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Abstract. Transfer learning has been emerging recently and gaining more atten-
tion because of its ability to deal with “small labeled data” issue in new markets 
and for new products. It addresses the problem of leveraging knowledge acquired 
from previous domain (a source domain with a large amount of labeled data) to 
improve the accuracy of tasks in the current domain (a target domain with little 
labeled data). Fuzzy rule-based transfer learning methods are developed due to 
the ability to dealing with the uncertainty in domain adaptation scenarios. Alt-
hough some effort is made to develop the fuzzy methods, they only apply the 
knowledge of the labeled data in the target domain to assist the model’s construc-
tion. This work develops a new method that explores and utilizes the information 
contained in the unlabeled target data to improve the performance of the new 
constructed model. The experiments on both synthetic datasets and real-world 
datasets illustrate the effectiveness of our method, and also give the application 
scope of applying it. 

Keywords: Domain adaptation, Transfer learning, Machine learning, Fuzzy 
rules, Regression 

1 Introduction 

Machine learning [1] has gained a great achievement in many areas, such as finance, 
military, entertainment, and so on. And many machine learning methods are developed 
to handle the practical situations [2]. Although these methods work well in some cases, 
there is a big obstacle that impeded the further development of the traditional machine 
learning methods. This obstacle comes from an assumption that the model only works 
well in the condition that the training data and testing data have the same statistical 
characteristics, i.e. the same feature space and distributions. But in the data-shortage 
and rapid-changing environments, the constructed model always has a poor perfor-
mance, and building a new is impossible due to the insufficient labeled data.  

Human own the ability of applying the knowledge acquired previously to solve the 
current task. For example, recognizing an apple will be helpful for identifying a new 
fruit, such as a peach or a pear. Because of this ability, human could continuously ac-
cumulated knowledge and adapt to the new and challenging environment. Transfer 
learning has been emerging recently and becoming more and more popular due to its 
ability of knowledge transfer. 
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There are increased attention focusing on transfer learning [3], and more methods 
are developed to handle the real cases in artificial intelligence to expand the application 
of transfer learning. Some well-known examples of transfer learning include prediction, 
image recognition, recommend systems, and natural language processing. Since the de-
velopment of transfer learning is based on machine learning, many notable machine 
leaning models [6-8] are applied as the basic learning in the transfer leaning methods. 
Additionally, researchers in deep learning exploring the transfer ability of deep models 
[9]. For more information about transfer learning, there are some well-written survey 
papers that summarize the current transfer learning methods and give the clear catego-
ries to review them [10, 11]. 

Although transfer learning exhibits an upward trend, there is still a huge gap between 
existing work and domain adaptation tasks. For instance, most of the current transfer 
learning focus on solving the classification problems, but there is little work on the 
regression tasks in the domain adaptation problems. Additionally, the ignorance of the 
uncertainty phenomenon in the transfer learning problems weak the application scope 
of the current works. Since only little labeled or no labeled data available in the target 
domain, the insufficient information lead to the uncertainty in the learning and model’s 
construction process. However, the application of fuzzy systems in the transfer learning 
problems has shown a good results and light the way of handling the uncertainty issues. 

We have done some work at solving the domain adaptation problems in regression 
tasks using fuzzy rule-based models [12, 13]. We have proposed three algorithms that 
deal with three different fuzzy transfer learning cases separately. In the first case, we 
consider the discrepancy of the distributions in the feature space, which will lead to the 
different conditions of fuzzy rules in the source and target domain. An algorithm of 
changing the input space through mappings is presented to solve the distribution gap 
between two domains. In the second case, other than the feature distributions, consider 
the difference in the output space, and an algorithm of changing the linear functions is 
proposed to adjusting the output space to make it fitted with the target data. The third 
algorithm combines the first two, modifies both the conditions and conclusion of the 
fuzzy rules to make them compatible with the target domain. All the work in these 
papers use the labeled target data to lead the construction of transformation mappings, 
and ignore the data without labels. Here, we propose a new method that explores and 
utilizes the knowledge contained in the unlabeled target data to improve the perfor-
mance of the constructed target model.  

The structure of this work is as follows. Section 2 presents some basic definitions in 
transfer learning, and the learning model applied in our method, Takagi-Sugeno fuzzy 
model. In Section 3, we propose a new method, which uses both labeled and unlabeled 
target data. In section 4, synthetic and real-world datasets are used to analyse the per-
formance of our method and test its effectiveness in dealing with practical situations. 
The final section concludes the paper and outlines future work. 
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2 Preliminary 

Some definitions are introduced first to given the readers the basic knowledge of trans-
fer learning. And then, a fuzzy rule-based system, Takagi-Sugeno fuzzy model, is for-
mulated. 
 
2.1 Transfer Learning 

Definition 1 (Domain) [3]: A domain is denoted by ܦ ൌ ሼܨ, ܲሺܺሻሽ, where ܨ is a feature 
space, and ܲሺܺሻ, ܺ ൌ ሼݔଵ,⋯ ,  .௡ሽ, are the probability distributions of the instancesݔ
Definition 2 (Task) [3]: A task is denoted by ܶ ൌ ሼܻ, ݂ሺ∙ሻሽ, where ܻ ∈ ܴ is the output, 
and ݂ሺ∙ሻ is an objective predictive function. 
Definition 3 (Transfer Learning) [3]: Given a source domain ܦ௦, a learning task ௦ܶ, a 
target domain ܦ௧ , and a learning task ௧ܶ, transfer learning aims to improve learning of 
the target predictive function ௧݂ሺ∙ሻ in ܦ௧ using the knowledge in ܦ௦ and ௦ܶ where ܦ௦ ്
௧ or ௦ܶܦ ് ௧ܶ. 
    Transfer learning uses the knowledge obtained from previous domains (source do-
main) to help build the model for dealing with the tasks in the current domain (target 
domain). 

 
2.2 Fuzzy Rule-based Model 

The basic learning model used here is the Takagi-Sugeno fuzzy model, which consists 
of ܿ rules as follows: 

 If ࢞ is ܣ௜ሺ࢞, ࢜௜ሻ, then ݕ௜ is ܮ௜ሺ࢞, ݅       ௜ሻࢇ ൌ 1,… , ܿ (1) 

where ࢞ is the input, and ݕ௜ is the output of applying the corresponding rule. ࢜௜ is the 
centers of the prototype (cluster), and ࢇ௜ determines the linear functions in the conclu-
sions of the fuzzy rules. Thus, the output of the fuzzy system is ݕ with the following 
representation. 

ݕ  ൌ 	∑ ,௜ሺ࢞ܣ ࢜௜ሻ	
௖
௜ୀଵ ,௜ሺ࢞ܮ  ௜ሻ (2)ࢇ

The construction of the Takagi-Sugeno fuzzy model involves a learning process 
based on a given labeled datasets. First, the data are divided based on Fuzzy C-means 
algorithm, which could help cluster the data and find out the centers of the clusters ࢜௜. 
Based on the ࢜௜, the coefficients of ࢇ௜ are computed through an optimization proce-
dure. 

3 Methodology 

In our previous papers, we proposed the methods of changing the input and output 
spaces of the source domain to fit the current tasks. The labeled target data are used to 
guide the construction of the mappings that connects the domains. But the unlabeled 
target data are not used to help the construction of target model. In the transfer learning 
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scenarios, there are a large amount of target data without labels that also contains much 
information of target domain. Therefore, how to utilize the unlabeled target data is a 
critical step in enhancing the performance of transfer learning between domains.  

In this work, the knowledge contained in the unlabeled target data will be explored 
and applied to improve the performance of the constructed model for the target domain. 
The following steps outline this fuzzy rule-based domain adaptation method, which 
utilizes target data with and without labels for solving the regression tasks in target 
domain. 
 
Step 1: Train a fuzzy model (fuzzy rules) for the source domain. 

In the source domain, a mass of labeled data are available. Suppose the dataset in the 
source domain is denoted as ࡰ ൌ ሼሺ࢞ଵ

௦, ଵݕ
௦ሻ,⋯ , ൫࢞ேೞ

௦ , ேೞݕ
௦ ൯ሽ , where ࢞௞

௦ ∈ ܴ௡  (݇ ൌ
1,⋯ , ௦ܰሻ is an ݊-dimensional variable, ݕ௞

௦ ∈ ܴ is a continuous variable, and ௦ܰ gives 
the number of labeled data. Based on the dataset ࡰ, a supervised learning process is 
executed to train the source model and gain a set of fuzzy rules.  

Referring to the numbers of fuzzy rules in the source and target domains, we want 
to claim that the rules of source domain could be modified and transferred to solve the 
target tasks as if the number of fuzzy rules in the source domain is greater than in the 
target domain. Since the Takagi-Sugeno fuzzy model uses nonlinearly weighted linear 
functions to fit a curve. Each cluster indicates a separate area in the input space, and the 
corresponding linear function represents the action applied in that area. More clusters, 
or fuzzy rules, represents more precise of the partition and action described in the output 
space. Thus, it is reasonable to set an adequate number of fuzzy rules when building a 
Takagi-Sugeno fuzzy model to get good performance. 

We consider two cases here to indicate the relationship of the numbers of fuzzy rules 
in two domains. If the source domain has no less fuzzy rules’ number than the target 
domain, then the fuzzy rules of source domain could be modified and used to handle 
the regression tasks in the target domain. If the source domain has less fuzzy rules’ 
number than the target domain, we could adopt the strategy of retaining the source 
model with rules no less than that in the target domain. Therefore, this also can be 
regarded as a criteria of selecting an appropriate domain from multiple domains for the 
target domain. 

Therefore, determining the fuzzy rules’ number is quite important when building a 
Takagi-Sugeno fuzzy model. Although we claim that using more rules to construct a 
Takagi-Sugeno fuzzy model is reasonable, we still need the prior knowledge to estimate 
the number of fuzzy rules for a specific domain or dataset. Here, we apply the IGMM 
model [14] to find out the data’s structure and provide a guide to determine the number 
of trained rules. IGMM implements the process of mixing Gaussian distributions to fit 
the data distribution, which detects the data structure in the data-based learning process. 
    After analysing the results from IGMM, a model ܯ௦ is trained based on the source 
dataset ࡰ, and a set of fuzzy rules are obtained with formulation as follows: 

 if ࢞௞
௦  is ܣ௜ሺ࢞௞

௦ , ࢜௜
௦ሻ, then ݕ௞

௦ is ܮ௜ሺ࢞௞
௦ , ௜ࢇ

௦ሻ        ݅ ൌ 1,⋯ , ܿ (3) 

There are ܿ fuzzy rules, and each rule is governed by the center of cluster ࢜௜
௦, and 

the linear function ࢇ௜
௦.  
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Step 2: Modify the fuzzy rules of source domain to fit the target tasks. 

The target dataset ࡴ consists of two subsets: ࡴ௅ with labeled data, and ࡴ௎ with un-
labeled data. ࡴ ൌ ሼࡴ௅,ࡴ௎ሽ ൌ ሼ൛ሺ࢞ଵ

௧ , ଵݕ
௧ሻ,⋯ , ൫࢞ே೟భ

௧ , ே೟భݕ
௧ ൯ൟ, ሼ࢞ே೟భశభ

௧ ,⋯ , ࢞ே೟
௧ ሽሽ , where 

࢞௞
௧ ∈ ܴ௡ ሺ݇ ൌ 1,⋯ , ௧ܰሻ is the ݊-dimensional input variable, ݕ௞

௧ ∈ ܴ corresponds to the 
labels for the data in ࡴ௅. The numbers of data in ࡴ௅ and ࡴ௎ are ௧ܰଵ and ௧ܰ െ ௧ܰଵ re-
spectively, and satisfy ௧ܰଵ ≪ ௧ܰ, ௧ܰଵ ≪ ௦ܰ. 

Since the distributions of ሼ࢞ଵ
௦,⋯ , ࢞ேೞ

௦ ሽ  and ሼ࢞ଵ
௧ ,⋯ , ࢞ே೟

௧ ሽ  are different, the model 
trained on ࡰ could not be used to do the prediction tasks in ࡴ.  

We adopt the approach of changing the input space by constructing a mapping be-
tween the input variables between two domains [13]. Different with our previous 
method, which only applies the labeled target data to train the mapping, this work uses 
the information contained in unlabeled target data to enhance the accuracy of the target 
model.  

After the transformation of the mapping in the input space, the fuzzy rules in ܯ௦ are 
changed, and target model ܯ௧ is obtained: 

 if ࢞௞
௧  is ܣ௜ሺ઴ሺ࢞௞

௧ ሻ,઴ሺ࢜௜
௦ሻሻ, then ݕ௞

௧  is ܮ௜ሺሺ઴ሺ࢞௞
௧ ሻ, ௜ࢇ

௦ሻ     ݅ ൌ 1,⋯ , ܿ (4) 

where ઴ is the transformation mapping for the input space. ઴ ൌ ሾΦଵ 	⋯Φ௡ሿ indicates 
that the mapping for each input variable is built separately, and the structures of them 
are the same, which is constructed of network with one hidden layer. The detailed struc-
ture of the mappings could refers to our previous paper [13]. 

To optimize the parameters in ઴, target data with and without labels are used to train 
and modify the existing fuzzy rules. The optimized cost function is:  

 	

ܵ ൌ ඨ
1

௧ܰଵ
	෍ ቆ෍

௜ሺΦሺ࢞௞ܣ
௧ ሻ,Φሺ࢜௜

௦ሻ	ሻ

∑ ௝൫Φሺ࢞௞ܣ
௧ ሻ,Φሺ࢜௝

௦ሻ	൯௖
௝ୀଵ

௜ሺΦሺ࢞௞ܮ
௧ ሻ, ௜ࢇ

௦ሻ െ
௖

௜ୀଵ
௞ݕ
௧ቇ

ଶே೟భ

௞ୀଵ

൅ ଵඨߣ
1

௧ܰଵ ∗ ݄
	෍ ෍ ሺݕ௞

௧ െ ௞ݕ
௧ሺ݈ሻሻଶ ∗ exp	ሺെ‖ݔ௞

௧ െ ௞ݔ
௧ ሺ݈ሻ‖ሻ

௛

௟ୀଵ

ே೟భ

௞ୀଵ
൅	
ଶߣ
2
 ݓ்ݓ	

  (5) 

There are three items in the cost function in (5). The first item focuses on the labeled 
target data, which guides the learning process in a supervised way. The second item 
intend to utilize the unlabeled data to optimize the parameters of the mappings. In the 
regression problems, it is reasonable to assume that the closer data in the input space 
have similar outputs. With this assumption, the outputs of unlabeled target data are 
estimated and considered to be approximate to the output of the nearest instance with 
label. Thus, the ݄-nearest data ሼ࢞௞

௧ ሺ1ሻ⋯࢞௞
௧ ሺ݄ሻሽ in ࡴ௎ are found for each labeled target 

data ࢞௞
௧ , and the corresponding outputs for ሼ࢞௞

௧ ሺ1ሻ⋯࢞௞
௧ ሺ݄ሻሽ are expected to be similar 

with the output of ࢞௞
௧ . exp	ሺെ‖࢞௞

௧ െ ࢞௞
௧ ሺ݈ሻ‖ defines the degree of the closeness to make 

sure that the closer data have more approximate outputs. The third item controls the 
complexity of the constructed prediction model.  
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4 Experiments 

The synthetic datasets are applied first to validate our proposed method, and indicate 
the application scope of it. Secondly, our method is used to solve some real-world do-
main adaptation problems.  

To evaluate this fuzzy method, the performance indexes are given in advance. The 
RMSE is chosen to test the model. In addition, the generalization ability of the con-
structed model is also important, so five-fold cross validation is used in the models’ 
construction process. To keep consistence, when testing the performance of a model in 
solving the target tasks, the target dataset ࡴ௎ is used to estimate the ability of the model 
in fitting target data. 
 
4.1 Experiments on Synthetic Datasets 

Three group of experiments are implemented using the synthetic datasets. We first com-
pare our fuzzy method, the baselines, and some famous methods. The second and third 
groups of experiments are executed to find out the impact of the data’s structure to the 
performance of the proposed method. 

In each group of the experiments, three datasets with different numbers of clusters 
are generated, and each time, two of them are selected as a source domain, where all 
data are labeled, and a target domain, where only 1% data are labeled. 

In the first group of experiments, the proposed method is compared with one base-
line, the source model, and two famous methods in transfer learning, TCA and SA. 
There are three datasets: “3r”, “4r” and “5r”, and “3r” means this dataset is generated 
using three clusters. Since we have three datasets, six experiments are implemented. In 
Table 1, the datasets applied in each experiment are indicated in column one. For ex-
ample, “5r to 4r” means the source and target datasets assigned in this experiment are 
“5r” and “4r”, separately. The second to fifth columns show the RMSE of the four 
methods. 

From Table 1, the performance of our method is better than the baseline, TCA, and 
SA, based on the smaller values of RMSE in the six experiments. 

Table 1. Transferring results in different methods 

Source to target 
RMSE of models 

baseline TCA SA Our method 
5r to 4r 5.23േ0.00 7.88േ0.00 7.58േ0.00 0.68േ0.01 

5r to 3r 3.67േ0.00 4.66േ0.00 4.65േ0.00 1.14േ0.05 

4r to 3r 0.97േ0.00 2.19േ0.00 2.37േ0.00 0.65േ0.00 
3r to 4r 0.94േ0.00 6.10േ0.01 6.36േ0.00 0.72േ0.01 

3r to 5r 4.16േ0.00 3.25േ0.00 3.21േ0.00 1.57േ0.00 

4r to 5r 4.67േ0.00 5.91േ0.02 5.45േ0.01 1.39േ0.01 
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To validate the effectiveness of applying the target data without labels, the perfor-
mances of the models constructed using or not using unlabeled target data ࡴ௎ are com-
pared. In addition, we consider two cases, where the structures of the data are different, 
to find out the impact of data’s partition to the target model. 

The boundaries of the clusters are very clear and ambiguous in the second and third 
groups of experiments. The results are shown in Tables 2 and 3, separately. Table 2 
compares the performance the target models, which are built using or not using unla-
beled target data. Similarly, Table 3 compares the RMSE of the constructed target 
model with and without ࡴ௎. Lower values are shown in bold. 

Table 2. Target model built using/ not using ࡴ௎ – second group 

Source to target datasets 
RMSE of the models 

 (௎ࡴ with) ௧ܯ (௎ࡴ without) ௧ܯ
5r to 4r 1.0781േ0.0004 1.0756േ0.0004 

5r to 3r 0.9352േ0.0057 0.8962േ0.0083 

4r to 3r 2.1269േ0.2059 2.0996േ0.1718 

3r to 4r 0.8876േ0.0009 0.8457േ0.0005 

3r to 5r 2.5273േ0.0007 2.5397േ0.0014 

4r to 5r 3.0755േ0.0110 3.0614േ0.0037 

Table 3. Target model built using/ not using ࡴ௎ – third group 

Source to target datasets 
RMSE of the models 

 (௎ࡴ without) ௧ܯ (௎ࡴ without) ௧ܯ
5r to 4r 2.05േ0.30 2.11േ0.31 
5r to 3r 2.45േ0.71 2.69േ1.01 
4r to 3r 3.00േ2.24 2.39േ1.32 
3r to 4r 1.01േ0.00 1.05േ0.00 
3r to 5r 5.50േ0.51 5.45േ0.35 
4r to 5r 4.79േ0.25 4.51േ0.62 

 
From the results in Tables 2 and 3, we can see that if the partition of data in the input 

space has obvious clusters, the use of unlabeled data could enhance the model’s accu-
racy notably. But if the division of data’s clusters is not clear, the application of ࡴ௎ is 
not always an advanced result. This is because when the boundaries of input data are 
ambiguous, the labeled target data may fall into the junctions of the clusters, and the 
utilizing of ࡴ௎, finding the ݄-nearest unlabeled target data for each labeled target data, 
will lead to a poor performance of the target model. 

 
4.2 Experiments on Real-world Datasets 

Since most studies on transfer learning focus on classification problems, there are no 
publicly used datasets for the regression tasks. In order to validate our method, and 
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compare with the existing methods, we select some datasets from UCI Machine Learn-
ing Repository, and modify them for the purpose of simulating transfer learning sce-
narios. 

Two datasets “Protein tertiary structure” and “Housing” are considered. The “Pro-
tein tertiary structure” contains nines input variables to predict the RMSD-size of the 
residue, and the dataset is divided into two sub datasets as source and target for the 
purpose of transfer learning. In the dataset “Housing”, there are six features and the 
output is the “MEDV”. Because it is difficult to determine the numbers of clusters for 
the high-dimensional datasets, we adopt a brute-force way to try several different num-
bers of clusters and close the one with the best performance. Table 4 gives the results 
of the above two datasets. 

The large values in “ܯ௦ on ࡴ௎” in Table 4 indicate the poor performance of source 
model in solving the target tasks. And the results in “ܯ௧ on ࡴ௎” validate the effective-
ness of our method. We find that no obvious trend is shown with a change in the number 
of fuzzy rules. So, in the practical situations, we adopt the strategy of going through all 
numbers in the given range, and select the number of rules with best performance when 
determining the number of fuzzy rules is difficult. 

Table 4. Results for real-world datasets 

Protein tertiary structure Housing 

 ௎ࡴ ௧ onܯ ௎ࡴ ௦ onܯ ܿ ௎ࡴ ௧ onܯ ௎ࡴ ௦ onܯ ܿ

8 50.88േ27.15 6.00േ0.01 5 1.40േ0.71 0.19േ0.00 

9 48.90േ37.85 5.93േ0.01 6 3.11േ0.41 0.22േ0.01 

10 43.32േ87.07 6.10േ0.01 7 2.41േ0.21 0.15േ0.00 

11 36.84േ23.49 5.90േ0.01 8 2.51േ0.25 0.15േ0.01 

12 54.41േ15.00 5.98േ0.00 9 1.60േ1.14 0.15േ0.00 

5 Conclusions and Future Work 

This work explores the knowledge contained in the unlabeled target data to improve 
the performance of the constructed model in solving the domain adaptation problems 
in regression tasks. The results validate our fuzzy method. Also, the low RMSE in real-
world datasets shows the ability of our method in dealing with practical problems. 

This method, however, exists a limitation that it works in the situation that the par-
tition of data is obvious. The utilization of unlabeled target data does not show a sig-
nificant advantage when the boundaries of the clusters in data are ambiguous. How to 
expand the application scope of our method and explore more information from unla-
beled target data will be considered in the future work. 
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