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Abstract: Hydrological responses of catchments to climate change require detailed 

examination to ensure sustainable management of both water resources and natural 

ecosystems. This study evaluated the impacts of climate change on water resource availability 

of a catchment in eastern Australia (i.e. the Manning River catchment) and analyzed 

climate-hydrology relationships. For this evaluation, the Xinanjiang (XAJ) model was used 

and validated to simulate monthly rainfall-runoff relationships of the catchment. Statistically 

downscaled climate data based on 28 global climate models (GCMs) under RCP8.5 scenarios 

were used to assess the impacts of climate changes on the Manning River catchment. Our 

results showed that the XAJ model was able to reproduce observed monthly rainfall-runoff 

relationships with an R
2
   0.94 and a Nash-Sutcliffe Efficiency   0.92. The median 

estimates from the ensemble of downscaled GCM projections showed a slight decrease in 

annual rainfall and runoff for the period 2021-2060 and an increase for the period 2061-2100. 

Annual actual evapotranspiration was projected to increase slightly, while annual soil 

moisture content was predicted to decrease in the future. Our results also demonstrated that 

future changes in seasonal and annual runoff, actual evapotranspiration and soil moisture are 

largely dominated by changes in rainfall, with a smaller influence arising from changes in 

temperature. An increase in the values of high runoffs and a decrease in the values of low 

runoffs predicted from the ensemble of the 28 GCMs suggest increased variability of water 

resources at monthly and seasonal time-scales in the future. A trend of decreasing values in 
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winter runoff and soil moisture content in the future is likely to aggravate possible future 

reductions in water availability in eastern Australia. These results contribute to the 

development of adaptive strategies and future policy options for the sustainable management 

of water resources in eastern Australia. 

 

1. Introduction 

Global increases in atmospheric temperature is intensifying hydrological processes 

(Huntington, 2006; Oki and Kanae, 2006). For example, climate change is associated with 

changes in rainfall (amount, timing and distribution), increase in rates of evapotranspiration 

and changes in other climatic variables, and these changes will be amplified in runoff (Chiew 

et al., 2009; Reshmidevi et al., 2018). As a result, hydrological responses to global climate 

change have been widely studied in recent years. Thus, Menzel and Bürger (2002) predicted a 

trend of decreasing mean runoff for a catchment in Germany, while Su et al. (2017) reported 

that annual average runoff would increase in the 21
st
 century in the upper Yangtze River basin 

in China. By the end of this century, annual runoff is projected to decrease in parts of southern 

Africa, the Middle East and southern Europe, while increased annual runoff is projected to 

occur in high northern latitudes, consistent with large increases in spring and winter rainfall 

under the RCP8.5 scenario (IPCC, 2013). 

Australia has the world’s most variable climate (Manolas, 2010; Stokes et al., 2010) and 

climate change has significantly affected Australian regional water availability and ecosystem 

health (CSIRO, 2016). Eastern Australia, including the majority (ca 80%) of the Australian 



  

4 

 

population, is influenced by large-scale drivers of atmospheric circulation, including the El 

Niño Southern Oscillation, the Indian Ocean dipole and the southern annular mode (Cleverly 

et al., 2016), leading to high variability and the frequent occurrence of extensive droughts and 

floods. For instance, eastern Australia has been subject to considerable climate variability, 

including the Millennium Drought and the two wettest years on record for Australia 

(2010-2011), the latter as a result of two strong La Niña events. While several studies have 

assessed the impacts of climate change on the hydrology of eastern Australia (Chiew et al., 

2009; Vaze and Teng, 2011) there have been few detailed studies of impacts of climate change 

on individual catchments in eastern Australia. Consequently, we examined a catchment 

representative of eastern Australia to provide detailed insight for future options for water 

management. 

In most studies of the impacts of climate change, Global Climate Models (GCMs) have 

been the primary means used for global and regional climate simulations (Reshmidevi et al., 

2018), especially with the large improvements in climate modelling in recent decades (IPCC, 

2014). However, climatic variables simulated from GCMs are often too spatially coarse to be 

used directly in hydrological models (Jiang et al., 2007). Furthermore, archived daily 

sequences simulated by GCMs are currently available only for specific periods (time slices) 

of a few decades (Liu and Zuo, 2012) and for a few GCMs. Therefore, downscaling 

approaches have to be adopted to transform large-scale GCMs outputs to daily time series at 

local and regional scales (Liu and Zuo, 2012; Silberstein et al., 2012). Over the last few 

decades, a series of downscaling methods have been used for this purpose (Ahmed, 2013; 

Diaz-Nieto and Wilby, 2005; Fowler et al., 2007; Frei et al., 2003; Gordon and O’Farrell, 
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1997; Hewitson and Crane, 2006). Dynamical downscaling and statistical downscaling are the 

two basic downscaling methods in the one-way coupling of GCMs and hydrological models 

(Chen et al., 2012; Fowler et al., 2007). Dynamical downscaling models, involving the use of 

regional numerical models that include full sets of physics (Tang et al., 2016), are highly 

computationally demanding and restricted to ‘time slices’, although they have explicit 

physical meanings (Fowler et al., 2007). In contrast, statistical downscaling models are 

relatively computationally efficient and have been widely applied in assessments of impacts 

of regional climate change, particularly in hydrological response assessments (Chen et al., 

2012; Hay and Clark, 2003). Thus, in this study, daily rainfall and meteorological variables 

were downscaled from monthly GCM simulations to specific sites with bias correction 

procedures using a statistical downscaling approach (Liu and Zuo, 2012) and this represents 

the first such application.  

Downscaled climatic variables are adopted as the input data for hydrological models to 

simulate historical and future runoff and to estimate impacts of climate change on runoff 

(Chang and Jung, 2010; Ruelland et al., 2012). In this way, hydrological models are first 

calibrated using observed runoff data, and then the hydrological models are run using 

downscaled climatic data with the same calibrated parameters, and impacts of climate change 

on runoff are estimated using the modelled historical and future runoffs (Chiew et al., 2009; 

Reshmidevi et al., 2018). However, many uncertainties which depend on climate modelling, 

downscaling techniques and simulated hydrologic regimes, are incorporated along the entire 

modeling chain (Chen et al., 2012; Prudhomme et al., 2003). Climatic uncertainty is linked to 

Green House Gas (GHG) emission scenarios and especially to GCMs (Minville et al., 2008). 
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Previous studies have suggested that choosing a single GCM is the main factor contributing to 

the overall uncertainty in climate change impact modelling (Jie et al., 2011; Wilby and Harris, 

2006). Due to the enormous uncertainty caused by the choice of a single GCM, an ensemble 

of multiple GCMs has been adopted in many recent analyses (Tebaldi and Knutti, 2007; 

Zhang and Huang, 2013) and multi-GCMs ensembles appear to provide more comprehensive 

simulations of climatic variables than a single GCM (Knutti et al., 2010). In addition, using 

simulations of a multi-GCMs ensemble may balance out non-stationary biases, which is 

unlikely to be corrected by statistical downscaling approaches (Liu and Zuo, 2012). Therefore, 

a diversity of GCMs (28 from CMIP5 under RCP8.5) will be used in the present study to 

minimize the uncertainty caused by the choice of GCMs.  

The Xinanjiang (XAJ) model, a rainfall-runoff basin model, has been successfully and 

widely used in humid and semi-humid catchments in China as a standard tool for a number of 

hydrological simulation purposes (Jayawardena and Zhou, 2000; Jiang et al., 2007; Xu and 

Singh, 2004; Yao et al., 2014). For example, Tian et al. (2013) used the XAJ model to assess 

impacts of climate change on river high-flows in a basin in China for the near future 

2011–2040. It has also been successfully applied in many other countries including the United 

States, Canada, Germany, Belgium, France, Sweden, Japan and Thailand (Sahoo, 2005; Xu 

and Singh, 2004). For instance, Seiller and Anctil (2014) examined climate change impacts on 

the hydrologic regime of a catchment in Canada using the XAJ model and other lumped 

conceptual models. In addition, the XAJ model has been used across 210 catchments of 

southeast Australia, including the Murray–Darling basin and the south-east coast drainage 

basins that cover the most populated and important agricultural regions of Australia, with 
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NSE values in the calibration periods of greater than 0.6 in 80 percent of these catchments (Li 

et al., 2009; Zhang and Chiew, 2009). Consequently, this study will apply the XAJ model 

forced with statistical downscaling of daily climate data based on 28 GCMs to study the 

hydrological response to climate change in an Australian catchment. 

We aimed to evaluate hydrological responses to climate change in eastern Australia. 

Specifically, using the Manning River catchment as a case study, the objectives of this study 

were to: (1) test the performance of the XAJ model for simulating rainfall-runoff relationship 

of the Manning River catchment; (2) project future changes in simulated runoff, actual 

evapotranspiration and soil moisture content; and (3) identify the importance of different 

climatic variables in explaining future changes in water availability. 

2. Materials and methods  

2.1 Study area 

The Manning River catchment is located on the New South Wales (NSW) mid north 

coast and includes the towns of Taree, Wingham, Gloucester and Walcha, and has a temperate 

climate with summer dominated rainfall (Chiew and Mcmahon, 2002) (Fig. 1). The catchment 

area is approximately 6630 km
2 

with elevation ranging from 12 m to 1591 m (see Fig. 1). 

Mean annual temperature for the study area is 14.9°C, mean annual rainfall is 1052 mm, mean 

annual potential evaporation is 1305 mm, and the runoff coefficient is 0.20 (Zhang et al., 

2013). The Manning River flows for 250 kilometers, rising in the Great Dividing Range to the 

east of the basin, and flowing south-east through a coastal floodplain to Taree where it divides 

in two. The Manning River catchment does not have large groundwater storages providing 
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base flow to the river and the narrow floodplain pockets are the only source of base flow 

(Hughes, 2011). In addition, most of the rivers and creeks in the Manning River catchment are 

unregulated, with no major storages to capture and control flows. As in most unregulated 

rivers, flows are most affected during relatively dry times and this has been identified as one 

of the key water management issues in this catchment when water supply is low and 

consumptive demand high 

(https://www.industry.nsw.gov.au/water/basins-catchments/snapshots/manning). In addition, 

significant decreases in river flows, resulting from below average rainfall, affects the stability 

of the Manning river estuary entrance (Ruprecht and Peirson, 2011). However, very few 

studies regarding hydrological response to climate change have been carried out in the 

Manning River catchment. Thus, this study represents an important step toward the 

assessment of the effects of the changing climate on catchment runoff and can help inform 

future priorities for regional water management of river basin in the context of global climate 

change in eastern Australia. The Manning River gauging station at Killawarra receives 

streamflow from the vast majority of water sources within the Manning EMU (Entitlement 

Management Unit). Therefore, the Manning River catchment above Killawarra gauging 

station was selected as the case study area. 

2.2 Observed data 

Daily rainfall and potential evaporation data were used for hydrological simulation. To 

incorporate the large spatial heterogeneity of rainfall across this catchment, rainfall data from 

30 meteorological stations sites within or close to the catchment were sampled (Fig. 1). The 
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Thiessen polygon method was selected to estimate the mean area rainfall of this catchment 

because this is the most common and effective method for calculating spatial distribution of 

rainfall (Jiang et al., 2007). The method proposed by Abtew (1996) was used to calculate 

potential evapotranspiration (using solar radiation and maximum daily temperature) (Abtew, 

1996). Daily streamflow data of the Killawarra hydrological station were collected from the 

website of the Australian Government Bureau of Meteorology 

(http://www.bom.gov.au/waterdata/). Daily observed hydrological and meteorological data in 

the period from 1991-2016 were used for hydrological model calibration and validation.  

2.3 Statistical downscaling technique 

Monthly gridded rainfall and climate data from GCMs were downscaled to the 

meteorological observation sites at a daily time step using a statistical downscaling model, 

NWAI-WG, developed by Liu and Zuo (2012). This rapid and reliable statistical downscaling 

method consists of two steps to perform spatial and temporal downscaling separately. This 

approach relies on empirical relationships between observational data and GCM outputs. First, 

the monthly gridded climate projections from GCMs were spatially interpolated to specific 

sites of interest (in this case 30 sites within or close to the Manning river catchment, Fig. 1) 

using an inverse distance-weighted (IDW) interpolation method, followed by a bias correction 

procedure to correct site-based monthly GCM simulations. Second, daily climatic variables 

(e.g. maximum and minimum temperatures and rainfall) were then generated for each site 

from the spatially downscaled projections by using a modified version of the WGEN 

stochastic weather generator (Richardson and Wright, 1984) with parameters derived from the 

http://www.bom.gov.au/waterdata/
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bias-corrected monthly data (see Liu and Zuo 2012 for details). The validation carried out by 

Liu and Zuo (2012) has shown that this downscaling method can reproduce the observed 

climatic variables at daily, monthly and annual time-scales well. Unlike other statistical 

downscaling approaches developed in Australia, which have only been applied to either 

specific time periods (Timbal et al., 2009) or small areas (Mehrotra and Sharma, 2010) due to 

data availability or time and cost, this approach can be easily applied to any archived monthly 

GCM data for any site and across multiple time periods as the approach requires only monthly 

GCM data and daily historical climate records. In this research, we applied a post 

downscaling treatment to the NWAI-WG downscaled data. When the downscaled site climate 

data are applied to catchment, the occurrence of inconsistent daily rainfalls between sites can 

result in a) more rainfall days and b) smaller daily rainfall over the catchment and potentially 

poor simulation of the peak flows. In the post downscaling treatment, we selected the central 

station as the reference station and re-downscaled other 29 sites in the catchment to have the 

same rainfall events with the amounts of GCM projected rainfalls for respective sites. This 

method is validate based on the hypothesis that the weather stations are close enough so that 

the rain days are fairly consistent. The catchment area is approximately 6630 km
2
, that is, the 

radius of the study area is around 40 km. Thus, we considered this catchment downscaling 

method is validate for this study. 

This study was focused on the analyses of three periods of simulations: the first 

examined the period 1977-2016 (referred to as ‘immediate past’ or ‘baseline’), the second 

examined the period 2021-2060 (referred to as ‘the near future’ or ‘2040s’), and the third the 

period 2061-2100 (referred to as ‘the far future’ or ‘2080s’). In addition, for baseline and 
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future time periods, hydro-meteorological variables were downscaled from 28 GCMs (Wang 

et al., 2017) of the Coupled Model Intercomparison Project 5 (CMIP5) under the RCP8.5 

scenario. RCP 8.5, a scenario that represents comparatively high greenhouse gas emission 

(Riahi et al., 2011) and matches the current trajectory of GHGs (Fuss et al., 2015; Pagán et al., 

2016). To present the range in projected future climate, monthly, seasonal and annual change 

in maximum and minimum temperatures and rainfall for the 28 GCMs in the near future and 

the far future compared to baseline were computed for the catchment. In addition, monthly, 

seasonal and annual changes in runoff, evapotranspiration and soil moisture for the 28 GCMs 

in the 2040s and 2080s compared to baseline were estimated to show the range in projected 

future hydrological variables. 

2.4 The XAJ model 

The XAJ model is a lumped conceptual rainfall–runoff model with physical-based 

parameters (Zhao et al., 1980). The model is widely used in humid and semi-humid basins in 

China (Hu et al., 2005), and was recently adopted and validated in southeast Australia (Li et 

al., 2012). Furthermore, the XAJ model consistently performs better than four other 

conceptual rainfall-runoff models (the Pitman model of South Africa (Hughes, 2013), the 

Sacramento model of USA (Sorooshian et al., 1993), the NAM model of Denmark (Nielsen 

and Hansen, 1973) and the SMAR model of Ireland (Kachroo, 1992)) even in relatively dry 

catchments (Gan et al., 1997). Therefore, the XAJ model was selected for hydrological 

simulations in the present study. The XAJ model, which uses rainfall and potential 

evapotranspiration data to simulate runoff, actual evapotranspiration and soil moisture content, 
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is divided into four layers: evapotranspiration, runoff production, separation of runoff 

components and flow concentration (Zhao, 1992). Its main feature is the concept of runoff 

formation of repletion of storage, which means that runoff is not produced until the soil 

moisture content of the aeration zone reaches field capacity, and thereafter runoff equals the 

rainfall excess without further loss (Zhao, 1992). The flow chart of the XAJ model is shown 

in Fig. 2 and the model parameters are listed in Table 1. It should be noted that the XAJ model 

used in this study does not consider vegetation and its interaction with the atmosphere. 

However, it has the advantage of fewer input data and simpler application.  

It is crucial for water resource managers to be conscious of and prepared for the impacts 

of climate change on hydrological variables. Therefore, daily hydrological simulations under 

baseline and future scenarios were obtained using the XAJ model driven by downscaled 

climatic variables from 28 GCMs to evaluate the changes in catchment hydrological cycle. 

Runoff, which represents an integrated response to climatic inputs throughout the whole 

drainage basin, is a very important indicator of the impacts of climate change on water 

resources. In addition, climate change will lead to changes in other hydrological variables 

which can also be simulated by the XAJ model. Therefore, changes of actual 

evapotranspiration and soil moisture content were also included in this study. Soil moisture is 

defined as the areal mean tension water storage (W) in the XAJ model (Zhao, 1992). The XAJ 

model was calibrated and validated against river flow data only. We did not calibrate and 

validate the model simulations in actual evapotranspiration and soil moisture content because 

of a lack of field data for these variables. The absolute values of soil moisture content should 

therefore not be used directly. Nevertheless, it is still reasonable and valuable to compare the 
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relative changes in the simulations because the model mimics the actual hydrological 

processes. 

2.5 Parameter estimation and performance evaluation 

There are a lot of missed observed flow data in 1983, 1989 and 1990 at Killawarra 

gauging station. However, observed flow data from 1991-2016 (26 years) are relatively 

complete and continuous and were selected for model calibration and validation. The time 

period for calibration and validation years was determined by the length of the observed data 

record. For sufficiently long periods of observed data that represent different climate 

conditions, it is possible to split the available data equally for calibration and validation. 

However, the observed record (26 years) is not sufficient for an equal split, the length of the 

data may be different in such a way that the calibration period is sufficiently long since 

optimized model parameters during calibration are used for model validation without further 

adjustment (Ayele et al., 2017). Therefore, daily observed and simulated runoff in the period 

1991-2008 (18 years) were used for model calibration and data from 2009-2016 (8 years) 

were used for model validation. A global optimization method, the SCE-UA (shuffled 

complex evolution method developed at the University of Arizona) (Duan et al., 2015), is an 

effective and efficient optimization technique for calibration of watershed models and was 

used to optimize XAJ model parameters. It combines the best features of “multiple complex 

shuffling” and “competitive evolution” based on the simplex search method (Nelder and 

Mead, 1965). The XAJ model is calibrated by maximizing the Nash-Sutcliffe Efficiency (NSE) 

(Nash and Sutcliffe, 1970) of daily flow together with a constraint to ensure that the total 
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modelled flow in the calibration period is within 5% of the total observed flow (Vaze and 

Teng, 2011). NSE and coefficient of determination (R
2
) were used to evaluate the 

performance of the XAJ model. The NSE is one of the most widely used criteria for 

comparing hydrologic model performance with observed values (Le and Pricope, 2017). In 

addition, many studies also used NSE and R
2
 to evaluate the performance of hydrological 

models (Le and Pricope, 2017; Vu et al., 2012). NSE varies from -  to 1. A value of 1 means 

the simulations perfectly match the observations, so the closer the NSE value is to 1, the 

better the hydrological model is deemed to have performed. In general, when both NSE and 

R
2
 exceed 0.50, the hydrological model is deemed to effectively simulate stream flow for a 

given catchment (Liu et al., 2017). The NSE and R
2
 were calculated as follows: 
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where      and      are the observed and simulated daily flow (m
3
/s) respectively,    is 

the mean flow (m
3
/s), i is the ith sample, and N is the number of samples. 

2.6 Regression analyses 

    Prior to the analysis of the simulations we applied a bias-correction procedure, called 

secondary bias correction (Yang et al., 2016) to correct the differences of the simulated 

outputs forced by GCM projected climate over those forced by observed climate. 

A multiple Liner Regression Model (MLRM) was used to quantify the effects of climate 
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variables (maximum and minimum temperatures and rainfall) on hydrologic variables (runoff, 

evapotranspiration and soil moisture). MLRM is a linear model that describes how y-variable 

relates to two or more x-variables (Dar, 2017). The general structure of the model is as given 

below: 

Y=β0+ β1X1+ β2X2+…                                        (3) 

Where, y is the dependent (or response) variable, x is independent (or predictor) 

variable. 

In this study, the model is defined as below: 

ΔY = aΔTmax + bΔTmin + cΔR                                   (4) 

Where ΔY (%) is projected changes in hydrological variables (runoff, actual 

evapotranspiration or soil moisture), ΔTmax (°C), ΔTmin (°C) and ΔR (%) are changes in 

maximum and minimum temperatures and rainfall, respectively. From these regression 

analyses, the contribution of the change in specific climate factors to changes in hydrologic 

variables were quantified. In addition, rainfall elasticity (c, defined here as the proportional 

change in runoff divided by the proportional change in rainfall) can also be derived. 

3. Results 

3.1 XAJ model calibration and validation 

Calibrated parameters for the XAJ model in the Manning River catchment are shown in 

Table 1. Runoff simulations at daily time scale were aggregated to monthly values, and were 

compared with the observed data. Monthly observed runoff and the XAJ model simulated 

runoff for calibration and validation periods in the Manning River catchment were strongly 
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correlated (R
2
   0.94 and NSE   0.92) and closely replicated temporal variation (Figs 3, 4), 

with slopes within 25% of the 1:1 regression. The slope of the regression during the validation 

period was much closer to the 1:1 line than that in the calibration period, which may be 

caused by the slight underestimation of the extremely high runoff observed in the calibration 

period.  

3.2 Projected changes in temperature and rainfall 

Projected maximum and minimum temperatures and rainfall in the future were 

aggregated to monthly and seasonal time scales, and compared with baseline values. All 28 

GCMs used in this study agree on a future temperature rise, with higher temperature increases 

in 2080s than 2040s at both monthly and seasonal time-scales (Figs. 5 and 6). For maximum 

monthly temperatures (Fig. 5a), the largest median increase was 1.6°C (0.9-1.9°C) in 

November by 2040s and 3.8°C (3.5-4.2°C) in September by 2080s, while the lowest median 

increase was 1.1°C (0.9-1.7°C) in March by 2040s and 2.5°C (1.8-3.0°C) in February by 

2080s. The range of uncertainty in brackets indicates the 25th and 75th percentiles of the 28 

GCMs used herein. At seasonal time-scales (Fig. 6a), the maximum temperature was 

projected to increase most in spring in both future periods (the median increase was 1.5°C 

(1.1-1.8°C) in 2040s and 3.4°C (2.8-3.9°C) in 2080s), while increases were lowest in autumn 

in 2040s (1.3°C (0.9-1.6°C)) and in summer in 2080s (2.9°C (2.4-3.4°C)). For temperature 

minima (Fig. 5b and 6b), the median estimate demonstrated the largest increase in May 

(1.9°C (1.6-2.5°C ) in 2040s and 4.9°C (3.7-5.5°C) in 2080s) (autumn (1.7°C (1.4-1.9°C) in 

2040s and 4.1°C (3.3-4.7°C) in 2080s) and the smallest increase in temperature minima in 
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February (1.0°C (0.8-1.3°C) in 2040s and 2.5°C (1.8-3.1°C)) in 2080s (summer (1.2°C 

(0.9-1.3°C) in 2040s and 2.7°C (2.3-3.2°C) in 2080s)) in the future. The median increase for 

maximum temperature at an annual time-scale was 1.4 °C (1.2-1.5°C) by 2021-2060 and 

3.2°C (2.7-3.5°C) by 2061-2100 (Fig. 6a), while median annual minimum temperatures were 

predicted to increase by 1.5°C (1.3-1.7°C) in 2040s and 3.5°C (3.1-4.1°C) in 2080s (Fig. 6b). 

Changes to future rainfall differ across the different GCMs and across seasons, with the 

majority of GCMs simulating increases in November-March rainfall and the majority of 

GCMs simulating decreases in the period of April to October. The largest ensemble median 

increase in rainfall occurred in December (4.2% (-7.6~13.4%) in 2040s and 13.4% 

(-10.9~31.4%) in 2080s), while the largest median decrease occurred in September (-10.6% 

(-20.7~8.1%) in 2040s and -20.7% (-34.0~9.7%) in 2080s) (Fig. 5c). Median spring (-1.7% 

(-13.5~10.0%) in 2040s and 1.4% (-17.4~13.8%) in 2080s) and autumn (-1.1% (-6.0~4.8%) 

in 2040s and 0.7% (-9.3~7.5%) in 2080s) rainfall was projected to have relatively small 

changes in the future. In contrast, median rainfall was projected to have a larger increase in 

summer (4.2% (-3.6~11.7%) in 2040s and 9.1% (-2.9~24.9%) in 2080s) but a decline (-4.0% 

(-13.1~3.1%) in 2040s and -11.7% (-20.9~3.5%) in 2080s) in winter, with larger changes in 

2080s than in 2040s. At annual time-scales, the changes in rainfall, as estimated by the 28, 

ranged from -5.2% (25th percentile) to 4.2% (75th percentile) in 2040s and -9.5% (25th 

percentile) to 10.8% (75th percentile) in 2080s with ensemble median values of -0.3% and 

4.6%, respectively.  
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3.3 Changes in simulated runoff, actual evapotranspiration and soil moisture 

Projected runoff, evapotranspiration and soil moisture content were aggregated to 

monthly and seasonal time-scales, and were compared with baseline data. The largest median 

monthly increase in runoff was 6.9% (-23.2~26.7%) in November by 2040s and 31.1% 

(-2.6~71.4%) in February by 2080s, while the largest median decrease was -16.7% 

(-23.9~13.2%) in June by 2040s and -20.5% (-31.1~4.2%) in July by 2080s (Fig. 7a). Thus, 

the largest monthly runoff is projected to shift from March (during the baseline period; Table 

2) to February in the far future. The lowest runoff in September was simulated to decline (-4.3% 

(-24.2~14.3%) in 2040s and -16.3% (-33.2~3.8%) in 2080s) in the future. The second largest 

runoff, which occurred in the summer in the baseline period, was projected to increase (11.6% 

(-12.8~24.9%) in 2040s and 23.8% (-5.3~46.2%) in 2080s) in the future, whereas the second 

smallest runoff, which currently occurs in winter, was projected to decline (-6.9% 

(-23.0~4.9%) in 2040s and -14.8% (-28.7~-0.06%) in 2080s) in the future (Table 2, Fig. 8a). 

Thus, the largest seasonal runoff which currently occurs in the autumn was predicted to 

change to the summer in 2040s and 2080s. In addition, in 2080s, these monthly and seasonal 

changes generally became larger than those predicted in the 2040s (Fig. 7a and 8a). There 

were considerable differences in the runoff projection of different GCMs (Fig. 7a, 8a). Thus, 

at annual time-scales, runoff change estimated by the 28 GCMs ranged from -10.6% (25th 

percentile) to 8.9% (75th percentile) in 2040s and -17.2% (25th percentile) to 22.0% (75th 

percentile) in 2080s with median values of -2.3% and 7.7%, respectively (Fig. 8a). 

Furthermore, median values in annual runoff in 2080s showed a slight increase compared to 

2040s (Fig. 8a) and this may be related to the increase in rainfall in 2080s (Fig. 6c).  
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There was a wide range in differences among modelled values of actual 

evapotranspiration responses simulated by the 28 GCMs. Median monthly actual 

evapotranspiration was projected to decrease only in August (-2.2% (-5.1~5.1%) in 2040s and 

-4.3% (-13.7~3.7%) in 2080s), September (-4.1% (-11.4~1.3%) in 2040s and -8.9% 

(-21.1~-1.4%) in 2080s) and October (-5.3% (-11.7~-0.4%) in 2040s and -7.4% (-16.9~3.0%) 

in 2080s) (winter/spring), while median seasonal actual evapotranspiration only showed a 

trend of decreasing values (-2.2% (-10.3~2.7%) in 2040s and -3.2% (-15.7~3.7%) in 2080s) in 

spring in the future (Figs. 7, 8). At annual time-scales, actual evapotranspiration change 

estimated by the 28 GCMs ranged from -3.0% (25th percentile) to 3.7% (75th percentile) in 

2040s and -4.3% (25th percentile) to 8.6% (75th percentile) in 2080s with median values of 

0.6% and 1.8% respectively (Fig. 8b). However, the differences in actual evapotranspiration 

changes under different GCMs are smaller than the modelled changes in runoff (Figs. 7a, b 

and Figs. 8a, b). Differences in predicted 40-year mean monthly, seasonal and annual soil 

moisture content resulting from different GCMs were also considerable (Fig. 7c, 8c). 

Furthermore, the median estimate indicated that monthly soil moisture content was projected 

to have a trend of decreasing values (except February (1.5% (-8.8~5.3%))) in 2040s and to 

increase slightly only in December (3.6% (-16.6~14.1%)), January (2.0% (-5.0~9.7%)), 

February (4.1% (-6.2~14.9%)) and March (0.7% (-7.0~12.9%)) in 2080s, while seasonal soil 

moisture was predicted to decrease in 2040s and to increase marginally (0.5% (-7.9~10.7%)) 

only in summer in 2080s. Finally, at annual time-scales, changes in soil moisture content 

simulated by the 28 GCMs ranged from -8.8% (25th percentile) to 0.2% (75th percentile) in 

2040s and -15.5% (25th percentile) to -1.6% (75th percentile) in 2080s with ensemble median 
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values of -4.4% and -5.1% respectively. 

3.4 Relationships among hydrological responses and climate variables 

Relationships among changes in hydrologic variables (runoff, evapotranspiration and soil 

moisture content) and changes in daily maximum and minimum temperatures and rainfall are 

shown in Table 3. Runoff, actual evapotranspiration and soil moisture content were all largely 

dominated by rainfall at annual and seasonal time-scales. At annual time-scales, change in 

runoff was only significantly correlated with change in rainfall, while change in actual 

evapotranspiration was significantly correlated with change in rainfall, and daily maximum 

and minimum temperatures, while soil moisture content was primarily dominated by rainfall 

and daily maximum temperature. Furthermore, correlations of changes in hydrological 

variables to changes in climatic variables were estimated using the multiple regression model. 

For example, runoff could change by 5.1, 7.2, -7.7 and -10.6% in spring, summer, autumn and 

winter, respectively, with an annual change of -4.9%, as a result of an increase of maximum 

temperature of 1.0°C. Annual rainfall elasticity of runoff was about 2.1, that is, a 1% change 

in mean annual rainfall results in a 2.1% change in mean annual runoff in this catchment. 

Finally, the effect of changes in rainfall on actual evapotranspiration was smaller than its 

effect on soil moisture content, and much smaller than its impact on runoff at seasonal and 

annual time-scales. For instance, a 1% change in mean annual rainfall results in a 0.6% and 

0.8% change in mean annual actual evapotranspiration and soil moisture content, respectively, 

in this catchment.  
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4. Discussion 

In this study, hydrological responses to climate change in the Manning River catchment 

were simulated using an ensemble of 28 GCMs and the XAJ model. The overall calibration 

and validation results demonstrated that the XAJ model was able to satisfactorily reproduce 

the observed runoff in this catchment (Figs. 3 and 4), and the calibrated XAJ model can be 

further used to evaluate the impacts of climate change on catchment hydrological variables. 

While the hydrological model was generally able to replicate observed runoff, it might have 

some difficulties in reproducing the extreme high runoff in the calibration period (Fig. 3 and 

4). Similar results in reproducing peak flow also occur in other hydrological models. For 

example, Tian et al. (2013) used three models (GR4J (Perrin et al., 2003), HBV (Lindström et 

al., 1997) and XAJ) to simulate daily discharge and their results demonstrated an 

underestimation of high rates of discharge in all three models. Eum (2017) used the Variable 

Infiltration Capacity (VIC) hydrologic model to simulate daily runoff and found a poor 

capacity to simulate both low flows and very high flows. Thus, difficulties in reproducing the 

highest rates of runoff are common because of the theories of hydrological models and criteria 

of model calibration. This may be attributed to the theory of runoff production (Hao et al., 

2015). For example, the XAJ model assumes that runoff is not generated until soil moisture 

content of the aeration zone reaches field capacity. This assumption may not be valid during 

heavy rain events because these can produce runoff when soils are not fully filled with water 

(unsaturation runoff) due to insufficient infiltration, which is not simulated in the XAJ model 

(only saturation excess runoff is simulated). Therefore, modification of the model structure by 

including unsaturation runoff during heavy rainfall events may lead to improved hydrologic 
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simulations during these periods. 

Our results indicated that the median annual increase for maximum temperature was 

1.4°C (1.2-1.5°C) by 2021-2060 and 3.2°C (2.7-3.5°C) by 2061-2100, while minimum 

temperature was predicted to increase by 1.5°C (1.3-1.7°C) in 2021-2060 and 3.5°C 

(3.1-4.1°C) in 2061-2100. The projected trend of increasing temperature agrees with previous 

studies. For instance, Wang et al. (2017) reported a 3.7°C increase in temperature for RCP8.5 

across the wheat belt in NSW by 2061-2100. Moreover, an ensemble of 12 RCM simulations 

(4 GCMs × 3 RCMs) performed by the NSW and ACT Regional Climate Modelling 

(NARCliM) project projects a 0.7°C rise in mean temperature by 2020-2039 and a 2.0°C rise 

by 2060-2079 in the north coast region of NSW (including the Manning River catchment) 

(www.ccrc.unsw.edu.au/sites/default/files/NARCliM/index.html). However, it should be 

noted that future time periods in our research (2021-2060 and 2061-2100) and the NARCliM 

project (2020-2039 and 2060-2079) are not exactly the same. In addition to temperature, our 

results also showed that median rainfall is projected to have a significant increase in summer 

and a decrease in winter in the future, although the largest rainfall is in the summer and the 

lowest rainfall is in winter in this catchment (Table 2). Therefore, the trend of increasing 

values in high rainfalls and a trend of decreasing values in low rainfalls are likely to generate 

a larger degree of inter-seasonal variation in the Manning River catchment in the future. This 

is generally consistent with previous studies. For example, NARCliM also projects an 

increase in rainfall during summer, autumn and spring and a decrease in winter across the 

north coast region by 2060-2079. In addition, Liu and Zuo (2012) analyzed the changes in 

summer and winter rainfall and found an increase in summer rainfall, whilst winter rainfall 
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has a high probability of decreasing in most areas of New South Wales.  

Our results showed that multi-GCM ensemble median values exhibit a slight decrease 

(-2.3% (-10.6~8.9%)) in annual runoff in 2040s, which is similar to the trend of change in 

previous studies, despite the GCMs, hydrological models, downscaling methods and time 

periods differing across studies. For instance, Chiew and Mcmahon (2002) concluded that the 

annual runoff in catchments on the east coast of Australia could change by  15% by 2030 

relative to 1990. Similarly, Chiew et al. (2003) used the SIMHYD model and the CSIRO 

Mark 2 GCM simulations and found a decrease in mean annual runoff of 6-8% in most of 

eastern Australia in 2021-2050 relative to 1961-1990. Vaze and Teng (2011) used 15 GCMs 

and the median estimate indicates that future mean annual runoff in 2030 relative to 1990 will 

be no change to a slight reduction in the eastern parts of Australia. In addition, median 

estimates suggest a trend of increasing values in summer runoff (the second largest runoff in 

the baseline period) and a trend of decreasing values in winter runoff (the second smallest 

runoff in the baseline period) in the future. Consequently, the trend of increasing values of 

high runoffs and a trend of decreasing values of low runoffs is likely to generate larger 

inter-seasonal differences in the future. This seasonal change in runoff is also consistent with 

previous studies (Chiew et al., 2009; Eisner et al., 2017; Vaze and Teng, 2011). Moreover, 

median estimates show that seasonal soil moisture content is predicted to decrease 

significantly in spring and winter. The projected decrease in runoff and soil moisture in winter 

will threaten surface water supplies and have adverse implications for agriculture (Gardner, 

2009), which has significant implication for land and water resource management in the 

future. 
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Changes in regional temperature and rainfall expected to occur as a result of future 

climate change may have significant impacts on different components of a catchment water 

budget (Nash and Gleick, 1991). Thus, changes in runoff are largely related to variations in 

rainfall (Reshmidevi et al., 2018). In addition, changes in temperature are likely to have 

impacts on runoff production through increasing evapotranspiration from soil and vegetation 

(Wang et al., 2016). Our results suggested that runoff changes are more sensitive to changes in 

rainfall than changes to temperature (Table 3) and this agrees with previous studies (Chiew et 

al., 1995). A case in point is that Chiew and Mcmahon (2002) carried out climate change 

impacts modelling on 28 unimpaired Australian catchments and found that the impact on 

runoff was much more dependent on rainfall than temperature. Rainfall elasticity is a simple 

estimate of the sensitivity of runoff to changes in rainfall, and is particularly useful as an 

initial estimate of climate change impacts on runoff (Chiew, 2006). Thus, it should be noted 

from Table 3 (coefficient “c” for annual runoff is 2.08) that the percentage change in average 

annual rainfall is generally amplified two fold in average annual runoff change, which is also 

in commonly observed in previous research (Chiew, 2006; Sankarasubramanian et al., 2001). 

For example, Jones et al. (2006) estimated the sensitivity of mean annual runoff to climate 

change using 3 models across 22 Australian catchments and results show mean sensitivities of 

2.4%, 2.5% and 2.1% change in mean annual flow for every 1% change in mean annual 

rainfall, respectively. In addition, Table 3 shows that the lowest seasonal rainfall elasticity of 

runoff was observed in spring, and this may be because of the largest ET/P 

(Evapotranspiration/Rainfall) ratio occurring in spring (Table 2), which means spring is a 

relatively dry season in this catchment, and the increase in rainfall is mainly used to evaporate 
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and replenish soil moisture content (Table 3 shows that the highest value of coefficient “c” for 

seasonal actual evapotranspiration and soil moisture occurs in spring). 

In addition to runoff, variation in modelled actual evapotranspiration and modelled soil 

moisture content were also both largely dominated by variation in rainfall and have a weaker 

correlation with changes in temperature at annual and seasonal scales (Table 3). Therefore, 

there was a good correlation between the major components of the water budget and rainfall, 

reflecting the fact that rainfall is the ultimate source of water for the land surface water budget 

(Fekete et al., 2004). However, the effect of variation in rainfall on actual evapotranspiration 

is much smaller than its effect on runoff, in agreement with previous findings (Chiew and 

Mcmahon, 2002). 

Assessments of the impacts of climate change on catchment water budgets are affected 

by the uncertainties in the GCMs, downscaling methods and GHG emission scenarios, as well 

as the uncertainty in the hydrologic model itself. This study used an ensemble of 28 GCMs to 

reduce uncertainties arising from the choice of a single GCM. However, we only used one 

hydrological model to simulate water resource availability, and therefore this may contribute 

some uncertainty because of the choice of model parameters and model structure (Eum, 2017). 

Jiang et al. (2007) applied six, monthly water balance models and found large differences in 

predicted runoff, actual evapotranspiration and soil moisture content among models. 

Consequently, using an ensemble of hydrological models, a larger array of climate projections, 

different downscaling methods and various bias correction algorithms, is recommended to 

provide a full range and probability of future hydrologic simulations (Eum, 2017; Teutschbein 

and Seibert, 2012). In addition, the present study was focused on the Manning River 
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catchment, which although deemed to be representative of such catchments, lacks replication 

at the catchment-scale. Consequently, more catchments will be selected in a following study 

to represent the large range of climate, physical and flow characteristics throughout Australia, 

and to provide insights for future water management. 

5. Summary and conclusions 

This study analysed the hydrologic sensitivity of the Manning River catchment under 

projected climate change scenarios using the XAJ hydrological model driven by statistically 

downscaled climate data from 28 GCMs. For the XAJ model calibration and validation 

periods, the daily NSE were 0.89 and 0.93, and daily R
2
 were 0.93 and 0.93, respectively, 

with monthly NSE   0.92 and monthly R
2
   0.94. Therefore, the XAJ model performed 

satisfactorily in this catchment (NSE and R
2
 were much larger than 0.50). This study explored 

the impacts of climate change on the water balance of the Manning River catchment for 2040s 

and 2080s. Runoff, actual evapotranspiration and soil moisture content were all largely 

dominated by rainfall at annual and seasonal time-scales. Maximum temperature was 

predicted to increase 1.4°C (1.2-1.5°C) and 3.2°C (2.7-3.5°C) in 2040s and 2080s, while 

minimum temperature was predicted to increase 1.5°C (1.3-1.7°C) and 3.5°C (3.1-4.1°C) in 

2040s and 2080s, respectively, as estimated from the median of the 28 GCMs. At an annual 

time-scale, rainfall, runoff, actual evapotranspiration and soil moisture content were projected 

to change -0.3% (-5.2~4.2%) and 4.6% (-9.5~10.8%), -2.3% (-10.6~8.9%) and 7.7% 

(-17.2~22.0%), 0.6% (-3.0~3.7%) and 1.8% (-4.3~8.6%), and -4.4% (-8.8~0.2%) and -5.1% 

(-15.5~-1.6%) in 2040s and 2080s, respectively. Variations at monthly and seasonal 
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time-scales were also analyzed. With the trend of increasing values in high rainfall and runoff, 

and the trend of decreasing values in low rainfall and runoff estimated from the ensemble of 

the 28 GCMs, a larger degree of inter-seasonal variation in the Manning River catchment are 

likely to be generated in the future. In addition, reductions in winter runoff and spring and 

winter soil moisture content in the future are likely to aggravate future water stress for crop 

growth and productivity (Elmahdi, 2015). These results can potentially contribute to the 

development of adaptive strategies and future policy options for the sustainable management 

of water resources in eastern Australia. The research methods used in the Manning River 

catchment of eastern Australia can be further extended to any other catchments and we expect 

our study provides helpful reference for climate change impact assessments on water resource 

management in similar areas. 
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Tables and figures 

Table 1 

16 calibrated parameters for the XAJ model in Manning River catchment.  

Layers Parameters Meaning of parameters (units) Values 

Evapotranspiration 

UM Areal mean tension water capacity in the upper layer (mm) 28 

LM Areal mean tension water capacity in the lower layer (mm） 90 

C Coefficient of deep evapotranspiration 0.023 

Runoff production 

WM Areal mean tension water capacity (mm) 137 

B Exponent of the tension water capacity curve 0.1 

IM Ratio of the impervious to the total area of the basin 0.001 

Separation of 

runoff components 

SM Areal mean of the free water capacity of the surface soil layer (mm) 27 

EX Exponent of the free water capacity curve 0.97 

KG Outflow coefficient of the free water storage to groundwater 0.52 

KI Outflow coefficient of the free water storage to interflow 0.26 

Flow 

concentration 

CI Recession constant of the interflow storage 0.78 

CG Recession constant of groundwater storage 0.996 

CS Recession constant of surface water storage 0.38 

L Lag time (day) 0 

KE Parameters of the Muskingum method (h) 24 

XE Parameters of the Muskingum method 0.43 
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Table 2 

Mean values in climatic and simulated hydrological variables in the baseline period 

(1977-2016) in Manning River catchment. 

Time 

 periods 

Tmax  

(°C) 

Tmin 

 (°C) 

Rainfall  

(mm) 

Runoff 

 (mm) 

Actual 

Evapotranspiration 

 (mm) 

Soil moisture 

content 

 (mm) 

January 26.3  14.7  154.7  18.0  100.3  65.7  

February 25.6  14.6  144.1  27.0  90.7  79.5  

March 24.3  13.0  125.3  28.1  86.5  82.0  

April 21.3  9.8  74.4  18.2  60.8  77.7  

May 17.4  6.9  77.5  19.2  46.1  79.9  

June 14.4  4.6  73.5  19.5  39.4  88.8  

July 13.7  3.1  53.9  17.0  43.6  89.4  

August 15.3  3.7  55.1  15.6  51.9  80.3  

September 18.3  5.8  55.2  11.9  60.1  67.8  

October 21.2  8.7  84.8  14.1  74.3  60.9  

November 23.5  11.0  91.5  12.7  82.1  58.3  

December 25.6  13.2  110.0  13.8  94.9  58.5  

Spring 21.0  8.5  231.5  38.6  216.5  62.4  

Summer 25.9  14.2  408.8  58.8  286.0  67.9  

Autumn 21.0  9.9  277.2  65.5  193.4  79.9  

Winter 14.5  3.8  182.5  52.1  135.0  86.2  
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Annual 20.6  9.1  1100.0  214.9  830.9  74.1  

 

Table 3 

Regression coefficients of projected changes in hydrological variables (ΔY, %) including 

runoff, actual evapotranspiration and soil moisture with changes in daily maximum 

temperature (ΔTmax, °C), daily minimum temperature (ΔTmin, °C) and rainfall (ΔR, %) in a 

multiple linear regression model (ΔY = aΔTmax + bΔTmin + cΔR); *p < 0.05, **p < 0.01, ***p 

< 0.001. 

Hydrologic variables Time periods a b c Adjusted R2 

Δ Runoff 

Annual -4.89  4.50  2.08***  0.85  

Spring 5.10  -5.50  1.46***  0.72  

Summer 7.19*  -8.99*  2.69***  0.89  

Autumn -7.73***  7.37***  1.84***  0.87  

Winter -10.62*  10.28**  1.61***  0.77  

Δ Actual evapotranspiration 

Annual 1.50*  -1.11*  0.55***  0.88  

Spring -2.98*  1.94  0.58***  0.85  

Summer 1.67*  -1.22  0.37***  0.82  

Autumn 1.06  0.56  0.25***  0.53  

Winter -0.35  1.61  0.37***  0.64  

Δ Soil moisture 

Annual -1.64*  -1.08  0.76***  0.90  

Spring -3.84*  -0.23  0.68***  0.88  

Summer -0.05  -1.83*  0.62***  0.88  
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Autumn -3.69**  2.11*  0.52***  0.67  

Winter -4.24*  1.82  0.55***  0.80  

 

 

Fig. 1. The study area of Manning River catchment and location of observation stations 

including weather stations and gauge station. 
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Fig. 2. Flow chart for the XAJ model. The inputs to the model are P (rainfall) and PET 

(potential evapotranspiration), the outputs are Ea (the actual evapotranspiration from the 
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whole catchment, which is the sum of the evapotranspiration from the upper soil layer EU, 

the lower soil layer EL, and the deepest layer ED) and TQ (the outlet discharge from the 

whole catchment), and W (area mean tension water storage, namely soil moisture, which 

is the sum of WU, WL and WD in the upper, lower and deepest layer). The meanings for 

the state variables and parameters appear inside and outside of the blocks in this figure 

can be found in Table 1 and the reference (Zhao, 1992). 

 

Fig. 3. The observed and simulated monthly runoff during calibration (1991-2008) and 

validation periods (2009-2016) in the Manning River catchment. 

 

Fig. 4. Comparison of observed and simulated monthly runoff during (a) calibration and (b) 

validation periods. 
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Fig. 5. Projected changes in maximum temperature (Tmax) (°C), minimum temperature (Tmin) 

(°C) and rainfall (%) in the near future (2021–2060, 2040s) and the far future (2061–2100, 

2080s) under RCP8.5 based on 28 GCMs compared with baseline at monthly time scale. Data 

presented are changes in the 40-year mean values for each of the 28 GCMs. Box boundaries 

indicate the 25th and 75th percentiles; the black lines and crosshairs within the box mark the 

median and mean, respectively; the lower and upper whiskers indicate the 10th and 90th 

percentiles. 

 

 

Fig. 6. Projected changes in maximum temperature (Tmax) (°C), minimum temperature (Tmin) 
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(°C) and rainfall (%) in the near future (2021–2060, 2040s) and the far future (2061–2100, 

2080s) under RCP8.5 based on 28 GCMs compared with baseline at seasonal and annual time 

scales. Data presented are changes in the 40-year mean values for each of the 28 GCMs. Box 

boundaries indicate the 25th and 75th percentiles; the black lines and crosshairs within the 

box mark the median and mean, respectively; the lower and upper whiskers indicate the 10th 

and 90th percentiles. 

 

 

Fig. 7. Projected changes in runoff (%), actual evapotranspiration (%) and soil moisture (%) 

in the near future (2021–2060, 2040s) and the far future (2061–2100, 2080s) under RCP8.5 

based on 28 GCMs compared with baseline at monthly time scale. Data presented are changes 

in the 40-year mean values for each of the 28 GCMs. Box boundaries indicate the 25th and 

75th percentiles; the black lines and crosshairs within the box mark the median and mean, 

respectively; the lower and upper whiskers indicate the 10th and 90th percentiles. 
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Fig. 8. Projected changes in runoff (%), actual evapotranspiration (%) and soil moisture (%) 

in the near future (2021–2060, 2040s) and the far future (2061–2100, 2080s) under RCP8.5 

based on 28 GCMs compared with baseline at seasonal and annual time scales. Data 

presented are changes in the 40-year mean values for each of the 28 GCMs. Box boundaries 

indicate the 25th and 75th percentiles; the black lines and crosshairs within the box mark the 

median and mean, respectively; the lower and upper whiskers indicate the 10th and 90th 

percentiles. 
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Hydrologic impacts of climate change assessed in Manning River basin using XAJ model; 

XAJ model performs satisfactorily with R
2
 and NSE more than 0.94 and 0.92; 

Runoff is projected to increase in summer and decrease in winter; 

Projected changes in water availability are largely dominated by change in rainfall. 

 


