
Article

Deep learning for vision-based micro
aerial vehicle autonomous landing

Leijian Yu1, Cai Luo2, Xingrui Yu1, Xiangyuan Jiang1, Erfu Yang3,
Chunbo Luo4 and Peng Ren1

Abstract

Vision-based techniques are widely used in micro aerial vehicle autonomous landing systems. Existing vision-based

autonomous landing schemes tend to detect specific landing landmarks by identifying their straightforward visual

features such as shapes and colors. Though efficient to compute, these schemes only apply to landmarks with limited

variability and require strict environmental conditions such as consistent lighting. To overcome these limitations, we

propose an end-to-end landmark detection system based on a deep convolutional neural network, which not only easily

scales up to a larger number of various landmarks but also exhibit robustness to different lighting conditions.

Furthermore, we propose a separative implementation strategy which conducts convolutional neural network training

and detection on different hardware platforms separately, i.e. a graphics processing unit work station and a micro aerial

vehicle on-board system, subject to their specific implementation requirements. To evaluate the performance of our

framework, we test it on synthesized scenarios and real-world videos captured by a quadrotor on-board camera.

Experimental results validate that the proposed vision-based autonomous landing system is robust to landmark vari-

ability in different backgrounds and lighting situations.

Keywords

Micro aerial vehicle, vision-based autonomous landing, convolutional neural networks

Received 19 May 2017; accepted 11 January 2018

Introduction

In recent years, Unmanned Aerial Vehicles (UAVs)
have been widely utilized in both military and civilian
fields, such as military real-time monitoring, resource
exploration, civil surveillance, cargo transportation
and agricultural planning.1 One key issue for safely
applying UAVs to these tasks is to maneuver UAV
flights in an accurate manner. Traditional UAV flights
tend to be controlled through human manipulation
with certain navigational aids. State-of-the-art UAV
flights operate in an autonomous manner, which not
only unleashes human labor but also enables safer and
more accurate maneuvers. Specifically, three basic
phases for UAV autonomous flights include takeoff,
hovering and landing.2 Among them, autonomous
landing is the most crucial phase because 80% of the
UAV accidents occur during landing.3 Therefore, how
to build robust autonomous landing systems has
become one of the most important and challenging
topics for the UAV research.4

Existing autonomous landing systems of UAVs can
be roughly classified into two groups, i.e. electromag-
netically guided landing systems and vision-based land-
ing systems. The electromagnetically guided landing
systems include those based on inertial navigation

1College of Information and Control Engineering, China University of

Petroleum (East China), Qingdao, China
2College of Mechanical and Electronic Engineering, China University of

Petroleum (East China), Qingdao, China
3Space Mechatronic Systems Technology Laboratory, Strathclyde Space

Institute, Department of Design, Manufacture and Engineering

Management, Glasgow, UK
4Department of Computer Science, College of Engineering, Mathematics

and Physical Sciences, University of Exeter, Exeter, UK

Corresponding author:

Peng Ren, College of Information and Control Engineering, China

University of Petroleum (East China), 66 Changjiang West Road, Qingdao

266580, China.

Email: pengren@upc.edu.cn

International Journal of Micro Air

Vehicles

2018, Vol. 10(2) 171–185

! The Author(s) 2018

DOI: 10.1177/1756829318757470

journals.sagepub.com/home/mav

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.

creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission

provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

mailto:pengren@upc.edu.cn
http://dx.doi.org/10.1177/1756829318757470
journals.sagepub.com/home/mav
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1756829318757470&domain=pdf&date_stamp=2018-05-16


systems (INS) and global positioning systems (GPS).

INS provides instant positioning information but
cannot guarantee long-term positioning accuracy.

GPS provides a global availability in open areas but

may incur positioning errors up to 10 m and may be

blocked by buildings.5 The electromagnetic landing
systems are suitable for large scale landing problems

(e.g. a large sized UAV landing on a large open area)

with considerable tolerance for position errors.
However, they cannot be straightforwardly applied to

micro aerial vehicle (MAV) landing problems, which

require accurate positioning within a small sized
space. The electro-optical navigation can be considered

as a transitioning landing technique between the elec-

tromagnetically guided landing and the vision-based
landing, and generally serve as an auxiliary to electro-

magnetically guided landing systems. Vision-based

landing systems use cameras to capture environmental

visual features for the purpose of guided landing.
One way to achieve this goal is to arrange cameras

surrounding a landing area for capturing UAV/MAV

status and environmental situations. One representa-
tive vision-based landing system in this regard is the

VICON motion capture system. It is expensive and

its application is limited to small indoor environments.
In contrast to arranging off-boardMAV cameras like

VICON, one more general configuration for a vision

based landing system is to attach a camera on a MAV.
By using optimal images of landing targets as source

information for navigation, on-board vision systems

can achieve positioning accuracy in terms of centi-
meters. This is especially valuable for MAVs that

require more effective precise landing than larger

sized UAVs. One on-board landing system identifies

visual features of specific landing landmarks observed
by the camera and accordingly guides MAV autono-

mous landing actions. In this scenario, specific land-

marks are required to be designed as prerequisites
for performing autonomous landing. In the literature,

different specific landmarks are developed for different

landing systems. Tsai et al.6 designed the T-shaped
landmark (Figure 1(a)) for their MAV autonomous

landing systems. Saripalli et al.7 designed the

H-shaped landmark (Figure 1(b)) for their helicopter
autonomous landing. Lin et al.8 designed a landmark

composed of eight equal-sized squares that are enclosed

by a big white border (Figure 1(c)). Verbandt et al.9

designed a landmark consisting of a series of concentric
circles with exponentially distributed radii (Figure 1

(d)). Jung et al.10 designed an H-shaped landmark

with concentric circles (Figure 1(e)). These landmarks
are designed to contain sharp or contrastive features

that are easy to identify and segment from the

background.

The key factor for vision-based landing systems is

accurate landmark detection. Each existing vision

based landing system is able to provide acceptable

detection accuracy on its own landmark, but can

hardly accurately detect landmarks for another

system. This is because existing vision-based landing

systems tend to detect specific landmarks through

matching low level visual features such as shapes and

colors between captured images and designed land-

marks.11 This case-by-case detection strategy is restrict-

ed to predefined landmarks and can hardly be

generalized to a broad variety of landmarks.

Furthermore, the visual quality of low level features

extracted from captured images may also be easily dev-

astated by inconsistent lighting conditions.
One intrinsic reason for these limitations is the

machine learning techniques employed in the existing

vision-based landing systems lack capability of learning

high level visual features. In order to overcome these

limitations, we exploit deep learning models for detect-

ing the various landmarks under inconsistent lighting

conditions. Deep learning is referred to a series of mul-

tilayer representational learning models that have

attracted extensive research interests and achieved

state-of-the-art performance on a number of artificial

intelligence tasks.12 In this paper, we describe how to

exploit a deep convolutional neural network (CNN)

model for detecting landmarks.
Traditional detection methods tend to first extract

low level handcrafted features from captured images

and then search the whole image for features that can

match the predefined targets.13,14 Recently, low level

features are characterized in terms of region proposals,

which are generated by feature learning techniques pos-

sibly being deep models. R-FCN15 and MASK

R-CNN16 use region proposal networks to generate

(a) (b)

(c) (d) (e)

Figure 1. Samples of five widely used landmarks: (a) the
T-shaped landmark; (b) the H-shaped landmark; (c) the landmark
consisting of eight equal-sized squares and a big white border; (d)
the landmark composed of a series of concentric circles; (e) the
landmark composed of an H-shaped and concentric circles.

172 International Journal of Micro Air Vehicles 10(2)



detection proposals. Detection is then conducted via
proposal classification. These methods consider feature
extraction and feature matching as two separate steps
and the speeds of these methods are slow because the
networks in two stages are trained separately. In con-
trast to the two-step detection schemes, the end-to-end
methodologies such as the Yolo methods use one net-
work to predict the objects.17,18

Meanwhile, convolutional neural networks have
been extensively studied in the deep learning literature.
A number of attempts have been made for developing
deeper and more complicated networks to achieve high
accuracy.19,20,21 However, these networks require
extensive computational resources. On the other
hand, resource limited platforms, such as the MAV
on-board processors, are not qualified to implement
these complicated networks.

Our framework is motivated by the recent proposed
detection model Yolo17 and the neural network archi-
tecture SqueezeNet22 to achieve real-time landmark
detection. The Yolo model frames object detection in
terms of deep learning based regression for the purpose
of determining spatially separated bounding boxes and
associated class probabilities. The SqueezeNet aims at
modeling a CNN with few parameters. In order to
develop an effective end-to-end landmark detection
system with implementation efficiency, we establish
our CNN framework sharing advantages of the Yolo
regression and the SqueezeNet efficient architecture.
Specifically, our CNN-based landmark detection
method regresses landmark positions directly from cap-
tured raw images through a multilayer architecture
such that the feature extraction and matching are indis-
tinguishably integrated into an overall framework.
Furthermore, the strong representational power of
the CNN not only increases the adaptability of an
autonomous landing system from one specific land-
mark to multiple landmarks but also improves the
detection robustness with respect to light variation.

Training our CNN based detection model is always
time consumptive with heavy computational over-
heads. On the other hand, conducting detection based
the trained CNN requires instant operations. To
address these contradicted problems, we propose to
train our CNN based detection model on a GPU work-
station and operate the trained CNN model for detect-
ing landmarks in the MAV on-board system. The
separative implementations take advantages of both
the GPU computational power and the on-board
instant feedback, resulting in a novel strategy which
leverages between comprehensively training and
instantly operating deep models for MAV applications.

We experimentally test our CNN based landmark
detection framework on synthesized scenarios and real-
world videos captured by the on-board camera of a

quadrotor. Experimental results validate that the pro-

posed vision-based autonomous landing system is robust

across various landmarks and different lighting situations.

Training a convolutional neural network

for landmark detection

Inspired by the Yolo model17 and SqueezeNet22 model-

ing methodologies, we develop a convolutional neural

network that performs end-to-end landmark detection.

In this section, we first introduce the architecture for

our convolutional neural network, and then describe

how to train the CNN model for landmark detection

on a GPU platform.

Convolutional neural network architecture for

landmark detection

The convolutional neural network architecture of our

proposed detection model is shown in Figure 2. Each

input into the model is an RGB three channel image

captured by an MAV on-board camera, and the corre-

sponding outputs of the model are the predicted loca-

tion of a detected landmark in the image and the

predicted category label of the landmark. Specifically,

one input image is first processed four convolutional

and pooling layers, i.e. C1, C2, C3, C4, followed by one

fully connected layer and one detection layer for regres-

sion. The blue cubes in Figure 2 indicate feature maps

in each layer. Specifically, the Cn�1 layer consists of K

feature maps, i.e. X
ð1Þ
n�1; � � � ;XðKÞ

n�1, and these feature

maps are the sources for computing the feature maps

in the layer Cn.
To generate the lth feature map X

ðlÞ
n in the nth layer

Cn, the feature maps in the (n – 1)th layer Cn�1 are

processed by convolutional-activation-pooling (CAP)

operations, which are basic operations in convolutional

neural networks. Each feature map X
ðkÞ
n�1 in the (n – 1)th

layer is convolved with learnable weightsW
ðk;lÞ
n . The sum

of the K convolved results are added with learnable biases

b
ðlÞ
n , and further processed by a leaky rectified linear acti-

vation function fð�Þ which is depicted as follows:

fðmÞ ¼
m ; m > 0

0:1m; m � 0

(
(1)

The convolution-activation (CA) operations on the

(n – 1)th layer is formulated as follows:

XðlÞ
n ¼ f

XK
k¼1

ðWðk;lÞ
n � Xðk;lÞ

n�1Þ þ bðlÞn

 !
(2)

where � denotes the convolution operation.

Yu et al. 173



XðlÞ
n is an intermediate feature map in Cn. It is further

processed in terms of a pooling (P) operation for gen-
erating the feature map X

ðlÞ
n in Cn. Specifically, the

pooling operation reduces the size of the XðlÞ
n by shrink-

ing its 2 � 2 or 4 � 4 patches into single elements. This
is done by replacing the patch by the largest valued
element among the patch. The computation of the (i,
j)th entry of the feature map X

ðk;lÞ
n is formulated as

follows:

X
ðk;lÞ
n;i;j ¼ maxfXðk;lÞ

n;i;j ;X
ðk;lÞ
n;iþ1;j;X

ðk;lÞ
n;i;jþ1;X

ðk;lÞ
n;iþ1;jþ1g (3)

We describe the detailed configuration of our CNN
landmark detection framework shown in Figure 2. In
the layer C1, the input three channel image is processed
by a CAP operation and generate 16 feature maps of
the size of 56 � 56. Similarly, C2 has 32 feature maps of
the size of 28 � 28, C3 has 64 feature maps of the size
of 14 � 14, and C4 has 128 feature maps of the size 7 �
7. The detailed configuration is described in Table 1.

The parameter values 3 � 3 for the Conv Filter in C1

refer to the size of each filter W
ðk;lÞ
1 and the following

parameter value 16 refers to the number K of filters
applied in the layer. The parameter value 2 for Stride
indicates the sliding step size for. The parameter values
2 � 2 for the Maxpooling indicate that pooling oper-
ations take place within a region of size 2 � 2. For C2,
C3 and C4, the parameter values have similar
implications.

There are differences between the layers C1 and C4

and the layers C2 and C3. We design the layers C1 and
C4 following Yolo.17 On the other hand, different from
Yolo, we design C2 and C3 by applying Conv Filters of
the ‘squeezed’ size 1. This methodology is motivated by
SqueezeNet22 which replaces one big Conv Filter by
parallel ’squeezed’ Conv Layers and yields a simplified
structure with reduced number of parameters. We

exploit this advantage of SqueezeNet for conducting

simplified CNN computation in an on-board system

with limited computational resources. However, for

on-board small CNNs, the SqueezeNet parallelism sac-

rifices certain accuracy for simplifying the CNN model.

To remedy this ineffectiveness, we modify the parallel-

ism into a serial implementation which is deeper and

more effective to learn more complex feature

representations.
The layer C4 is followed by one fully-connected layer

(FC1) and then fully connected to a vector with 4096

dimensions. The full connection is depicted by cross

arrows in Figure 2. Finally, the 4096 dimensional

vector is processed by the detection layer (D1) to gen-

erate a prediction tensor of the size 7� 7� 15.
One prediction outputted by the CNN is represented

as a 15 dimensional vector in the prediction tensor and

the CNN generates 49 such prediction vectors for one

input image. For each prediction vector, the first five

entries represent the first prediction ðx0; y0;w0; h0; c0Þ,
and the subsequent five entries represent the second

Figure 2. The full architecture of the proposed regression-based detection model. The architecture is composed of a CNN module
and a detection layer. The input image is fed into the CNN module, followed by a detection layer. The detection layer provides the
capability of regressing the coordinates and the class probabilities of the landmarks.
CNN: convolutional neural network.

Table 1. The CNN layer configuration.

Cn Layer configuration

C1 Conv Filter 3� 3�16, Stride 2

Maxpooling 2� 2, Stride 2

C2 Conv Filter 1� 1�8, Stride 1

Conv Filter 1� 1�32, Stride 1

Conv Filter 3� 3�32, Stride 1

Maxpooling 2� 2, Stride 2

C3 Conv Filter 1� 1�16, Stride 1

Conv Filter 1� 1�64, Stride 1

Conv Filter 3� 3�64, Stride 1

Maxpooling 2� 2, Stride 2

C4 Conv Filter 3� 3�128, Stride 1

Maxpooling 2� 2, Stride 2

CNN: convolutional neural network.

174 International Journal of Micro Air Vehicles 10(2)



prediction ðx1; y1;w1; h1; c1Þ. Here (xi, yi) represent one

predicted landmark centric coordinate and ci reflects

the confidence that a landmark is located within a

grid cell surrounding (xi, yi) for i 2 f1; 2g.
Specifically, the confidence score is zero when no

object falls into the grid cell. The confidence score is

computed in terms of the intersection over union (IoU)

between the predicted landmark and the ground truth

as follows:

ci � IoU ¼ AO

AU
(4)

where AO and AU denote the area of overlap and the

area of union of the predicted landmark and the true

landmark, respectively. We assume that there are total-

ly five different categories of landmarks (as illustrated

in Figure 1) used for landing, and the final five entries

represent the probabilities PrðLiÞ; i ¼ 1; � � � ; 5 of the

detected landmark belonging to one of the five candi-

date categories.
The class score s is computed by multiplying the

conditional class probabilities and the individual con-

fidence score for each landmark:

s ¼ PrðLiÞ � IoU (5)

where Li denotes one of the landmark categories illus-

trated in Figure 1.
The best prediction is selected from the 49 predic-

tions according to the highest class score s�. For each
prediction, the class score s is computed by equation

(5). The best prediction consists of two components –

the bounding box ðx�; y�;w�; h�Þ and the class score s�.
In the next subsection, we will comprehensively

describe how to optimize the learnable parameters

W
ðk;lÞ
n and bn based on the prediction tensor.

Training the convolutional neural network on a GPU

workstation

For training the CNN detection framework, we first

resize the input image into 224 � 224 and then divide

it into a 7 � 7 equally-sized grid cells. The cells are

responsible for detecting the landmark if the center of

the landmark falls into one of them. As described in the

previous subsection, the CNN framework generates a

7� 7� 15 prediction tensor for one input image, with

each 15 dimensional vector in the tensor corresponding

to one cell of the input image. The training procedure is

to optimize the learnable parameters by minimizing the

loss function measuring the differences between the

prediction tensors and target tensors for input images.

The loss function consists of three parts, i.e. the area
loss Larea, categorical loss Lcls, and the IoU loss LIoU,
which are separately formulated as follows:

Larea ¼ kc
XS2

i¼0

XB
j¼0

I
L
i;j½ðxi � bxiÞ2 þ ðyi � byiÞ2�

þ kc
XS2

i¼0

XB
j¼0

I
L
i;j½ð

ffiffiffiffiffi
wi

p � ffiffiffiffiffibwi

p Þ2 þ ð ffiffiffiffi
hi

p �
ffiffiffiffibhiq
Þ2�

þ
XS2

i¼0

XB
j¼0

I
L
i;jðCi � bC iÞ2

þ kno
XS2

i¼0

XB
j¼0

I
no
i;j ðCi � bC iÞ2�

(6)

where ILi denotes the confidence of landmark appearing
in cell i, ILi;j denotes the jth (first or second) predictor in
cell i is responsible for that prediction, and Ci indicates
the class label of landmark in cell i. kc and kno are two
balance parameters for making the training of the
detection model more stable. In our design, we empir-
ically set kc ¼ 5 and kno ¼ 0:5.

Lcls ¼
XS2

i¼0

I
L
i;jðpiðC0Þ � bpiðC0ÞÞ2 (7)

where piðC0Þ is the conditional probability for landmark
with label C0.

LIoU ¼
XS2

i¼0

I
L
i;jð1� ciÞ2 (8)

where ci is the confidence score, i.e. IoU, can be com-
puted by equation (4).

The overall loss function is:

L ¼ Larea þ Lcls þ LIoU (9)

Given a batch of training data (m image samples),
we train the detection model via the stochastic gradient
descent (SGD) algorithm. We first initialize the learn-
able weights W and biases b to a small random value
near to zero subject to a normal distribution – Norma
lð0; �2Þ with � ¼ 0:01. During training, the input images
are pushed forward (marked with the right-facing
arrow in Figure 2) through the whole network to gen-
erate predictions. Then the errors in terms of the cost
function equation (9) are measured. The error

Yu et al. 175



gradients for the weights and biases are computed by
equation (10) and backwardly propagated (marked
with the left-facing arrow in Figure 2) for updating
the parameter values.

rWðlÞL ¼ @L
@WðlÞ :

rbðlÞL ¼ @L
@bðlÞ

:

(10)

Algorithm 1: One iteration of stochastic gradient
descent.

Set DWðlÞ :¼ 0; DbðlÞ :¼ 0
for i = 1 to m do

1. Compute the gradients rWðlÞL and rbðlÞL as equa-
tion (10).

2. Set DWðlÞ ¼ DWðlÞ þ rWðlÞL.
3. Set DbðlÞ ¼ DbðlÞ þ rbðlÞL.

Update the parameters:

WðlÞ ¼ WðlÞ � a ð1
m
DWðlÞÞ þ kWðlÞ

� �
bðlÞ ¼ bðlÞ � a

1

m
DbðlÞ

� � (11)

where a is the learning rate, k denotes the weight
decay parameter for adjusting the influence of
model complexity, m is the number of images.

end

To train the CNN based detection model, we repeat-
edly take steps of the stochastic gradient descent as
described in Algorithm 1 to minimize the loss function
L in equation (9).

There are two things that need to be noted in our
training procedure. First, the data jittering approach is
employed to augment the landmark dataset. Specifically,
the augmentation strategies operated on the landmark
dataset include adjusting the image exposure, saturation
and hue. The data augmentation increases the intraclass
variability of training data and thus further improves the
robustness of the detection model. Second, the training
is carried out on a Graphics Processing Unit (GPU)
work station, which is widely used for training deep
learning models. However, it is not suitable for an
MAV on-board system to perform CNN training by
involving GPUs, which are normally physically big in
size and comparatively power consumptive. On the
other hand, it is not necessary to train a CNN in an
on-board system because the MAV instant manipula-
tion just requires implementing a trained CNN model
rather than training it. In the light of this observation,

we use an off-board GPU workstation for efficiently

training our CNN framework. After the training proce-

dure, we obtain about 4000 optimal parameters, i.e.

optimal weights W� and optimal bias b�. We then trans-

fer these trained parameter values to an on-board

system for manipulating MAV landing, which is

described in the next section.

Landmark detection based on the trained

convolutional neural network

Landmark detection via CNN inference

The training procedure first forwardly computes the pre-

diction tensor based the initial parameter values, and then

adjusts the parameter values backwardly via back propa-

gation optimization. In contrast to the forward-backward

training procedure, the inference procedure processes each

frame of a captured video through the CNN network only

forwardly, based on the optimal parameter values (weights

W� and biases b�). The forward computation generates

the predicted coordinate ðx�; y�Þ and class scores s� for

the detected landmark. Following the forward procedure

(marked with theright-facing arrow in Figure 2), the infer-

ence procedure of an input three channels image I is sum-

marized in Algorithm 2:

Algorithm 2: Landmark detection procedure with the

optimal parameters W� and b�.
Set L = 5, X0

0 ¼ I; Ks ¼ f3; 16; 32; 64; 128g

1. for l = 1 to L do
(a) Set K = Ks(l).
(b) for n = 1 to 3 do

Generate feature maps according to equation (2)

with the optimal parameters

XðlÞ
n ¼ f

XK
k¼1

ðW�ðk;lÞ
n � Xðk;lÞ

n�1

 !
þ b�ðlÞn Þ (12)

end
end

2. Process feature maps in the layer FC1 based onW�

and b�.
3. Process feature maps in the layer D1 based on W�

and b� to generate 49 predictions (15-dimension

vector).

Each prediction can be presented as:

½ðx0; y0;w0; h0; c0Þ; ðx1; y1;w1; h1; c1Þ;
ðPrðL1Þ;PrðL2Þ;PrðL3Þ;PrðL4Þ;PrðL5Þ�

(13)

176 International Journal of Micro Air Vehicles 10(2)



4. Compute the class score s for each prediction

according to equation (5).
5. Select the best coordinate prediction ðx�; y�Þ

according to the highest class score s�.

Implementing detection on an MAV on-board system

We implement the detection model on the MAV on-

board system Manifold, which consists of a quad-core

ARM Cortex-A15 processor and 2 GB memory. The

trained network is used for detecting landmarks from

unlabeled video frames captured by the on-board

camera. To run the inference procedure on Manifold,

we build detection model with the 4000 optimal param-

eters (W� and b�) loaded on-board. Once the Manifold

starts processing video captured by on-board camera,

the inference procedure summarized in Algorithm 2

begins. The predictions in the form of ðx�; y�;w�; h�; s�Þ
is generated for guiding the landing.

It should be noted that we train and implement the

CNN detection framework based on separate hardware

platforms, i.e. the GPU workstation and the Manifold

MAV on-board system. Though the CNN framework

is developed with simplified architecture, it still requires

considerable computational overheads especially in the

training phase. Specifically, inferencing with the trained

CNN is much less computational consumptive than

training it, because the inference implementation does

not involve the costly backward gradient computation.

Therefore, in contrast to exploiting the computational

power of the GPU workstation to handle the complex

computation in the training phase, we implement the

less complex detection procedure in the Manifold

MAV on-board system, which is not only smaller in

size, lighter in weight and less costive in power than

the GPU workstation but also qualified to conduct

an on-line real-time landmark detection.

Landing system

Figure 4 illustrates the operating procedures of the

autonomous landing system. The image acquisition

procedure is completed by capturing video frames

using an on-board camera with universal serial bus

(USB). The coordinates of the landmarks are predicted

by forwarding the trained CNN detection model. The

predictedcoordinates of the landmarks are then con-

verted into x-axis and y-axis angular offsets (in radians)

of the landmark center. These angular offsets are sent

to the autopilot via the Micro Air Vehicles

Communication Protocol (MAVLINK). This informa-

tion is used to generate control signals to supervise the

landing process via the autopilot. The detailed proce-

dures are described in the following subsections.

Software architecture

The predicted landmark coordinates from videos cap-

tured by an MAV on-board camera are transformed to

the MAV’s own coordinates. We assume that the roll,

pitch and yaw angles of the MAV can be neglected

while computing the x-axis and y-axis angular offsets

of the landmark coordinates in images. The x-axis and

y-axis angular offsets are obtained as follows:

Figure 3. Detection procedure of the CNN-based detection model.
CNN: convolutional neural network.

Yu et al. 177



Rx ¼ ðx� � hr=2Þ � hf

hr
(14)

Ry ¼ ðy� � vr=2Þ � vf

vr
(15)

Here ðx�; y�Þ denotes the coordinates detected by the
trained detection model. hr, hf, vr and vf are on-board
camera parameters. hr indicates the horizontal resolu-
tion, hf indicates the horizontal field of view (FoV), vr
denotes the vertical resolution, and vf indicates the ver-
tical FoV. Both hf and vf should be used in radians.

The Rx and Ry are sent to the autopilot as
MAVLINK message. This information is processed
with sonar data to compute landmark position relative
to the MAV.

px ¼ hs � tanðRxÞ (16)

py ¼ �hs � tanðRxÞ (17)

where hs is the height above the ground measured by
sonar, and px and py are the x and y axis positions of
the landmark relative to the MAV. The landmark

velocities vx and vy in the x and y axis relative to the
MAV can be calculated by doing differential opera-
tions with px and py.

A Kalman filter is then exploited for supervising the
landmark, with the state vector defined as
X ¼ ½px; py; vx; vy�T. The landmark equations are mod-
eled as a linear system as follows:

Xkþ1 ¼ AXk þ wk (18)

Zk ¼ HXk þ uk (19)

where Xk is the true state vector describing the target
position and velocity relative to the MAV at time k, A
is the state transition parameter, wk is the random pro-
cess noise, Zk is the measurement vector, H is the
observation model, and uk is the measurement noise.
Let p ¼ ½px; py�T and v ¼ ½vx; vy�T, and the motion can
be characterized as follows:

pkþ1 ¼ pk þ vkTs þ akT
2
s=2 (20)

vkþ1 ¼ vk þ akTs (21)

where ak is a random acceleration and Ts is the time
step size. Furthermore, the Kalman state transition is:

pkþ1

vkþ1

" #
¼

1 Ts

0 1

" #
pk

vk

" #
þ wk (22)

Assume that the modeling noise wk is white zero-
mean Gaussian noise with a covariance matrix Q,
and the measurement noise uk is white zero-mean
Gaussian noise with a covariance matrix R:

pðwÞ	Nð0;QÞ (23)

pðvÞ	Nð0;RÞ (24)

The state propagation and update equations for the
Kalman filter are summarized as follows.

• The predicted state estimation is:

bX kjk�1 ¼ AbX k�1 (25)

• The predicted estimation covariance is:

Pkjk�1 ¼ APk�1A
T þQ (26)

• The innovation covariance is:

Sk ¼ HPkjk�1H
T þ R (27)

Figure 4. The flow chart of the vision-based MAV landing
system.
MAV: micro aerial vehicle.

178 International Journal of Micro Air Vehicles 10(2)



• The optimal Kalman gain is:

Kk ¼ Pkjk�1H
TS�1

k (28)

• The updated state estimation is:

bX k ¼ bX kjk�1 þKkðZk �HbX kjk�1Þ (29)

• The posterior covariance is:

Pk ¼ ðI�KkHÞPkjk�1 (30)

In this group of equations, the superscript T indi-

cates matrix transposition, bX kjk�1 means the predicted

state estimate value, bX k�1 denotes the optimal state

estimate value in the last step, Pkjk�1 indicates the

covariance of the prediction error, Kk is the Kalman

gain matrix, Pk denotes the covariance of the posterior

estimate error, and bX k indicates the state estimate

value.
The position and velocity estimate bX k of the land-

mark relative to the MAV are fed into the position

controller of the autopilot, and the command is gener-

ated to manipulate the MAV to land on the landmark

safely.

Hardware architecture

The hardware architecture is shown in Figure 5. In this

system, we develop a customized do-it-yourself (DIY)

quad-rotor with an embedded development board

(Manifold). As the main processing unit, the

Manifold board carries out the following tasks: (1)

processing all images captured by the on-board

camera; (2) calculating the angular offset; (3) commu-

nicating with the autopilot. The communication

between the Manifold and the MAV main body is

enabled by the Dronekit.
In our system, the Manifold connects to the UAV’s

autopilot through USB TTL Serial cables. The baud

rate of the serial connection is 1,500,000, and the
MAVLINK is used for communication. The
Dronekit API is utilized as the development tool for
our system.

The experimental quadrotor is shown in Figure 6,
with a DJI NAZA F450 X-shaped frame and the
Pixhawk autopilot with ArduPilot Firmware.
Pixhawk integrates a 14 bit accelerometer, a 16 bit
gyroscope, a magnetometer and an MS5611 barometer.
A sonar is used to measure the height of the MAV
above the ground. A USB camera is used to detect
the landmark. The camera and sonar are configured
as shown in Figure 7. The key component of the
UAV’s computing system is the Manifold, which con-
sists of a quad-core ARM Cortex-A15 processor and 2
GB memory.

Figure 5. Hardware architecture of the vision-based autono-
mous landing system.
USB: universal serial bus.

Figure 6. The developed DIY quadrotor (from the top view of
the MAV).
DIY: do-it-yourself; MAV: micro aerial vehicle.

Figure 7. The configuration of camera and sonar (from the
bottom view of the MAV).
MAV: micro aerial vehicle; USB: universal serial bus.

Yu et al. 179



Experimental results

In the experiments, we use five categories of landmarks
(as shown in Figure 1) for testing the performance of
our framework. The landmarks size is 50 cm � 50 cm.
The MAV with a downward looking camera is used to
capture outdoor videos, and the flying height varies
from 1 m to 5 m. We also use a forward looking
camera for the MAV to capture indoor videos. The
captured videos are separated into image frames. In
order to train our model to be robust with respect to
inconsistent lighting, we intentionally change image
brightness and thus obtain various lighting training
data. The brightness value ranges from 0 representing
complete darkness to 100 representing complete white-
ness. In our training process, the brightness values of
50 images from each landmark category are set to be
10, and those of another 50 images from each landmark
category are set to be 90. We also use the data augmen-
tation strategy presented in the previous section to
enlarge the intraclass variability of the training data
for the purpose of training a comprehensive model.

The images for each landmark category are annotat-
ed by using an open source tool – labelImg1 https://
github.com/tzutalin/labelImg. An obtained annotation
file includes the category names and landmark coordi-
nates. We build a training dataset containing images
and their annotations. In our experiment, 200 images
for each of the five landmark types are used to train our
landmark detection model and the training data con-
tains totally 1000 annotated images. The training pro-
cess is realized on a workstation with a NVIDIA
GTX860M GPU.

The values of IoU of our CNN model are shown in
Figure 8. The IoU value reaches the peak after 35,000
iterations. We choose the CNN model with 35,000 iter-
ations during the training procedure as our landmark
detection model.

In order to empirically evaluate the proposed on-
board CNN-based landmark detection model, we use
the test data sets, which are different from the training
data sets, for testing our trained model. Specifically, we
perform experiments on the Manifold board, which
processes the outdoor and indoor real-time video
frames as test data sets. Four tests are carried out:

• In the first set of experiments, we evaluate the
robustness of the detection model for various land-
mark shapes.

• In the second set of experiments, we evaluate the
robustness of the detection model for different illu-
mination intensities.

• In the third set of experiments, we evaluate the
robustness of the detection model for different back-
ground environments.

• In the fourth set of experiments, we evaluate the
efficiency of the detection model.

Evaluation of the robustness of the detection model
for various landmark shapes

To evaluate the effectiveness of our model for detecting
various landmark shapes, we test our CNN model in
terms of detecting each type of landmarks in 1000
images captured by the MAV camera. Results for the
five landmarks are shown in Figure 9 and Table 2.
Our CNN model successfully recognizes the landmarks
in 4973 frames. The T-shaped landmark is mistaken for
the H-shaped landmark in several rotation frames. This
is because both the T-shaped landmark and the H-
shaped landmark are simply featured by less discrimi-
native black lines, and we only use 200 images of each
type of landmarks to train our model. The landmark
composed of an H-shaped and concentric circles is mis-
taken for the H-shaped landmark in several frames. We
observe that these errors occur when the distance
between the camera and the landmark is large. One
reason for the misidentification of the H-shaped and
circle landmarks is that they are symmetric shapes
and are less distinguishable from distant views. To val-
idate this observation, we use a fake target landmark,
which appears similar to the circle landmark but is
asymmetric, to replace the circle landmark for testing
our model (Figure 9(f)). The experimental result reveals
that our model does not misidentify the fake landmark
as the true landmark. Our detection model can distin-
guish the landmark composed of a series of concentric
circles and the fake targets from distant views correctly.

Qualitative evaluation results of the CNN model on
the video frames captured from various flying heights
and from different rotation angles are shown in
Figure 10. The performance of our model is fairly
stable when the MAV searching for the landmark at

0 1 2 3 4 5

Iterations/times 104

0

20

40

60

80

100

Io
U

/%

Figure 8. The values of IoU with different iterations.
IoU: intersection over union.

180 International Journal of Micro Air Vehicles 10(2)

https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg


(a) (b) (c)

(d) (e) (f)

Figure 9. Landmark detection results: (a) the T-shaped landmark; (b) the H-shaped landmark; (c) the landmark consisting of eight
equal-sized squares and a big white border; (d) the landmark composed of a series of concentric circles; (e) the landmark composed of
an H-shaped and concentric circles; (f) the fake landmark.

Table 2. Results for evaluating the detection model for various landmark shapes.

T-shaped H-shaped Square landmark Circle landmark Combined landmark

Number of test frames 1000 1000 1000 1000 1000

Correctly recognized frames 989 992 998 999 994

Detection accuracy 98.9% 99.2% 99.8% 99.9% 99.4%

Average time cost 47.53 ms 48.26 ms 47.35 ms 47.73 ms 48.62 ms

(a) (b) (c)

(d) (e) (f)

Figure 10. Detection results of the detection model on video frames captured from various flight heights ((a), (b) and (c)) and from
different rotation angles ((d), (e) and (f)).

Yu et al. 181



different heights and rotations. The processing rate is
21 frames per second.

To make the evaluation of the model robustness one
step further, we use the MAV shown in Figure 6 to test
the landing system with respect to different landmarks.
The MAV takes off near the landmark to 4 m. When
the landmark is detected, the vision-based landing
system manipulates the MAV to autonomously land
to the landmark region. All the actions in our test are
performed by the MAV automatically. We test four
flights for each landmark, and measure the horizontal
distance between the MAV center to the landmark
center in x and y axis. The position errors (ex and ey)
are recorded in Table 3.

We can see from Table 3 that the position errors are
acceptable for practical landing, because they are rela-
tively small compared with the landmark size 50 cm �
50 cm. One reason for the position errors is that we
assume the roll and pitch angles of the MAV to be zero
during the MAV landing for the purpose of making
condition controlled evaluations. This assumptive

constraint causes some position measuring errors that

do not arise from the detection model. Although suf-

fering from these artificial errors, the MAV can still

automatically land within the landmark region safely.

Evaluation of the robustness of the landmark

detection model for different illumination intensities

In this set of experiments, 100 variously illuminated

images for each landmark category are used for vali-

dation. Specifically, we generate different lighting sit-

uations by changing the brightness value of test images.

The brightness values of the 100 images are set to be

from 10 to 90 to test our landmark detection model.

Visual results are shown in Figure 11. Experimental

observations reveal that the detection results are

stable for the MAV landmark navigation under various

light conditions.

Evaluation of the robustness of the landmark

detection model for different background

environments.

To make the empirical evaluation of our model one

step further, we test the detection performance of our

method for detecting landmarks in different back-

grounds. Specifically, we perform experiments on the

videos captured in four different background

Table 3. Position errors.

Mean Variance Max Min

ex 8.20 cm 14.88 14.35 cm 2.85 cm

ey 9.11 cm 9.13 12.36 cm 4.05 cm

(a) (b)

(c) (d)

Figure 11. The detection results for the images with different brightness values: (a) the brightness value is 10; (b) the brightness
value is 30; (c) the brightness value is 70; (d) the brightness value is 90.

182 International Journal of Micro Air Vehicles 10(2)



environments with the on-board camera. Two videos

are captured outdoors, and the other two are captured

indoors. We use 200 images captured in each environ-

ment to test our model. The results are shown in

Figure 12 and Table 4. The experimental results vali-

date that our landmark detection model is able to

detect landmarks under various environments.

Evaluation of the efficiency of the landmark

detection model

To make a quantitative comparison between our

method and alternative state-of-the-art methods, we

train the tiny models of Yolo17 and Yolo v218 based

on the same training dataset as that of our model. We

then test the three trained models in terms of average

IoU and processing rate (i.e. processed frames per

second). The experiments are performed based on the

same image frames as those in the first set of experi-

ments. The comparison results are shown in Table 5.

We observe that though the Yolo methods are slightly
better in terms of accuracy, our model is much more
efficient. The MAVs usually have limited computing
resources on board (e.g. Manifold), which make the
Yolo methods hardly achieve real-time implementa-
tion. On the other hand, our model achieves efficient
implementation, which enables practical MAV on-
board computation.

The usage of the CPU and memory the detection
procedure is reported in Table 6. The landmark detec-
tion image processing algorithms use 3/4 of computing
resources. Therefore, it allows more accurate control

(a) (b)

(c) (d)

Figure 12. The landmark in various environments: (a) and (b) are indoor environments; (c) and (d) are outdoor environments.

Table 4. Results for evaluating the detection model for different background environments.

T-shaped H-shaped Square landmark Circle landmark Combined landmark

Number of test frames 800 800 800 800 800

Correctly recognized frames 786 789 796 798 790

Detection accuracy 98.25% 98.625% 99.5% 99.75% 98.75%

Average time cost 47.62 ms 47.36 ms 47.25 ms 47.93 ms 48.32 ms

Table 5. Comparison in terms of accuracy and efficiency.

Yolo Yolo v2 Our model

IoU 84.24% 89.29% 83.70%

Frames per second 7.5 5.3 21

IoU: intersection over union.

Yu et al. 183



algorithms to execute during the landing procedure,

which provides a possible route for improving the land-

ing accuracy.
These experiments validate that our CNN model can

not only detect the various landmarks, but also pro-

duce correct detections under different conditions. We

put the detection results in video forms on the URL

https://youtu.be/fifCK6BeDH8 for public observation.

It is clear that our method is robust and efficient to

process landmark information for guiding the MAV

autonomous landing.

Conclusions

We have introduced a novel vision guided MAV auton-

omous landing system based on deep learning.

Specifically, we have made three novel contributions.

First, we have incorporated a modified SqueezeNet

architecture into the Yolo scheme to develop a simpli-

fied CNN for detecting landmarks. Second, we have

designed a separative implementation strategy which

leverages the complex CNN training and the instant

CNN detection. We have tested our novel framework

in both synthesized and real-world environments and

validated its effectiveness for MAV autonomous

landing.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial sup-

port for the research, authorship and/or publication of this

article: This work was supported by National Natural Science

Foundation of China (Grant No.: 61671481 and 61701541),

Shandong Provincial Natural Science Foundation(Grant No.:

ZR2017QF003), Qingdao Applied Fundamental Research

Project (Grant No.: 16-5-1-11-jch), the Royal Society of

Edinburgh and National Natural Science Foundation of

China joint project 2017-2019 (Grant No.: 6161101383) and

the Fundamental Research Funds for Central Universities

(Grant No.:15CX05042A and 16CX05004B).

References

1. Geng L, Zhang Y, Wang J, et al. Mission planning of

autonomous UAVs for urban surveillance with evolu-

tionary algorithms. In: IEEE international conference on

control and automation, 2013, pp.828–833.
2. Yang S, Scherer SA and Zell A. An onboard monocular

vision system for autonomous takeoff, hovering and

landing of a micro aerial vehicle. J Intell Robot Syst

2013; 69: 499–515.
3. Tang D, Li F, Shen N, et al. UAV attitude and position

estimation for vision-based landing. In: International con-

ference on electronic and mechanical engineering and infor-

mation technology, 2011, pp.4446–4450.
4. De Croon G, Ho H, De Wagter C, et al. Optic-flow based

slope estimation for autonomous landing. Int J Micro Air

Vehicles 2013; 5: 287–297.
5. De Croon G, De Clercq K, Ruijsink R, et al. Design,

aerodynamics, and vision-based control of the delfly.

Int J Micro Air Vehicles 2009; 1: 71–97.
6. Tsai AC, Gibbens PW and Stone RH. Terminal phase

vision-based target recognition and 3D pose estimation

for a tail-sitter, vertical takeoff and landing unmanned

air vehicle. In: Advances in image and video technology.

2006, pp.672-681.
7. Saripalli S, Montgomery JF and Sukhatme G. Visually

guided landing of an unmanned aerial vehicle. IEEE

Trans Robot and Autom 2003; 19: 371–380.
8. Lin F, Chen BM and Tong HL. Vision aided motion

estimation for unmanned helicopters in GPS denied envi-

ronments. In: Cybernetics and intelligent systems. 2010,

pp.64–69.
9. Verbandt M, Theys B and De Schutter J. Robust marker-

tracking system for vision-based autonomous landing of

vtol UAVs. In: International micro air vehicle conference

and competition, 2014, pp.84–91.
10. Jung Y, Lee D and Bang H. Close-range vision naviga-

tion and guidance for rotary UAV autonomous landing.

In: IEEE international conference on automation science

and engineering, 2015, pp.342–347.
11. Fan Y, Haiqing S and Hong W. A vision-based algo-

rithm for landing unmanned aerial vehicles. In:

International conference on computer science and software

engineering, 2008, pp.993–996.
12. Carrio A, Sampedro C, Rodriguez-Ramos A, et al.

A review of deep learning methods and applications for

unmanned aerial vehicles. J Sensor 2017;2: 1–13.
13. Felzenszwalb PF, Girshick RB, McAllester D, et al.

Object detection with discriminatively trained part-

based models. IEEE Trans Pattern Anal Mach Intell

2010; 32: 1627–1645.
14. Girshick R, Donahue J, Darrell T, et al. Rich feature

hierarchies for accurate object detection and semantic

segmentation.In:IEEE conference on computer vision and

pattern recognition, 2014, pp.580–587. IEEE conference

on computer vision and pattern recognition, 2014, pp.2014.

15. Dai J, Li Y, He K, et al. R-FCN: object detection via

region-based fully convolutional networks. In: Advances

in neural information processing systems, 2016, pp.379–387.

Table 6. CPU and memory usage. CPU: central processing unit.

CPU1 CPU2 CPU3 CPU4 Memory usage

79% 74% 68% 68% 1407 MB/1892 MB

184 International Journal of Micro Air Vehicles 10(2)

https://youtu.be/fifCK6BeDH8


16. He K, Gkioxari G, Dollár P, et al. Mask R-CNN. 2017,
arXiv preprint arXiv:1703.06870.

17. Redmon J, Divvala S, Girshick R, et al. You only look
once: unified, real-time object detection. In: IEEE confer-

ence on computer vision and pattern recognition, 2016,
pp.779–788.

18. Redmon J and Farhadi A. Yolo9000: better, faster,
stronger. 2016, arXiv preprint arXiv:1612.08242.

19. Simonyan K and Zisserman A. Very deep convolutional
networks for large-scale image recognition. 2014, arXiv
preprint arXiv:1409.1556.

20. He K, Zhang X, Ren S, et al. Deep residual learning for
image recognition. In: Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016, pp.770-
778.

21. Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4,
inception-resnet and the impact of residual connections
on learning. In: AAAI. 2017, pp.4278-4284.

22. Iandola FN, Han S, Moskewicz MW, et al. Squeezenet:
Alexnet-level accuracy with 50x fewer parameters

and< 0.5 mb model size, 2016, arXiv preprint
arXiv:1602.07360.

Yu et al. 185


	table-fn1-1756829318757470
	table-fn2-1756829318757470

