demographic effects (Macfadyen et al. 2015), and 

potentially negative correlations with desired learning outcomes (Braga, Paccagnella, Pellizzari, 

2014). Overall, the field is contested, and practices are often further confused by the way in which 

this vast and often contradictory literature may be distilled to form, modify, or confirm an 

academic's existing biases about the validity or invalidity of SETs in their own institutional setting. A 

particularly convincing examination of the many myths surrounding SETs is provided by Aleamoni 

(1999), and references therein. 

The above concerns remain largely academic as long as SETs are merely used to provide 

diagnostic feedback. However, in an era increasingly focussed upon performative measures of 

teaching quality it is essential that decision makers and evaluators make use of best practice 

methods to analyse the data that SETs generate. However, we frequently see outmoded or 

inappropriate strategies brought to this task. For example, a very common usage of SET data 

involves the extraction of an average score obtained for a particular class, for either an item or a 

collection of items (Abrami, 2001; Marsh, 2007). This often leads to an implicit comparison of 

courses across different organisational units. Such an approach is easy to apply, and so can be used 

to rapidly generate hypotheses about relative levels of student satisfaction. However, it also hides a 

vast array of contextual data that may be affecting these average scores (see e.g. Rienties and 

Toetenel (2016) for a large scale exploration of the way in which learning design can impact upon 

SET scores).  

Even more problematic, it appears that few studies have been conducted to establish 

whether academic staff and university decision makers interpret average SET scores in an 

appropriate manner. A notable exception is provided by Boysen et al. (2014), who demonstrated 

that both academic staff and administrators use general heuristic methods to evaluate SET scores, 

rather than appropriate statistical principles (Kynn, 2008; O’Hagan et al., 2006; Tversky and 

Kahneman, 1974). Notably, Boysen et al. (2014) demonstrated that differences in averages small 

enough to be within a given margin of error significantly impact upon the assignment of rewards to 

teaching staff. This is no particular surprise. Even in fields dominated by the mathematical sciences 

there are many results showing that people do not interpret concepts like error bars and confidence 

intervals correctly (Krzywinski and Altman, 2013). There is no reason to expect that those 

interpreting SET results will be any better at performing what is known to be a difficult task.  

In what follows, we will discuss the problems associated with common current practice in 

more detail using a typical institutional dataset. This will leave us in a position where we can propose 

more appropriate ways in which SET data can be analysed using contemporary statistical methods. 

We will illustrate the type of output that the new model generates, and consider how the resulting 

more complex reports might be simplified to facilitate rapid sense-making by staff who are less 

numerically literate. In summary, rather than providing yet another study that draws attention to 

issues of validity or bias in SETs, this paper will focus instead upon demonstrating that it is possible, 

and desirable, to use contemporary statistical methods when analysing them.



Figure 1. Six distributions obtained from Likert responses with a range of 1-5. Despite markedly 

different structures, each has an average of 3.2. 

Pitfalls of current practice 

Beyond the ongoing controversy surrounding the use of student satisfaction as a measure of 

teaching quality per se, there are a wide variety of mathematical reasons to be wary of the way SETs 

are often used in practice. Here we will focus much of our initial criticism upon concerns that arise 

from the use of average SET values in evaluation methodologies, before moving on to a discussion 

about wider problems concerning ordinal data, multiplicity, and the use of hypothesis testing. 

Many distributions, one average 

Many different distributions can lead to the same numerical value for an average SET score. Figure 

1(a)-(f) demonstrates six ways in which different patterns of five-point Likert item responses can 

produce the same average score, in this case 3.2. Each distribution implies markedly different 

patterns of satisfaction in a class. The different patterns might be described as: 

(a) Classically normal: This shape would be expected if SET responses arose from a 

homogeneous class of students, who cluster around a neutral response (e.g. the number 3 in 

Figure 1).  

(b) Skewed: This response pattern is clearly skewed, indicating a shift away from the normal.  

(c) Polarised: In this distribution we see a marked pattern where a significant portion of 

students are highly satisfied and another is highly dissatisfied.  

(d) Flat: Each SET score is as likely as any other. 

(e) Majority response: This pattern is common in smaller classes where the majority of students 

often select similar responses. In the illustrated case the majority vote is neutral, but this 

response pattern often occurs for classes with high scores. 

(f) Non-polar cluster: As a cohort students are neither highly satisfied nor extremely dissatisfied 

with this course.  

Note the dramatic difference in structure. Any academic who has been exposed to student 

evaluation data will quickly start to construct stories about what such distributions imply. For 

example, Figure 1(c) shows an extreme pattern that is more common than might be expected in 

university teaching; while a considerable portion of a class is highly satisfied, a second portion is 

extremely unhappy. How might such a wide polarisation arise? Often such SET signatures occur 

when the class contains cohorts from two distinct backgrounds. While one subset of students might 

be excelling, another may be lacking prerequisite knowledge and hence struggling. However, many 

other scenarios can lead to similar response signatures. Perhaps two different tutors have been 

engaged to teach into a large class, and one is obtaining far better satisfaction scores, a situation 

that would make it quite inappropriate to aggregate scores at the level of the whole cohort. 



Figure 1 is only a selection of possibilities; there are a multitude of student response 

patterns which could still lead to the same numerical single-figure summary as an average. Are we to 

interpret them all the same way? This one-dimensional perspective would lead to the same action 

(e.g. intervention, if one were needed) for each class, despite the fact that each scenario is likely to 

benefit from different support. A metric reported as an average fails to draw our attention to this 

range of markedly different student satisfaction responses. Important information at the survey 

level regarding situational context has been lost, a problem which is further exacerbated when 

individual survey averages are aggregated to school, faculty or institution level (Rog, 2012). Using 

such an average value as a performance metric often results in a well justified outcry by academic 

staff. 

Change in time 

Changes in an average SET score over time have the potential to add another layer of obfuscation. 

What does an increase of 0.3 in the average for a SET item imply? Pedagogically this shift could arise 

for numerous reasons, but even from a measurement perspective, there are many ways in which a 

change in the distribution from one year to the next might result in the same shift in an average 

value. How are we to know what form of change in student satisfaction occurred? This becomes 

particularly important when we wish to disentangle the effects of factors such as transitions in 

teaching teams or changes in assessment from year to year.  

A similar problem arises when we consider the way in which an average for a SET item might 

not be changing in time. As we saw in the above section, the same average score might hide a large 

amount of change in the underlying distribution of student responses. For example, a move in 

cohort satisfaction from the distribution depicted in Figure 1(d) to 1(e) could perhaps be regarded as 

an improvement (albeit at the cost of losing a few highly satisfied students), but this would not be 

discovered in an institution that was focussed upon reporting average values.  

Decision makers are often trying to allocate limited resources to improve the student 

learning experience. Some courses might be underperforming when compared to the organisational 

context, but showing consistent signs of improvement. Others might be performing above the 

average, but starting to slip. Is this something to be alarmed about? Which course should be 

prioritised? It is essential that we are able to capture changes in student satisfaction over time.  

Devaluation of free text 

Many current practices in the institutional reporting of SETs also lead to a situation where the free 

text component of SETs is given less value. A choice is often made to consider numeric data that can 

be easily analysed (using e.g. averages, standard deviations, p-values) rather than what ought to be 

analysed (e.g. sentiment, thematic clusters in response formats, correlation of satisfaction to a 

chosen curriculum pathway).  

This focus upon numerical responses and the associated devaluation of more complex data is 

unfortunate. For example, free text responses could often reveal a wide variety of essential 

contextual information that help us to understand average scores. Thus, what comment was left by 

the lone student who gave the course a 1? Perhaps they are deaf and complaining about a lack of 

organisational support, or maybe they felt that they were continually harassed by the lecturer. Each 

scenario would require a markedly different response from a manager. A well implemented 

evaluation framework allows for numeric scores to be linked to individual free text responses, which 



provides academic staff with additional context to understand the reasons behind individual 

responses. But this is by no means always the case.  

Contextualisation to organisational unit 

It is common for SETs to be compared across inappropriately large organisational units in a criterion 

referencing scenario (Abrami, 2001). Performance metrics are often defined at a university level, but 

this fails to capture the manner in which different organisational units might be achieving markedly 

different distributions of SET scores (Aleamoni, 1999). This means that an average value that is 

deemed ‘underperforming’ in one organisational context might be considered very much on par in 

another one. For example, suppose that a university examined all of its SET data for a 5 year period, 

determining that the average score across the entire organisation for this period was 3.9. It would 

then be very easy for that organisation to declare some minimal set of thresholds below which a 

course (or academic staff member) would be determined as ‘underperforming’ and another one 

above which they would be declared ‘performing’. How would such a scenario be likely to play out?  

 

Figure 2. A demonstration that two average scores occurring for courses in two different faculties 

could imply very different teaching performance, even to the extent that the highlighted course in 

Faculty B is likely to be performing better than the one in Faculty A despite a lower average value. 

(Simulation sizes 500, 300). 

 

Let us refine this scenario with reference to the data plotted in Figure 2. Here we see two 

artificially generated distributions of average scores for two imaginary faculties. If both of these 

distributions were obtained from the same university then it would be highly problematic to use a 

university-wide average value as a measure of performance. Indeed, the bulk of the units in Faculty 

B are likely to be deemed as ‘underperforming’ in a comparison across the whole university. But are 

they? Considering two specific courses which obtained the averages depicted by the vertical (red) 

lines shows that the line in Faculty B occurs at a lower value than that for Faculty A, but it could be 

considered to be a top performer in the context of its faculty. What is the valid unit of comparison? 



This issue is similar to the defendant's fallacy (Low Choy and Wilson, 2009) which occurs when poor 

results are effectively ‘diluted’, and hence obscured, by pooling them with better results. The 

opposite may also occur: the prosecutor’s fallacy, where poor results may be emphasized when 

corralled within a small subset of students, and hence overstated.  

Supporters of norm referencing suggest that contextual factors such as organisational unit 

should be incorporated into the analysis of SET data in order to generate valid comparisons, 

preferably across many different organisational levels, and/or teaching contexts (see Abrami (2001) 

for a clear discussion of the merits and pitfall of both norm and criterion referenced reporting for 

SETs). The debate continues, but many criteria referencing systems are defined with respect to a 

norm (i.e. in the definition of an absolute standard of teaching performance using SETs it is common 

to analyse existing data). Therefore, we consider it essential that techniques be developed that can 

be used to compare student satisfaction within different institutional contexts. 

Likert items vs Likert scales 

There is a quantitative distinction to be drawn between individual Likert items (i.e. specific questions 

in a basic survey) and a systematically developed Likert scale. Constructing a scale requires an 

extensive and careful approach, which includes the selection, analysis, and ongoing refinement, of a 

set of questions that are deemed representative of an underlying set of latent psychological 

characteristics (see e.g. DeVillis (2012) for an intuitive introduction, and Worthington and Whittaker 

(2006) for a set of recommendations as to best practice). There is no guarantee that the latent 

variables correspond precisely to what is first hypothesised, and it can be very difficult to extract the 

underlying meaning of a set of items.  

Educational testing is not always carried out by those trained in fundamental skills of 

constructing scales: calibration, validation and testing for reliability. Universities often fail to test the 

validity of a scale against their cohort, even if they are adopting a well understood construct that is 

generally considered valid (Spooren, Mortelmans, and Denekens, 2007). Some SET scales have been 

verified (Abrami, D’Appolonia, and Rosenfield, 2007; d’Appolonia and Abrami, 1997; Marsh, 2007) 

but few replication studies exist. One example is provided by Rindermann and Schofield (2001), who 

demonstrated the validity and reliability of their instrument across six traditional and technical 

German universities. Other notable exceptions arise when scales are applied across cultural 

contexts, for example, see Mittal, Gera, and Batra (2015) who perform a replication study of the 

scale reported in Shevlin et al. (2000) in India, and Marsh et al. (1997) which studies a Chinese 

version of the Students’ Evaluations of Educational Quality Instrument (SEEQ) (Marsh, 1982). Not 

enough of these replication studies have been attempted, which means that there are few reasons 

to believe that a scale constructed within the context of one university will be valid in another. 

Furthermore, as Spooren, Brockx, and Mortelmans (2013) have pointed out, even verified scales 

should be re-verified as the student base and teaching practices of an institution evolve.  

Even more problematic, it is common for universities to take a series of questions, or even a 

single item, that decision makers feel will provide insights about teaching quality, and then use them 

as if they were a verified scale (Spooren, Mortelmans, and Denekens, 2007). There is no guarantee at 

all that results gathered in this manner will translate to another institutional context, or even hold 

validity in the context where they are being used.  



Ordinal data 

Even beyond these issues, a fundamental one of analysis presents: the use of average values can be 

highly problematic for Likert items. As Jamieson (2004, p1218) succinctly states: “the average of fair 

and good is not fair-and-a-half”. Likert items are typically recorded on an ordinal scale, which means 

that the difference between 1 and 2 may be substantially larger than the difference between a 3 and 

4, despite their numerical equivalence. Even solving this problem, what of the student who selected 

‘neutral’? The midpoint of a Likert item can mean more than one thing, such as neutral, a mix of 

positive and negative, unsure/don’t know, don’t want to answer/commit. At this point we see that 

using an average value in a high stakes performance framework can become highly problematic. It 

can encourage a disconnect between numbers and their underlying meaning, leading to a significant 

misuse if naive interpretations are adopted. For example, an assumption that ratios are preserved 

can be problematic and must be tested. If distance is not preserved then statistical measurements 

like average, standard deviation and ANOVA become questionable. Does the student who ‘strongly 

agrees’ that a unit has helped them to learn have twice the agreement of a student who merely 

‘agrees’? While interval scales are normally assumed when analysing SETs, this is an assumption that 

needs to be tested on the data. Depending on the wording of the item, and upon the various ways in 

which different student cohorts might interpret such questions, we can anticipate that Likert items 

will sometimes not be well represented as interval. This is a point at which we would need to make 

use of more sophisticated methodologies.  

Furthermore, while statistical texts routinely declare that the median and the mode should 

be used for ordinal data (Blaikie, 2003), simple distance based metrics are often reported for SETs 

without this important clarifying information. We might ask why there is such a preponderance of 

work that seeks to simplify its analysis inappropriately; the multinomial distribution is the model of 

choice for ordinal data in statistics (Gelman et al., 2013). This further suggests that a change in 

methodology is appropriate for the SET field.  

Multiplicity and the replication crisis 

Even a brief examination of the literature that attempts to correlate SETs to teaching performance 

reveals that the field contains many contradictory findings (Aleamoni, 1999; Spooren, Brockx, and 

Mortelmans, 2013). There is, no doubt, a large amount of institutional variability in how SETs are 

used, which will cause many genuinely contradictory findings. However, a second explanation is 

likely to be possible for at least some of these results; hypothesis testing is a fraught enterprise. A 

significant p-value (e.g. p<0.05) is by no means a guarantee of a real effect and often prone to mis-

interpretation (Greenland et al., 2016). This makes it entirely possible that many results declaring as 

‘significant’ some correlation of SET responses with underlying bias, low response rates, grade 

related answer patterns etc. are likely to be false positives (Gelman and Loken, 2014; Nuzzo, 2014).  

This problem is often referred to as multiplicity, and has led to what is now termed the 

replication crisis in a number of fields. Its origins lie in the many different ways in which hypotheses 

can be selected - a phenomenon often referred to as ‘p-hacking’ or ‘researcher degrees of freedom’. 

However, as is compellingly argued by Gelman and Loken (2014) such outcomes need not imply that 

researchers are actively performing multiple illegitimate tests. They are collecting data about 

complex social scenarios; in each case it is possible to collect and then analyse this data using well 

thought out and theoretically plausible methods, and yet for most real datasets many other choices 

could also have been made. This can have the result of a `significant’ value that is due more to 

chance rather than a real underlying phenomenon. Similarly, many studies may not provide 



significant p-values, but still be informative when analysed in different ways (Western and Jackman, 

1994). The debate on these problems with p-values has simmered for decades in the field of 

education (Fidler and Cumming, 2005; Myer, 1964; Thompson, 1996), but is yet to affect core 

practice. The time is now ripe for action; a recent public statement by The American Statistical 

Association points to the misuse of  p-values in many disciplines (Wasserstein and Lazar, 2016); 

clearly it is inadvisable to ignore such advice. We contend that problems with replicability are likely 

to be rife in the SET literature, and could be the source of the many contradictory results that have 

arisen in the field. New methods are required to move forwards. 

A new approach using contemporary statistical techniques 

A number of people have proposed methodologies for avoiding some of the pitfalls raised in this 

section. For example, Neumann (2000) has suggested that an approach using rating interpretation 

guides (RIGs) could take into account different teaching contexts, also emphasising that a range of 

SET values rather than an average score was most effective. Similarly, Abrami (2001) proposed a set 

of detailed criteria for the interpretation of statistical analyses of SET scores (in the context of 

hypothesis testing).  

While we consider such approaches worthy, the problem is not so much with the 

interpretation of the analysis, as the with analysis itself. Contemporary statistical methods for 

analysing SET data would avoid many of the pitfalls that we have discussed above, and in what 

follows we will demonstrate one way in which this might be achieved. Many other approaches are 

also possible.  

In what follows we will explore some of the issues that we have raised above with reference 

to the evaluation framework adopted at QUT. A more appropriate statistical methodology for 

analysing this data based upon a hierarchical Bayesian model will then be introduced. Our method is 

a simple first step, and is general enough that it can be refined and extended to account for other 

contextual factors. However, the resulting model is complex, and building a framework that will 

assist both decision makers and academic staff with sense-making is essential (Kirschner, 

Buckingham-Shum, and Carr, 2012).  

Case study: QUTs Reframe methodology 

Here we consider one example of an evolving SET methodology for one university, Queensland 

University of Technology (QUT). In 2011 the university received strong feedback from academic staff 

that the online SETs in use from 2007-2011 took into account neither the complex and changing 

nature of teaching, nor the diversity of contextual environments in which they were deployed. This 

implied that QUTs SET regime lacked reliability and validity for a modern context that increasingly 

used online, blended, and other flexible modes of delivery. Furthermore, the purpose of data 

collection was questioned; was the focus on accountability or on the improvement of learning and 

teaching? This prompted the launch of Reframe, a five-year project, aiming to give academic staff 

agency and so bring about widespread organisational change through an evaluation framework. 

 The Reframe project consisted of a purposeful literature review, a national scan of 

university practice, and a design-led process to engage with internal and external stakeholders 

through committee meetings, working groups, campus roadshows, interviews and focus groups with 

students and academic staff (Alderman and Melanie, 2012; Alderman, Towers, and Bannah, 2012).  



Survey methodology 

As a result, in 2013 Reframe delivered three new online surveys. It is important to note that they 

were predominantly developed through this process of stakeholder engagement rather than 

following the path of a validated construct. The surveys deployed were refined through pilot testing 

of several instruments with 100 academic staff and 6,600 students, along with a series of focus 

groups.  

The methodology involves delivering a Pulse Survey early in the semester, straddling the 

date at which students could elect to alter enrolment choices. This provides early actionable 

feedback to instructors, a process which is followed by an Insight Survey, deployed late in the 

semester from the last teaching week across the complete examination period. An Exit Survey is also 

sent weekly (between weeks 2-12) to every student who has withdrawn from a course. Finally, 

academic staff engaged in teaching into a course are also invited to provide feedback on students’ 

perceived engagement in that course. By the end of 2016, 1.7 million lines of data had been 

recorded across the university using this methodology. 

As a formative tool used to improve teaching practice, the Reframe approach was 

considered useful by many staff. For example, the early Pulse data was often used by both managers 

and teaching teams to reveal ways in which course offerings could be improved during the teaching 

period. However, in 2016, new institutional directions led to the creation of a performance metric 

based upon the average value of the Q3 item in the Insight survey (“Overall, I am satisfied with this 

unit”). The study discussed in this paper arose from an attempt to explore possibilities of using 

modern statistical methods to achieve more nuanced measures of teaching performance within this 

changing institutional context.  

In what follows we will make use of the Reframe dataset to demonstrate that a number of 

the concerns we have discussed in Section 2 do indeed arise in what could be considered a standard 

institutional dataset. 

Data 

In Figure 3 we see the distribution of average overall satisfaction for all major faculties (not 

identified). We see that at this organisation, the pattern of satisfaction is skewed towards higher 

ratings. While the distributions are largely similar, units in some Faculties do appear to be achieving 

higher and/or more consistent satisfaction ratings on average, with e.g. Faculty C exhibiting a tight 

spread in values, and Faculty B achieving a higher proportion of perfect scores than all other 

faculties (with the possible exception of Faculty D). This difference in patterns gave us reason to be 

cautious about criterion referencing - a performance metric that was not contextualised to the 

organisational unit in which it occurred would be prone to misinterpretation, e.g. inappropriate 

classification of academic staff with lower averages as underperforming, even though they might be 

achieving far better satisfaction scores than peers in their faculty. Drilling down to the level of a 

school adds even more complexity, with the distribution of satisfaction scores obtained by the four 

schools in Faculty D illustrated in Figure 4.  



 

Figure 3. The distribution of average scores obtained for the 6 different Faculties at QUT (not 

labelled) in 2016. 

 

 

Figure 4. The distribution of average scores obtained for each of the four different Schools in Faculty 

D in 2016. 

 

It is also very easy to demonstrate that these averages are hiding a large amount of extra 

detail. For example, in Figures 5-7 we have depicted the distribution of scores obtained for 6 

different courses in different faculties. While each figure depicts courses with the same average, 

together they exhibit all of the signatures discussed in Section 2. It is worth noting that as the 

average score approaches the extremes of 1 or 5 there are less ways (albeit still numerous) in which 

ratings can be combined and still obtain the same score.  

 

 

Figure 5. Courses which markedly different distribution, yet share the same average score for overall 

satisfaction of 3.1 for Faculty E in 2015 Semester 1. (Sample sizes: 53, 21, 29, 20, 18, 11.) 

 



 

Figure 6.  Courses which have markedly different distribution, yet the same average satisfaction of 

3.6 for Faculty C in 2015 Semester 1. (Sample sizes: 46, 63, 13, 17, 7, 24.) 

 

 

Figure 7. Course which have a markedly different distribution, yet the same average score for overall 

satisfaction of 4.2 for Faculty B in 2015 Semester 1. (Sample sizes: 132, 34, 53, 5, 38, 6.) 

Even more structure emerges if we start to consider the way in which courses change in 

time: from Pulse to Insight survey in one teaching period (Figure 8), to the change in Insight scores 

from one year to another (Figure 9). This is important information for decision makers to consider 

when allocating resources to courses, or in prioritising interventions. It may also be highly indicative 

of an improving/worsening performance over time, and so could factor into performative 

frameworks if it could be reported upon in a sensible way. Rather than following Abrami (2001) and 

aggregating information over a number of years, we would prefer to be able to capture information 

about how ratings for a specific teaching team or course changes over time.  

 



Figure 8. The change in distribution of Q3 values, from Pulse to Insight, in satisfaction, for four 

courses. Sample sizes are 267 51, 32, 115 for Pulse and 365, 61, 46, 112 for Insight. 

 

Figure 9. The change in distribution of Q3 values that can occur from year to year for a series of 

courses. Sample sizes are 365, 306, 52, 87 for 2015 and 369, 365, 61, 112 for 2016. 

Moving forwards with Hierarchical Bayesian techniques 

We decided to analyse the Reframe dataset using contemporary statistical techniques. Multinomial 

models are the common modern method for dealing with ordinal data, and Bayesian approaches are 

well known for circumventing problems of multiplicity, so we decided to pursue a model with these 

characteristics. Similarly, as SET data arises from a hierarchical university structure (i.e. where 

students enrol in courses, which are offered by Schools, which belong to a Faculty), we decided that 

a hierarchical model would provide more nuanced estimates about expected SET responses, and 

measures of deviation from them, for each level of the organisation.  

Rather than focussing upon an average score for a given course, the model we present here 

describes the distribution of values of the score, within a given organisational unit, across the range 

of its Likert scale responses {1,2,3,4,5} in this institutional context, but other ranges could be 

similarly modelled). This distribution can be compared with the distribution of scores obtained in 

some containing institutional context (e.g. a school or faculty). Thus, our model is designed to be 

norm referenced.  

Our model is also designed to allow a comparison of the way in which a distribution of SET 

scores is changing in time (e.g. from year to year). This enables an understanding of how student 

evaluations are changing within a particular context. In this section we will present the basic model 

that was implemented at QUT for the reframe dataset, although it is important to be aware that 

many other models are possible, and depending upon the questions to be answered a different 

hierarchical structure may be necessary in a new institutional context. In what follows we will 

gradually introduce the ideas that lie behind the model we adopted. We note that while the 

discussion of the full model will be quite technical, it can be skipped while still gaining a feel for the 

approach adopted here.  



Bayesian models: the core idea 

The basic idea of Bayesian modelling (Gelman et al., 2013) revolves around a very simple intuition; 

gaining further knowledge about a system enables us to update our beliefs about events that are 

likely to occur in it. We explicitly acknowledge our starting beliefs as a hypothesis H and some 

evidence E that we have already gathered. Prior information can be used to evaluate the plausibility 

of a range of hypotheses, via a prior, p(H). Then we use a standard statistical sampling model to 

describe how likely the evidence is to occur given our hypothesis, the likelihood, P(E|H). Given this 

information, we can write a conditional probability, termed the posterior probability, for the 

plausibility of the hypothesis given the evidence observed 

𝑃(𝐻|𝐸) =
𝑃(𝐸|𝐻)𝑃(𝐻)

𝑃(𝐸)
 (1) 

where P(E) integrates the likelihood over all plausible hypotheses 𝑃(𝐸) = ∫ 𝑃(𝐸|𝐻)𝑃(𝐻)𝑑𝐻, and 

essentially serves as a normalising term to ensure the total probability, of all possibilities, amounts 

to one. Equation 1 is known as Bayes Theorum. While it is remarkably simple, its interpretation has 

attracted a large amount of both controversy and confusion. Much of this revolves around the 

definition and use of the priors. We will not delve into these murky waters here (although see Low 

Choy (2012) and Myer (1964) for good introductions). Instead, we will consider why a Bayesian 

approach might be preferred when attempting to understand large SET datasets.  

Why a Bayesian model? 

Bayes’ Theorem allows us to reformulate our thinking. It supersedes asking how likely our data is, 

when a particular hypothesis holds true, P(E|H), which is the standard approach followed by a 

regime based upon hypothesis testing. Instead Bayes theorem allows us to consider the probability 

that a hypothesis is correct (i.e. its plausibility) given the data and hence evidence we obtained, 

P(E|H). This allows those using Bayesian statistics to express their confidence for a particular 

parameter being in any particular range rather than setting an arbitrary cut off for significance and 

then testing only one available hypothesis. A frequentist approach based upon hypothesis testing 

would seek to answer questions such as: “Is the SET score achieved by this course significantly 

different from the average value achieved by the school?” and “What range of average SET scores 

makes our data most likely?” In contrast, a Bayesian approach allows us to ask questions like: “Based 

on the data we have observed, what is the plausible amount of difference between the profile of this 

course compared to that of the school?” This contrast means that a Bayesian approach can start to 

correct for the problem of multiplicity that is likely to lie behind the many false positives that we 

believe beset the SET literature. 

A two level hierarchical Bayesian model 

A hierarchical, or multilevel, model takes into account the structure of a dataset, to describe its 

pattern of variation as well as features like the average. Hierarchical Bayesian models make use of 

Bayes Theorem, noting that hypotheses H can be specified in terms of model parameters, which are 

supported by evidence E in the data: 

𝑃(𝑝𝑎𝑟𝑎𝑚𝑠|𝑑𝑎𝑡𝑎) ∝ 𝑃(𝑑𝑎𝑡𝑎|𝑝𝑎𝑟𝑎𝑚𝑠)𝑃(𝑝𝑎𝑟𝑎𝑚𝑠) (2) 



We can incorporate relationships among variables in the data using this methodology. If the 

sampling distribution of the data, given the parameters, also depends on explanatory variables X 

then (2) expands to: 

𝑃(𝑝𝑎𝑟𝑎𝑚𝑠|𝑑𝑎𝑡𝑎, 𝑋) ∝ 𝑃(𝑑𝑎𝑡𝑎|𝑝𝑎𝑟𝑎𝑚𝑠, 𝑋)𝑃(𝑋|𝑝𝑎𝑟𝑎𝑚𝑠)𝑃(𝑝𝑎𝑟𝑎𝑚𝑠) (3) 

The basic Bayesian model can also be expanded to allow parameters to depend on `hyper-

parameters', which are parameters of the prior distribution: 

𝑃(𝑎𝑙𝑙 𝑝𝑎𝑟𝑎𝑚𝑠|𝑑𝑎𝑡𝑎) ∝ 𝑃(𝑑𝑎𝑡𝑎|𝑝𝑎𝑟𝑎𝑚𝑠)𝑃(𝑝𝑎𝑟𝑎𝑚𝑠|ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑠)𝑃(ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑠)(4) 

Let us consider a simplified scenario for the sake of illustration. We will seek a model that explains 

student responses about overall satisfaction. In this model we will assume that satisfaction depends 

upon the course in which the student is enrolled, and the school in which that course is offered. 

Thus, the data comprise the responses from each student i in course c in school s which we denote 

as 𝑅𝑖,𝑐,𝑠. Then we can describe the average satisfaction level that arises from considering all students 

in the course using the parameter 𝜈𝑐,𝑠. Similarly, the average satisfaction level obtained by 

considering students in all courses in the school is captured by the parameter 𝜔𝑠. Applying hierarchy 

to these parameters (Equation 4) we can construct a hierarchical model using the following 

decomposition: 

𝑃(𝜈, 𝜔|𝑅) ∝ 𝑃(𝑅|𝜈, 𝜔)𝑃(𝜈, 𝜔) (5) 

∝ 𝑃(𝑅|𝜈)𝑃(𝜈|𝜔)𝑃( 𝜔) (6) 

Normal model 

In the above basic model, patterns in the data, and our uncertainty in each of the relevant 

parameters can be straightforwardly described by normal distributions: 

student responses: 𝑅𝑖,𝑐,𝑠~𝑁(𝜈𝑐,𝑠, 𝜌𝑐
2)

students in course: 𝜈𝑐,𝑠~𝑁(𝜔𝑠, 𝜒𝑠
2)

courses in school: 𝜔𝑠~𝑁(𝜉, 𝜁2)

 

The terms 𝜔𝑠, 𝜉 are called hyper-parameters and have hyperprior distributions represented by their 

standard deviations 𝜒𝑠, 𝜁(the standard deviation, 𝜌𝑐 of the parameter describing student responses 

is given by the data). This model describes the probability of a particular level of satisfaction arising 

from a student in a given course, centred around the average satisfaction in the course, and then 

school. This approach makes use of information that has already been learned (which in this case is 

the average satisfaction for that course) to determine the probability of a given distribution of 

student responses. In summary, this hierarchical approach breaks the probability model up into 

three levels, and considers evidence gained from one level in the construction of the model for the 

next. Inferences can then be made using the parameters 𝜈, and hyper-parameters 𝜔𝑠, 𝜉 to estimate 

the pattern of responses for courses, schools, and with an extension of the model, the university as a 

whole.  

Previous Bayesian models of SETs 

This form of analysis is by now prevalent in other fields, but is surprisingly rare in the SET field. 

However, some people have drawn attention to the need to modernise our approach to the 



evaluation of SETs. In responding to Abrami (2001), Theall (2001) notes that McKeachie has 

advocated the use of Bayesian approaches over hypothesis testing, but few implementations of this 

suggestion exist. One example is provided by Wetzstein, Broder, and Wilson (1984) who 

demonstrate an example methodology for determining the difference in feedback obtained for a 

graduate student and a professor (i.e. a single level analysis which misses many of the structural 

features common to SET data). Huang and Wang (2014) constructed a set of two-level 

(student/class) hierarchical Bayesian Item Response Theory models that considered whether student 

scores of ‘overall teaching effectiveness’ were predicted by the gender of the instructor as a level 2 

covariate. They found no support for this hypothesis, but were able to demonstrate that the extra 

structure provided by the hierarchical model was necessary in drawing this conclusion. However, it is 

worth noting that both of these models are much less complex than the one presented in this 

section. On a slightly different note, Bayesian models have also been constructed where SET scores 

are used as predictive variables. For example, Galbraith, Merrill, and Kline (2012) utilise a Bayesian 

data reduction algorithm to classify student learning using variables that include SET scores.  

We see that the technique is not entirely new, but that it has yet to enter into any form of 

systemic organisational usage for the analysis of SETs, perhaps through a lack of time, familiarity, or 

expertise among those who have access to university wide datasets. In what follows we will present 

the general technique that we have used to construct a full Hierarchical Bayesian model over the 1.7 

million responses covered by the Reframe dataset. It is hoped that the techniques introduced here 

will encourage the wider usage of a standard contemporary statistical method which enables a far 

more nuanced exploration of SET data in a range of institutional contexts.  

Multinomial model: The full Reframe model 

In constructing the full Reframe model, we will reconsider the Normal distribution used in the basic 

model, and cease to require an average SET value as a proxy for the performance of a course. 

Instead, we will now make use of a multinomial distribution to consider the proportions of different 

scores for a specific school; under the Reframe regimen which gives 5 possible responses on 

satisfaction: {1,2,3,4,5} encoding levels from very dissatisfied to very satisfied. We will also expand 

the number of variables that we use to explain satisfaction. We will then seek to establish whether 

the performance of a course is significantly better or worse than the average for its school, 

considering the whole range of possible responses.  

We are also interested in changes in response over time. We will aim to model how the 

satisfaction scores obtained by a course change: from Pulse to Insight in one semester, as well as 

from year to year. These comparisons will again be contextualised with reference to the school.  

Hierarchy of structure 

Keeping these two requirements in mind, we need to understand the way in which the proportion of 

satisfaction responses obtained by a course compares with the distribution across all courses in its 

host school. We represent the proportion of scores in a course (which is {1,2,3,4,5} in this case) using 

𝜋 = (𝜋1, 𝜋2, … , 𝜋5), and our uncertainty about that proportion using 𝑃(𝜋). 

The data for our model comes from student responses to the satisfaction item, denoted by 

𝑋𝑟,𝑚,𝑦,𝑡,𝑓,𝑠, where the subscripts indicate how this response relates to other parameters specific to 

the Reframe model: 

r=1,…,R, possible responses for satisfaction (R=5) 



m=1,…,M, the semesters in a year (M=2 in this model) 

y=1,…,Y, the year (this study takes 4 years, i.e. Y=4) 

t=1,…,T, the survey types (in this case T=2: Pulse and Insight) 

f=1,…F, the faculties (at QUT this was 6) 

s=1,…Sf, the number of schools in a specific faculty 

  

 (8) 

Modelling probability of Likert-scale responses 

We model our data 𝑋𝑟,𝑚,𝑦,𝑡,𝑓,𝑠 as being sampled from a Multinomial distribution (which allows for 

any number of possible categorical outcomes) 

𝑋𝑟,𝑚,𝑦,𝑡,𝑓,𝑠~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜋𝑟,𝑚,𝑦,𝑡,𝑓,𝑠, 𝑛𝑟,𝑚,𝑦,𝑡,𝑓,𝑠) (9) 

where 𝑛𝑟,𝑚,𝑦,𝑡,𝑓,𝑠 is the number of completed surveys in a subgroup of students (e.g. the school) as 

defined by subscripts in Equation 8, and 𝜋𝑚,𝑦,𝑡,𝑓,𝑠 = (𝜋𝑟,𝑚,𝑦,𝑡,𝑓,𝑠; 𝑟 = 1 … 𝑅) is  their distribution 

across the R possible Likert-scale responses. This requires 𝜋 to be positive and normalised (i.e. all 

probabilities must sum to 1). We apply the following transformation: 

𝜋𝑟,𝑚,𝑦,𝑡,𝑓,𝑠 =
𝜃𝑟,𝑚,𝑦,𝑡,𝑓,𝑠

∑ 𝜃𝑟,𝑚,𝑦,𝑡,𝑓,𝑠
𝑅
𝑟=1

 where 𝜃𝑟,𝑚,𝑦,𝑡,𝑓,𝑠 = 𝑒𝜓𝑟,𝑚,𝑦,𝑡,𝑓,𝑠   (10) 

which ensures this, re-centres our model, and allows us to model our uncertainty in the 𝜓𝑟,𝑚,𝑦,𝑡,𝑓,𝑠 

parameters using a Normal distribution (see Equation 12 below). The support of the Normal 

distribution is 𝜓 ∈ ℜ, which when exponentiated becomes 𝜃 = 𝑒𝜓 ∈ ℜ+ ∪ {0}. 

Full model 

We can now write a more complex hierarchical model, starting with a form similar to Equation 7, but 

extending with extra terms of interest in the hierarchy: 

𝑃(𝜓, 𝜙, 𝜂, 𝛾, 𝜇, 𝜉|𝑋) ∝ 𝑃(𝑋|𝜓)𝑃(𝜓|𝜙)𝑃(𝜙|𝜂)𝑃(𝜂|𝛾)𝑃(𝛾|𝜇)𝑃(𝜇|𝜉)𝑃(𝜉) (11) 

where each of our parameters are assumed to follow a normal distribution, centred at an average 

effect (on the transformed scale) relevant to that level of the hierarchy: 

(12) 

 

 

 

Finally, the average for a semester centres on a global average, which given no previous information, 

is allocated a vague prior, Γ𝑟: 

school average: 𝜓𝑟,𝑚,𝑦,𝑡,𝑓,𝑠~𝑁(𝜙𝑟,𝑚,𝑦,𝑡,𝑓 , 𝜎𝑟,𝑚,𝑦,𝑡,𝑓,𝑠
2 ) 

faculty average: 𝜙𝑟,𝑚,𝑦,𝑡,𝑓~𝑁(𝜂𝑟,𝑚,𝑦,𝑡, 𝜏𝑟,𝑚,𝑦,𝑡,𝑓
2 ) 

survey type average: 𝜂𝑟,𝑚,𝑦,𝑡~𝑁(𝛾𝑟,𝑚,𝑦, 𝛼𝑟,𝑚,𝑦,𝑡
2 ) 

cohort average: 𝛾𝑟,𝑚,𝑦~𝑁(𝜇𝑟,𝑚, 𝜅𝑟,𝑚,𝑦
2 ) 

semester average: 𝜇𝑟,𝑚~𝑁(𝜉𝑟, 𝜆𝑟,𝑚
2 ) 



𝜉𝑟 = 𝑁(0, Γ𝑟). (13) 

This assumption reflects a lack of knowledge about variability of SET scores, a modelling assumption 

that can be assessed via sensitivity analysis (Gelman et al., 2013) but could be relaxed for other 

analyses according to the needs of an institution.  

The model constructed in this way assumes that student responses cluster around their 

school average, which across schools centres on a faculty average. Then the faculty average centres 

on the average for that survey type, then cohort (i.e. degree program) and then semester. Note that 

the score for a specific course is not included in the model; it will reappear in Section 5, where we 

demonstrate how the model compares the SET responses received by a course with the average 

values at the school, faculty etc. levels. Thus, this model helps us to understand the expected 

responses to a SET at each level in the hierarchy constructed. These will then be compared with the 

values that a course actually obtains to extract information about how it deviates from that 

expected value. Note also that many other hierarchical orderings could have been constructed. It 

depends upon the requirements of the analysis, and what organisational units it makes sense to 

compare over multiple data collection points.  

Once responses are suitably transformed to a normal distribution, we are provided with an 

elegant and parsimonious way of describing a nested hierarchy of average effects, at increasing 

scales of aggregation (Gelman, Hill, and Yajima, 2012). All of the random effects (𝜎, 𝜏, 𝛼, 𝜅, 𝜆) are 

assigned independent zero-truncated normal priors (Gelman et al., 2013), which for numerical 

reasons are truncated just above zero in our implementation (which used OpenBUGS (Sturz, Ligges, 

and Gelmann  2005). 

Modelling changes between variables 

Having constructed a model, we can start to explore some of the questions raised above (in Section 

2), using a contrast that quantifies the difference in proportion of scores, between two years: 

𝛿𝑟,𝑚,𝑦,𝑡,𝑓,𝑠 = 𝜋𝑟,𝑚,𝑦,𝑡,𝑓,𝑠 − 𝜋𝑟,𝑚,𝑦−1,𝑡,𝑓,𝑠. (14) 

Or for the same semester, a comparison between the Pulse and Insight scores obtained for a course: 

𝛾𝑟,𝑚,𝑦,𝑡,𝑓,𝑠 = 𝜋𝑟,𝑚,𝑦,𝑡,𝑓,𝑠 − 𝜋𝑟,𝑚,𝑦,𝑡−1,𝑓,𝑠. (15) 

Many different questions are possible, depending upon what is considered organisationally 

important, and the data that is available.  

Using the full Reframe model 

The Bayesian Hierarchical Model produces posterior estimates of the average proportion of each 

satisfaction score given a set of conditions, which allows us to explore both the way in which 

different organisational conditions affect responses, as well as how these responses are changing in 

time. In this section we will explore some of the ways in which this model can be used to help an 

institution understand changing patterns of student satisfaction and how they might be 

contextualised to various organisational units.   

The models constructed take the posterior predictions for a specific level of the hierarchy 

and enable a comparison of the course of interest to the distribution generated by the posterior. 



Thus, it is at this point in the model that the proportion of students responses in a course (i.e. the 

proportion of Likert scale responses {1,2,3,4,5} denoting very dissatisfied through to highly satisfied 

that are obtained in a specific subject) are compared to the likely distribution of responses that are 

obtained for the organisational unit.  

Comparing the performance of a course to its host school 

Figure 10 provides information about the 𝑃(𝜋|𝑋) probability distributions for two schools in our 

dataset (the curve), along with the proportions of responses for a specific course in each school (the 

straight line). The area under the curve to the left of the line represents the probability that the 

school's mean proportion of responses for that score is less than the proportions for that specific 

course. The area to the right of the line gives the probability that it is greater. For example, 

considering a satisfaction response of 5 (i.e. ‘highly satisfied’) in Figure 10(a), it can be seen there is a 

very high probability that the school mean is less than the course’s results. This can be seen by the 

fact that the line (representing the proportion of 5 scores obtained by the specific course) is to the 

right of the density curve (which represents the posterior distribution estimated by the model). This 

position of the line suggests that the course is being rated with noticeably more 5 responses than 

comparable other courses its host school. This would suggest that the course has significantly more 

highly satisfied students than is the norm for that school. Looking through the rest of the possible 

responses shows us that overall it has a lower proportion of 1, 2 and 3 scores than the school, and 

more 4 and 5 responses than could be expected. It appears that the students in this course are on 

the whole more satisfied than is usual for this school.  

 

 

Figure 10. Posterior distributions for the proportions of the multinomial responses (i.e. satisfaction 

scores {1,2,3,4,5} - listed across the top of the plots) for two schools and two specific courses in 

those schools for the 2016 cohort. The posterior densities for the school in (a) are narrower than 

those in (b). The average satisfaction scores for the courses shown in these plots are 4.098 and 3.854 

respectively. 



Figure 10(b) shows another course that appears to be performing better than its relevant 

school, appearing to be more likely to achieve a score of 5 (i.e. ‘highly satisfied’) than other courses 

in the same organisational unit. However, the greater spread in posterior probabilities suggests that 

there is a much greater variance in scores being achieved for this school, which gives us reason to be 

more careful in developing an evaluation strategy for this organisational unit. This difference in 

school variance suggests our estimate for the likely scores achieved by the school in Figure 10(a) is 

more certain that that for Figure 10(b). We are less confident about what an expected average of 

SET scores is, or what distribution of scores is likely to lead to it, for the second school (a factor that 

becomes particularly important for some other SET scores where the line is overlapping the 

distribution). This might be due to a number of different factors: from a genuine range in teaching 

performance; to wildly varying cohorts; or even to the delivery of highly experimental teaching 

strategies. Extra care must be taken in constructing evaluation metrics in this case. It is not surprising 

that there will be probabilities with considerable variance when we consider that the model 

presented here has not included a range of other variables that could be important predictors (e.g. 

demographics, grade, year of study, learning design etc.). Including more variables could lead to 

tighter probability distributions, although this may not always be the case.  

Evaluating performance over time 

Figure 11 shows sample output from a comparison of the way in which the SET responses for two 

courses have changed from 2015 to 2016, in two different schools. In essence, the distribution 𝛿 

defined in (14) is represented by the area under the curves. The amount of this distribution which is 

greater than zero on the x axis represents the model’s prediction of the probability that the school 

has increased its proportion of responses for a particular score.  

The same figures also compare a specific course’s change in proportion of values against the 𝛿 

distribution of its host school. The area under the distribution to the right of a course’s change in 

proportion is the probability that the course had a lower change in proportion of that response than 

the school's mean change in proportion. 

 

 



Figure 11. Posterior distributions for the change in school distributions and the change in satisfaction 

scores for two course both run in 2015 and 2016. Course (a) changed its average score from 3.5 to 

4.1. Course (b) changed from 3.8 to 4.2. 

 

For example, Figure 11(a) shows that there are proportionally less responses of 1 occurring 

for this course in 2016 than occurred in 2015. This is made more interesting by the observation that 

the school does not appear to have changed at all (as the distribution is still centred on 0). Examining 

the change in 5 responses for the same course shows that there are now more: the course appears 

to have improved over time. For this example, the result is in agreement with the mean score, which 

changed from 3.5 to 4.1 in this period (a clear improvement). However, the new more 

contextualised report enables us to see far more information about how the course has improved. 

Figure 11(b) shows another example, with a mean increase from 3.8 to 4.2. It can be seen that this 

increase comes primarily from a decrease in the 3 responses, and a large increase in 5 responses, 

along with a smaller decrease in the 2 and 4 responses. As was the case for the previous section, we 

note that the change in the school depicted in Figure 11(a) has much narrower posterior 

distribution, suggesting the probability of a large change between the two years is much lower than 

it is for the school in Figure 11(b).  

Limitations 

The model presented in the previous section could be improved in a number of ways. Due to the 

vast number of courses present in the data, our estimates were limited to the school level. This 

avoided problems with both computational time and file size that occurred with attempting to drop 

to the course level, and helped to alleviate problems with low response rate for some courses. It also 

avoided the potential overfitting the model to inappropriately small sub-classes in the data. Other 

institutions may be able to reach a finer level of detail depending upon their SET data.  

Another limitation of this model is that it does not consider the differences that can arise 

with individual students. Where data is available, information on a student’s demographics, past 

academic performance, and historical SET evaluation tendencies could be fed into the model. This 

would facilitate the analysis of individual variances in how different classes of students might 

respond to SET items, and in particular a consideration of whether changes in how a course is 

performing from year to year might be attributable to e.g. a particularly pessimistic cohort.  

As with all SET data, we are still left with little information about how non-respondents 

might differ from those students who responded. However, if the data allows for a model to be 

constructed at the individual student level, then it may be possible to use models such as this to 

impute likely responses that would have been given by students who have responded at least once. 

This form of estimation is made possible by a particular characteristic that we have noticed in the 

Reframe dataset; most students respond at some point in time throughout their university 

experience. Thus it seems plausible that models of individual student behaviour could be 

constructed in the future. We note that this form of study is only made possible in a data collection 

methodology that enables data custodians to re-identify individual student response patterns. An 

institution that did not store this data would not be able to construct student level response models. 

This calls attention to the obvious trade-off between student privacy and accurate modelling; 

substantial care must be taken by data custodians to ensure that the student feedback is not re-

identifiable by e.g. academic staff, or by other user groups who should not have access. While 



decisions such as these will be made at the policy level, we consider it essential that data custodians 

take great care to consider the implications of linking data in their models and to ensure that it is not 

misused, while championing the need to perform such analyses which can help to improve both the 

student experience and feedback to academic staff.  

Sensemaking with complex statistical models 

The model presented in the previous section is not one that can be easily interpreted by those not 

familiar with statistical models. However, it can be coupled with more intuitive reports to facilitate 

sense-making for both organisational decision makers (who may need to allocate resources or 

recognition) and academic staff (who may be seeking to more deeply understand how their teaching 

is rated by their students). We consider it essential that any sense-making tools be carefully 

designed to avoid potential abuses. In particular, we would like to avoid misuse through the 

attribution of meaning to results that are unlikely to be statistically significant.  

  



 

 

Figure 12. A report following Figure 10 for a new school and course within Faculty A. In this case the 

posterior distributions for two years are shown. The solid lines represent a course's outcomes in 

2016, and the dotted lines the outcomes of 2015. The distance between these lines provides the 

basis for the Course Change row in Figure 14. 

 

 

Figure 13. The posterior distribution of the changes in proportions for the scenario illustrated in 

Figure 12 for 2015-2016. As was the case in Figure 11, the solid lines represent a course's changes 

between the years. This report is used to generate the Course Change Compared to School row in 

Figure 14. 



 

Figure 14. A heatmap can be used as a sense-making device to facilitate a contextualised 

examination of multiple changes in how students are rating a course over a two year period. Course 

Change is extracted from the report in Figure 12, and Course Change Compared to School from the 

report in Figure 13. In (a), these measures are displayed as a gradient of probabilities, while in (b) 

only changes that cross pre-defined ‘significant’ levels are reported (*: Significant at the 10% level, 

**: Significant at the 5% level, ***: Significant at the 1% level). The Position in School cutoff makes 

use of quartiles, only marking a box as green or red if it is in the highest or lowest quartile 

respectively.  

 

We shall consider one particular course from the Reframe dataset throughout this section, 

with all reports generated for semester 1 in 2016. Figure 12 is a reproduction of Figure 10 for our 

course of interest. We have produced this report for two years, which enables a comparison of how 

student ratings are changing over the time period for both the course and its host school. In Figure 

13 we can see the changes in proportions for that same school and course over the same two year 

period.  

The data from Figures 12-13 is used in the generation of Figure 14(a), which is a heatmap 

created to facilitate more rapid decision making and interpretation of those reports. It is a 

sensemaking devise, designed to be more intuitively interpretable for those without a strong grasp 

of statistics, and consists of three panels describing the different components of the course in their 

organisational context. 

Positions in School: This line of the report ranks courses by the proportion of responses that they 

received for each potential satisfaction score. For responses 1-3, it is desirable to achieve 

less responses, so we rank from smallest to largest, and conversely for responses 4-5, we 

rank from the largest proportion of scores to smallest. The colours are then used to rapidly 

discern where in the list that course was ranked for that Q3 response.  

Course Change: This line corresponds to the report shown in Figure. 12. For responses 1-3, a green 

box is generated if course's proportion is less than the probability of the school’s mean 

proportion, whereas for responses 4-5, a green box is depicted if the course’s proportion is 

greater than the school's mean proportion.  

Course Change Compared to School: This line corresponds to the report shown in Figure 13. For 

responses 1-3, a green box is generated if the course's change in proportion is less than the 

school's mean change in proportion, whereas for responses 4-5, a green box is depicted if 

the course's change in proportion is greater than the school's mean change in proportion.  



Note that in constructing these reports for the Reframe dataset a decision was made to treat 

decreases in a satisfaction response of 3 as positive because the mean Q3 response across the entire 

institution was 3.8 (with a median response of 4), which suggests that a score of 3 is indicative of a 

course that is being rated lower than average by its students. This could potentially be linked to 

specific organisational units depending upon the requirements of an institution. 

While the representation of Figure 14(a) contains all relevant information, there is a danger 

that it will be overinterpreted. That is, a continuous scale can lead to small non-significant 

differences still being represented as bad (i.e. -/red) or good (i.e. +/green), and some people are 

likely to assume that this difference is meaningful. In order to reduce the risk of this 

overinterpretation, we recommend a further refinement of the report, only providing colours if the 

data is suggestive of a practically significant difference (Gelman et al., 2013). For the course under 

consideration this leads to the report depicted in Figure 14(b).  In this report we have represented 

the Position in School row using quartiles (i.e. 0-25%,25-75%,75-100%) with the top quartile 

rendered as +/green, and the bottom one as -/red. The Course Change and Course Change 

Compared to School rows are rendered with an extra device which corresponds to the standard 

significance levels used in hypothesis testing (1%: three stars, 5%: two stars, and 10%: one star) in 

both the positive and negative direction. Using this new format allows us to quickly realise that 

many of the unit changes depicted in Figure 14(a) were not practically significant. 

Discussion 

In an institutional setting, we recommend that reports similar to Figure 14(b) be used as a first 

reference, but with the capability to drill into the more detailed reports (i.e. Figures 12 and 13). A 

decision maker tasked with allocating resources to teaching teams could quickly examine a list of 

tables like Figure 14(b). This would also enable a prioritisation of resources e.g. the reading of free 

text comments as anomalous behaviour patterns are discovered, or providing support to teams that 

were seen to be struggling. We note that performance metrics based upon reports such as these are 

difficult to create, and would lose much of the rich contextual information that has been generated. 

However, if an institution was insistent upon following this path then we would recommend the use 

of reports such as these, constructed for multiple validated survey items, and displayed in a manner 

similar to the teacher rating forms discussed by Abrami (2001). 

A number of other organisational factors could be explored in an extended model. For 

example, contextualising the SET responses of a cohort (i.e. in a degree) is potentially far more 

useful for spotting problem courses than contextualising to a school (as was done here). However, 

decisions such as these depend upon the underlying dataset. The Reframe dataset contains degree 

related information, but as one course can belong to many different degrees this is a more complex 

model to implement. We have chosen not to discuss this alternative in this paper for ease of 

communication, but such modifications are possible depending upon which questions an 

organisation is wishing to explore.  

Beyond this, there are many ways in which the model could be extended and refined to suit 

different datasets or analytical questions. We leave this to other evaluation teams and to our own 

future work.  



Conclusions 

We have demonstrated that it is possible to generate a more nuanced understanding of student 

feedback about teaching for a single SET item. The model presented here enabled us to extract more 

complex information about how SET responses are distributed and change in time. This information 

was then condensed into a simplified format that enables quick sense-making and interpretation for 

decision makers and academic staff.  

We acknowledge that there is a vast array of literature suggesting that using a single SET 

item to evaluate teaching performance is highly problematic. We agree with this literature, but 

institutional pressures often mandate precisely this step. We think it likely that many other 

evaluation units find themselves in a similar position, and so offer the techniques introduced in this 

paper as a way to create a more nuanced organisational dialogue.  

On a wider note, it is highly surprising that the SET literature has failed to systematically 

adopt contemporary statistical methods, many of which have been available for decades (Gelman et 

al. 2013). Hypothesis testing is a fraught enterprise, and we consider it likely that many failures to 

demonstrate replicability of results across different organisational contexts are due an over reliance 

upon old fashioned techniques that were long ago abandoned by practising statisticians. In adopting 

a Bayesian approach we have been able to both mitigate against problems of multiplicity, and to 

construct a model that contains far more information than the more traditional approaches 

commonly reported in the SET literature. This is an important contribution, as the current era of 

diminishing government expenditure and increasing accountability means that more and more 

universities are implementing performance frameworks that make use of SET scores. In such an 

environment it is essential that the field investigate ways in which to reduce spurious correlations, 

some of which have the potential to cause considerable harm if misused.  

We conclude by noting that many academic staff members are experts in the problems 

associated the construction of verified scales and the analysis of Likert data. This means that a poor 

implementation of an evaluation framework using SETs will only be met by distrust and claims of 

invalidity. A likely cause of the apparent failure of the SET literature to embrace more valid analytical 

measures lies in the silos that emerge within a university context. There is no shortage of 

mathematical expertise among the academy, but these experts rarely have access to the large 

datasets that are traditionally held by central units.  

The methodology developed in this paper was made possible by a collaborative endeavour between 

discipline specialists from both areas (i.e. a central evaluation unit and researchers on secondment 

from a school of mathematics). Time was required to understand the problem, perform a thorough 

exploratory analysis of the data, and to construct the model. Even more time was required to 

develop new ways in which to enable decision makers to make sense of a modelling technique with 

which they are unlikely to be familiar. This was a highly unusual commitment for a university to 

make.  

It is rare to see significant theoretical advancement when it comes to analysing institutional 

data. The pressures of immediately responding to short term demands leave little space for 

developing new ways of thinking. We hope that this work has demonstrated the value that can be 

obtained when a significant investment is made to encourage respectful partnerships between 

central units and faculty based academic staff. We encourage more institutions to make a similar 

commitment to investing in, supporting, and building their own collaborative relationships in the 

future. 
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