
Self-produced Guidance for Weakly-supervised

Object Localization

Xiaolin Zhang1, Yunchao Wei2, Guoliang Kang1, Yi Yang1, Thomas Huang2

1 CAI, University of Technology Sydney, NSW, Australia
{Xiaolin.Zhang-3@student.,Guoliang.Kang@student.,Yi.Yang@}uts.edu.au

2 University of Illinois Urbana-Champaign, IL, USA
{yunchao,t-huang1}@illinois.edu

Abstract. Weakly supervised methods usually generate localization re-
sults based on attention maps produced by classification networks. How-
ever, the attention maps exhibit the most discriminative parts of the ob-
ject which are small and sparse. We propose to generate Self-produced
Guidance (SPG) masks which separate the foreground i.e. , the object
of interest, from the background to provide the classification networks
with spatial correlation information of pixels. A stagewise approach is
proposed to incorporate high confident object regions to learn the SPG
masks. The high confident regions within attention maps are utilized
to progressively learn the SPG masks. The masks are then used as an
auxiliary pixel-level supervision to facilitate the training of classification
networks. Extensive experiments on ILSVRC demonstrate that SPG is
effective in producing high-quality object localizations maps. Particu-
larly, the proposed SPG achieves the Top-1 localization error rate of
43.83% on the ILSVRC validation set, which is a new state-of-the-art
error rate.

Keywords: Object Localization, Weakly Supervised Learning

1 Introduction

Weakly Supervised Learning (WSL) has been successfully applied on many tasks,
such as object localization [5, 6, 11, 13, 26, 35, 44], relation detection [40] and
semantic segmentation [32–34, 36, 37]. WSL attracts extensive attention from
researchers and practitioners because it is less dependent on massive pixel-level
annotations. In this paper, we focus on Weakly Supervised Object Localization
(WSOL) problem.

Existing WSOL methods locate target object regions using convolutional
classification networks. Classification networks recognize various kinds of ob-
jects by identifying discriminative regions of an objects. Fully convolutional net-
works [17] without using fully connected layers can preserve the relative positions
of pixels. Therefore, the discovered discriminative regions can indicate the exact
location of the target objects. Zhou et al. revisited classification networks (e.g.
AlexNet [12], VGG [25] and GoogleNet [27, 28]) and proposed a Class Activa-
tion Maps (CAM) approach to find the regions of interest using only image-level
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Fig. 1. Learning process of Self-produced guidance. Given an input image, we first
generate corresponding attention map with a classification network. Then the attention
map is roughly split, following the rule that the region with high confidence should be
the object, whereas that with low confidence should be background. The regions with
medium confidence remain undefined. All these three regions constitute the seed. Self-
produced guidance is defined as the multi-stage pixel-level object mask supervised by
the seed.

supervision. Following [14], CAM replaced the top fully connected layers by
convolutional layers to keep the object positions and can discover the spatial
distribution of discriminative regions for different classes. The key weakness of
the localization maps generated by CAM is that only the most discriminative
regions are highlighted, as a result we can only locate a small part of target
objects. To cope with the weakness, Wei et al. [32] proposed to apply additional
networks for enriching object-related regions, given images of which the most
discriminative regions are erased according to the attention maps from a pre-
trained network. Moreover, Zhang et al. [43] proved the CAM method can be
simplified to enable end-to-end training. Armed with this proof, an Adversarial
Complementary Learning approach was proposed in [43] by incorporating one
additional classifier for mining complementary object regions, which can finally
produce accurate object localization maps. However, all these methods ignore to
explore the correlations among pixels.

We observe that images can be roughly divided into foreground and back-
ground regions. The foreground pixels usually constitute the object(s) of inter-
ests. We found that attention maps inferred from classification networks [32,43,
45] can effectively provide the probabilities of each pixel to be foreground or back-
ground. Although pixels of high foreground/background probabilities may not
cover the entire target object/background, they still provide the important cues
for getting some common patterns of target objects. Based on this, we can simply
leverage those reliable foreground/background seeds as supervision to encourage
the network to sense the distributions of foreground objects and background re-
gions. Since pixels with correlations (e.g. within a same object or background)
often share similar appearance, more reliable foreground/background pixels can
be easily discovered by learning from the discovered seeds. With more reliable
guided pixels for supervision, the entire foreground objects can be gradually
distinguished from background, which will finally benefit the weakly object lo-
calization.
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Inspired by the above motivation, in this paper, we propose a Self-produced
Guidance (SPG) approach for learning better attention maps and getting pre-
cise positions of objects. We leverage attention maps to produce the guidance
masks of foreground and background regions in a stagewise manner. The fore-
ground/background seeds of each stage can be generated following a simple
rule: 1) the regions with highly confident scores are considered as foreground;
2) the regions with very low scores are background seeds; 3) the regions with
medium confidence remain undefined. The undefined regions are meant to be
figured out using intermediate features. We adopt a top-down mechanism of us-
ing upper layer’s output as the supervision of the lower layers to learn better
object localizations. The upper layers maintain more abstract semantic infor-
mation, whereas the lower layers have more specific pixel-related information.
We leave the ambiguous area undefined before more regions can be defined as
foreground/background using upper layer features. The more regions be defined,
the stronger ability to define harder regions. After getting the guidance masks
of foreground and background, we use them as auxiliary supervisions. These
supervisions are expected to enable the classification network to learn pixel cor-
relations. Consequently, attention maps can clearly indicate class-specific object
regions. Figure 1 illustrates the learning process of self-produced guidance. Given
an input image, we firstly generate corresponding attention maps through a clas-
sification network according to the convenient method in [43]. Then the attention
map is roughly split into foreground/background seeds and ignored regions. The
self-produced guidance are learned from these seeds with the input of interme-
diate features in a stagewise manner. Finally, the SPG masks of multiple layers
are fused for a more precise and integrate indication of target objects.

To sum up, our main contributions are:

– We propose a stagewise approach to learn high-quality Self-produced Guid-
ance masks which exhibit the foreground and background of a given image.

– We present a weakly object localization method by incorporating self-produced
supervision, which can inspire the classification network discover pixel cor-
relations to improve the localization performance.

– The proposed method achieves the new state-of-the-art with the error rate
of Top-1 43.83% on ILSVRC dataset with only image-level supervision.

We discuss the proposed SPG approach in detail in Section 3. In Section 4, we
empirically evaluate the proposed method on the ILSVRC2016 dataset, showing
that the superiority of SPG in object localization task with only image-level
supervision. We also discuss the further insights of the proposed SPG algorithms
through additional experiments.

2 Related Work

Convolutional neural network has been widely used in object detection and lo-
calization tasks [3, 8, 10, 18, 25, 42]. One of the earliest deep networks to detect
objects in a one-stage manner is OverFeat [23], which employs a multiscale and
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sliding window approach to predict object boundaries. These boundaries are then
applied for accumulating bounding boxes. SSD [16] and YOLO [20] used a sim-
ilar one-stage method, and these detectors are specifically designed for speeding
up the detection process. Faster-RCNN designed by Ren et al. [21] has achieved
great success in the object detection task. It generates region proposals and pre-
dicts highly reliable object locations in an unified network in real time. Lin et

al. [15] presented that the performance of Faster-RCNN can be significantly
improved by constructing feature pyramids with marginal extra cost.

Although these approaches are considerably successful in detecting object
of interest in images, the vast number of annotations are unaffordable for train-
ing such networks with limited budget. Weakly supervised methods alleviate this
problem by using much cheaper annotations like image-level labels. Jie et al. [11]
proposed a self-taught learning framework by firstly selecting some high-response
proposals, and then finetuning the network on the selected regions to progres-
sively improve its detection capacity. This method highly rely on region proposals
pre-processed by algorithms like Selective Search [30]. The general-purpose pro-
posal algorithms may not robust to produce accurate bounding boxes. Dong et

al. [5] adopted two separate networks to jointly refine the region proposals and
select positive regions. High-quality attention maps are also critical for object
detection and segmentation [19]. Diba et al. [4] proposed the attention maps can
be leveraged to produce region proposals. With the assistance of these proposals,
more detailed information can be easily detected.

However, these methods introduces extra computational as a result of using
pre-processed region proposals and multiple networks. Zhou et al. [44] discovered
that the localization maps for each class can be produced by aggregating top-
level feature maps using a class-specific fully connected layer. Zhang et al. [41]
introduced a different backpropagation scheme to produce contrastive response
maps by passing along top-down signals downwards. However, this method su-
pervised by solely using image labels tends to only discover a small part of the
target objects. Wei et al. [32] applied a similar but more efficient approach to
hide discriminative regions under the guidance of a pre-trained network, and
then the processed images are trained for discovering more regions of interest.
These methods increases the amount of images, thus they need much more pre-
cious computational and time resources to train the networks. Zhang et al. [43]
provided theoretical proof of producing class-specific attention maps during the
forward pass by just selecting from the last layer feature maps, which enables the
end-to-end attention learning. Also, they proposed the ACoL approach [43] to
efficiently mine the integral target object in an enhanced classification network.

3 Self-produced Guidance

3.1 Network Overview

We denote the image set as I = {(Ii, yi)}
N−1

i=0
, where yi = {0, 1, ..., C − 1} is the

label of the image Ii, N is the number of images and C is the number of image
classes. Fig. 2 illustrates the architecture of the SPG approach, which mainly has
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Fig. 2. Overview of the proposed SPG approach. The input images are processed by
Stem to extract mid-level feature maps, which are then fed into SPG-A for classification.
Attention map is then inferred from the classification network. Self-produced guidance
maps are gradually learned with the guide of the attention map. SPG-C utilizes the
self-produced guidance map as an auxiliary supervision to reinforce the quality of the
attention map. GAP refers to global average pooling

four different components, including Stem, SPG-A, SPG-B and SPG-C. Differ-
ent components have different structures and functionalities. We use lowercase f
to denote functions and capital F to denote output feature maps. Stem is a fully
convolutional network denoted as fStem(Ii, θ

Stem), where θStem is the param-
eters. The output feature maps of fStem is denoted as FStem. fStem acts as a
feature extractor, which takes the RGB images as input and produces high-level
position-aware feature maps of multiple channels. The extracted feature maps
FStem are then fed into the following component SPG-A. We denote the SPG-A
component as fA(FStem, θA), which is a network for image-level classification.
fA(FStem, θA) is consisted of four convolutional blocks (i.e. A1, A2, A3 and A4),
a global average pooling (GAP) layer [14] and a softmax layer. A4 has one con-
volutional layer with kernel size 1×1 of C filters. These filters are corresponding
to the attention maps of each class, so as to generate attention maps during the
forward pass [43]. SPG-B is leveraged to learn Self-produced guidance masks by
using the seeds of foreground and background generated from attention maps.
The high confident regions within attention maps are extracted to perform as
supervision to learn better object regions. SPG-B leverages the intermediate
feature maps from the classification network SPG-A to predict Self-produced
Guidance masks. Particularly, the output features maps FA1 and FA2 of A1
and A2 are fed into the two blocks in SPG-B, respectively. Each block of SPG-B
contains three convolutional layers followed by a sigmoid layer, where the first
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layer is to adapt the different number of channels in feature maps FA1 and FA2.
The output of SPG-B are denoted as FB1 and FB2 for the two branches, respec-
tively. The component SPG-C uses the auxiliary SPG supervision to encourage
the SPG-A to learn pixel-level correlations. SPG-C contains two convolutional
layers with 3× 3 and 1× 1 kernels, followed by a sigmoid layer.

3.2 Self-produced Guidance Learning

Attention maps generated from classification networks can only exhibit the most
discriminative parts of target objects. We propose to generate Self-produced
Guidance (SPG) masks which separate the foreground, i.e. the object of in-
terest, from the background to provide the classification networks with spatial
correlation information of pixels. The generated SPG masks are then leveraged
as auxiliary supervision to encourage the networks to learn correlations between
pixels. Thus, pixels within the same object will have the same responses in fea-
ture maps. As the detailed information (i.e. object edge and boundary) is usually
very abstract in the top-level feature maps, we employ the intermediate features
to produce precise SPG masks. Indeed, some previous works use low-level feature
maps to learn object regions [9,38]. These approaches require pixel-level ground-
truth labels as supervision. Differently, we propose to use self-produced guidance
by incorporating high confident object regions within attention maps. In detail,
for any image Ii, we firstly extract its attention map O by simply from a classi-
fication network. We observe that the attention maps usually highlight the most
discriminative regions of object. The initial object and background seeds can be
easily obtained according to the scores in the attention maps. In particular, the
regions with very low scores are considered as background, while the regions with
very high scores are foreground. The rest regions are ignored during the learning
process. We initialize the SPG learning process by these seeds. B2 is supervised
by the seed map and it can learn the patterns of foreground and background. In
this way, the pixels within the ignored regions are gradually recognized. Then,
we use the same strategy to find the foreground and background seeds in the
output map of B2, which are used to train the B1 branch. In such a stagewise
way, the intermediate information of the neural network are employed to learn
the Self-produced Guidance.

We formally define this process as follows. Given a input image of size W×H,
we denote the binarized SPG mask M ∈ {0, 1, 255}W×H , where Mx,y = 0 if the
pixel at xth row and yth column belongs to background regions, Mx,y = 1 if
it belongs to object regions, and Mx,y = 255 if it is ignored. We denote the
attention map as O. The produced guidance masks can be calculated by

Mx,y =











0 if Ox,y < δl, 0 < δl < 1

1 if Ox,y > δh, 0 < δh < 1

255 if δl ≤ Ox,y ≤ δh, 0 < δl < δh < 1

(1)

where δl and δh are thresholds to identify regions in localization maps as back-
ground and foreground, respectively.
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We adopt an stagewise approach to gradually learn the high-quality self-
produced supervision maps. B2 is applied to learn better self-produced maps
supervised by the seed map MA. In training, only the positions labeled as 0 and
1 in the self-produced maps are served as pixel-level supervision. The pixels with
values of 255 are temporarily ignored. The ignored pixels do not contribute to
the loss and their gradients do not back-propagated. The network will learn the
patterns from the already labeled pixels and then more regions will be recog-
nized, because the pixels belonging to background or objects usually share much
correlation. For example, the regions belong to the same object usually have the
same appearance. The output of B2 is then further applied as attention maps,
and better self-produced supervision masks can be calculated using the same
policy in Eq. (1). After obtaining output maps of B1 and B2, these two maps
are fused to generated our final self-produced supervision map. Particularly, we
calculate the average of the two maps, then generate the self-produced guidance
Mfuse according to Eq. (1).

The generated self-produced guidance is leveraged as pixel-level supervision
for the classification network SPG-A. Thereby, the classification network will
learn the correlation among pixels, and we will obtain better localization maps.
The entire network is trained in an end-to-end manner. We adopt the cross-
entropy loss function for the classification learning and self-produced guidance
learning. Algorithm 1 illustrates the training procedure of the proposed SPG
approach.

Algorithm 1: Training algorithm for SPG

Input: Training data I = {(Ii, yi)}
N
i=1, threshold δl and δh

1: while training is not convergent do
2: Update feature maps FA4 ← fA(fStem(Ii, θ

Stem), θA)
3: Extract localization map O from FA4 according to image label yi
4: Calculate the seeds of foreground/background MA according to Eq. (1)
5: Generate the SPG map FB2 ← fB2(FA2, θB2)
6: Calculate the next stage SPG maps FB1

7: Calculate the fused maps F fuse by averaging FB1 and FB2

8: Calculate the fused SPG masks Mfuse ← F fuse according to Eq. (1)
9: Update the entire network θStem, θA, θB and θC supervised by M and yi
10: end while

Output: Output the localization map O

During testing, we extract the attention maps according to the class with the
highest predicted scores, and then resize the maps to the same size with the orig-
inal images by bilinear interpolation. For a fair comparison, we apply the same
strategy utilized in [44] to produce object bounding boxes based on the gener-
ated object localization maps. In particular, we firstly segment the foreground
and background by a fixed threshold. Then, we seek the tight bounding boxes
covering the largest connected area in the foreground pixels. The thresholds for
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generating bounding boxes are adjusted to the optimal values using grid search
method. For more details please refer to [44].

3.3 Implementation details

We evaluate the proposed SPG approach by modifying the Inception-v3 net-
work [29]. In particular, we remove the layers after the second Inception block, i.e.
, the third Inception block, pooling and linear layer. For a fair comparison, we
build a plain version network, named SPG-plain. We add two convolutional lay-
ers of kernel size 3 × 3, stride 1, pad 1 with 1024 filters and a convolutional
layer of size 1 × 1, stride 1 with 1000 units (200 for CUB-200-2011). Finally,
a GAP layer and a softmax layer are added on the top. We update the plain
network by adding two components (SPG-B and SPG-C). The first layers of B1
and B2 are convolutional layers of kernel size 3 × 3 with 288 and 768 filters,
respectively. The second layers are convolutional layers of 512 filters followed by
a 1×1 convolutional output layer. The second and third layers share parameters
between B1 and B2. The strides are 1 for all convolutional layers. To keep the
resolution of feature maps, we set the pad to 1 to the filters whose kernel size is
3× 3. SPG-C is consist of two convolutional layers of kernel size 3× 3 with 512
filters and a output convolutional layer with kernel size of 1× 1. All branches in
SPG-B and SPG-C connects to a output sigmoid layer. We use the pre-trained
weights on ILSVRC [22]. Following the baseline methods [26, 44], input images
are randomly cropped to 224 × 224 pixels after being reshaped to the size of
256× 256. During testing, we directly resize the input images to 224× 224. For
classification results, we average the class scores from the softmax layer with 10
crops (4 corners plus center, same with horizontal flip).

We implement the networks using PyTorch. We finetune the networks with
the initial learning rate of 0.001 (0.01 for the added layers) on ILSVRC, and it
is decreased by a factor of 10 after every epoch. The batch size is 30 and the
weight decay is 0.0005. The momentum of the SGD optimizer is set to 0.9. We
randomly sample some images and visualize their localization maps. We adjust
δh to mine object seeds. The object seeds should include as much object pixels
as possible while exclude background pixels. Similarly, δl can be adjusted so
that the background seeds should be as large as possible while exclude object
regions. We choose the parameters for B1 are δh = 0.5 and δl = 0.05, and
the parameters for B2 are δh = 0.7 and δl = 0.1. We train the networks on
NVIDIA GeForce TITAN 1080Ti GPU with 11GB memory. Code is available at
https://github.com/xiaomengyc/SPG.

4 Experiments

4.1 Experiment setup

Dataset and evaluation We evaluate the Top-1 and Top-5 localization accu-
racy of the proposed approach. We mainly compare our approach with other

https://github.com/xiaomengyc/SPG
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Table 1. Localization error on ILSVRC validation set (* indicates methods which
improve the Top-5 performance only using predictions with high scores).

Methods top-1 err. top-5 err.

Backprop on VGGnet [24] 61.12 51.46
Backprop on GoogLeNet [24] 61.31 50.55
AlexNet-GAP [44] 67.19 52.16
VGGnet-GAP [44] 57.20 45.14
GoogLeNet-GAP [44] 56.40 43.00
GoogLeNet-HaS-32 [26] 54.53 -
VGGnet-ACoL [43] 54.17 40.57
GoogLeNet-ACoL [43] 53.28 42.58

SPG-plain 53.71 41.81
SPG 51.40 40.00
SPG* 51.40 35.05

baseline methods on the ILSVRC 2016 dataset, as it has more than 1.2 million
images of 1,000 classes for training. We report the accuracy on the validation set
of 50,000 images. We also tested our algorithm on the bird dataset, CUB-200-
2011 [31]. CUB-200-2011 contains 11,788 images of 200 categories with 5,994
images for training and 5,794 for testing. We leverage the localization metric
suggested by [22]. An image has the right predicted bounding box if 1) it has
the right prediction of image label; 2) and its predicted bounding box has more
than 50% overlap with the ground-truth boxes.

Table 2. Localization error on CUB-200-2011 test set (* indicates methods which
improve the Top-5 performance only using predictions with high scores).

Methods top-1 err. top-5 err.

GoogLeNet-GAP [44] 59.00 -
ACoL [43] 54.08 43.49

SPG-plain 56.33 46.47
SPG 53.36 42.28
SPG* 53.36 40.62

4.2 Comparison with the state-of-the-arts

We compare the proposed SPG approach with the state-of-the-art methods on
ILSVRC validation set and CUB-200-2011 test set.

Localization: Table 1 illustrates the localization error of various baseline al-
gorithms on the ILSVRC val set. We observe that our baseline SPG-plain model
achieves 53.71 and 41.81 of Top-1 and Top-5 localization error. Based on the
SPG-plain network, the SPG strategy further reduces the localization error to
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Table 3. Localization/Classification error on ILSVRC validation set with the state-
of-the-art classification results.

Methods top-1 err. top-5 err.

GoogLeNet-SPG-ResNet-50 48.79/26.22 38.93/8.47
GoogLeNet-SPG-ResNet-101 48.15/24.90 38.55/7.80
GoogLeNet-SPG-ResNet-152 47.92/24.39 38.53/7.59

GoogLeNet-SPG-DPN-92 45.06/17.70 37.32/3.83
GoogLeNet-SPG-DPN-98 44.92/17.42 37.34/3.67
GoogLeNet-SPG-DPN-131 44.81/17.08 37.24/3.42
GoogLeNet-SPG-DPN-ensemble 43.83/15.47 36.78/2.70
GoogLeNet-SPG-DPN-ensemble* 43.83/15.47 29.36/2.70

Top-1 51.40 and Top-5 40.00. We illustrate the results on CUB-200-2011 in Ta-
ble 2, the SPG approach achieves the localization error of Top-1 53.36%. Both re-
sults on ILSVRC and CUB outperform the state-of-the-art approach, ACoL [43]
which applied two classifier branches to discover complementary object regions.
Following the baseline methods [43,44], we boost the Top-5 localization error by
repeatedly using the predicted bounding boxes with high classification scores.
We select two bounding boxes from the top 1st and 2nd predicted classes, and
one from the 3rd class. By this way, the Top-5 localization error (indicated by *)
on ILSVRC is improved to 35.05%, and that on CUB-200-2011 is improved to
40.62%. To summarize, the improvement of the plain networks mainly attribute
to the structure of the Inception-v3 network, which can capture larger object re-
gions. The improvement of the SPG networks attribute to the use of the auxiliary
supervision. SPG can encourage the classification network learn more pixel-level
correlations, and as a result of this, the localization performance increases.

Localization performance is restricted by the classification accuracy, because
the calculation of localization overlap only conducts on images which have the
correct prediction of image-level labels. In order to break this limitation, we fur-
ther improve the localization performance by combining our localization results
with the state-of-the-art classification results, i.e. , ResNet [7] and DPN [2],
As shown in Table 3, the localization performance constantly improves with
the classification results getting better. When we use the classification results
from the ensemble DPN method (ensemble of DPN-92, DPN-98 and DPN-131),
which has very low classification error of Top-1 15.47% and Top-5 2.70%, the
localization error decreases to Top-1 43.83% and Top-5 29.36%.

Figure 3 shows the attention maps as well as the predicted bounding boxes
with the proposed SPG on ILSVRC and CUB-200-2011. Our proposed approach
can highlight nearly the entire object regions and produce precise bounding
boxes. Figure 4 visualizes the output of the multiple branches in generating the
self-produced guidances. The attention maps generated from the classification
network are leveraged to produce the seeds of foreground and background. We
can observe the seeds usually cover small region of the object and background
pixels. The produced seed masks (Mask-A) are then utilized as supervision for
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Fig. 3. Illustration of the attention maps and the predicted bounding boxes of SPG
on ILSVRC and CUB-200-2011. The predicted bounding boxes are in green and the
ground-truth boxes are in red. Best viewed in color.
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Localization map Mask-A SPG-B2 SPG-B1 SPG-C

Fig. 4. Output maps of the proposed SPG approach. The localization maps usually
only highlight small region of the object. We extract the seeds of the self-produced
guidance by segmenting the confident regions of the localization maps as foreground
(white) and background (black), and ignore the left regions (grey). These seeds are
applied as supervision to learn better self-produced guidance maps. Finally, the learned
maps are leveraged to encourage the network to improve the quality of the localization
maps.
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Table 4. Localization error on ILSVRC validation data with ground-truth labels.

Methods GT-known loc. err.

AlexNet-GAP [44] 45.01
AlexNet-HaS [26] 41.26
AlexNet-GAP-ensemble [44] 42.98
AlexNet-HaS-emsemble [26] 39.67
GoogLeNet-GAP [44] 41.34
GoogLeNet-HaS [26] 39.43
Deconv [39] 41.60
Feedback [1] 38.80
MWP [41] 38.70
ACoL [43] 37.04

SPG-plain 37.32
SPG 35.31

the B2 branch. With such supervision information, B2 can learn more confi-
dent patterns of foreground and background pixels, and precisely predict the
remaining foreground/background regions where leave undefined in Mask-A. B1
leverages the lower level feature maps and the supervision from B2 to learn
more detailed regions. Finally, the self-produced guidance is obtained by fusing
the two outputs of B1 and B2. This guidance is used as auxiliary supervision to
encourage the classification network learn better attention maps.

4.3 Ablation study

Limitation of the localization accuracy

As calculation of the localization error rate is affected by network’s classifica-
tion performance. We compare the localization performance using ground-truth
labels to eliminate the influence caused by classification accuracy As shown in
Table 4, the proposed SPG outperforms the other approaches. The Top-1 error
of SPG-plain is 37.32%, which is better than other baseline approaches. With
the assistance of the auxiliary supervision, the localization error with ground-
truth labels reduces to 35.31%. This reveals the superiority of the attention maps
generated by our method, and shows that the proposed self-produced guidance
maps can successfully encourage the network learn better object regions.

Effect of the cascade learning strategy

In the proposed method, we learn the self-produced guidance maps in a two-
stage way. The branch B2 is supervised by the guidance maps generated by
the localization maps from SPG-A, while the branch B1 is supervised by self-
produced guidance from the output of B2. In order to verify the effectiveness of
this two-stage method, we break this structure and use the initial seed masks as
supervision for the both branches. As a result, we obtain a higher Top-1 error
rate of 35.58% when providing the ground-truth classification labels. So, we can
conclude that the two-stage structure utilized in SPG-B is useful to generate
better self-produced guidance maps, and it is more effective for generating better
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attention maps. Also, we find it is helpful to share the second and third layers
of B1 and B2. By removing the shared setting, the localization error rate will
increase from 35.31% to 36.31%.

Effect of the auxiliary supervision

We propose to use the self-produced guidance maps as a pixel-level auxiliary
supervision to encourage the classification network to learn better localization
maps using SPG-C. Thus, we remove SPG-C to test whether SPG-C influence the
classification network. After removing SPG-C, the performance becomes worse
with the Top-1 error rate of 36.06% on ILSVRC validation set when providing
ground-truth labels. This reveals that the proposed self-produced guidance maps
is effective to improve the quality of the localization maps by adding auxiliary
supervision with SPG-C. It is notable that, the localization performance with
only using SPG-B is still better than the plain version. So, the branches in
SPG-B can also contribute to the improvement of localization accuracy.

5 Conclusions

In this paper, we proposed the Self-produced Guidance approach for locating
target object regions given only image-level labels. The proposed approach can
generate high-quality self-produced guidance maps for encouraging the classifi-
cation network to learn pixel-level correlations. Thereby, the networks can detect
much more object regions for localization. Extensive experiments show the pro-
posed method can detect more object regions and outperform the state-of-the-art
localization methods.
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