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Abstract 21 

The polyamide skin layer of reverse osmosis (RO) membranes was characterised using 22 

advanced and complementary analytical techniques to investigate the mechanisms underlying 23 

the permeation of contaminants of emerging concern in potable water reuse – N-24 

nitrosodimethylamine (NDMA) and N-nitrosomethylethylamine (NMEA). This study used 25 

five RO membrane samples with similar membrane properties. The five RO membrane samples 26 

spanned over a large range of water permeance (0.9–5.8 L/m2hbar) as well as permeation of 27 

NDMA (9–66%) and NMEA (3–29%). Despite such distinctthese differences among the five 28 

RO membranes, characterisations of the skin layer using positron annihilation lifetime 29 

spectroscopy, atomic force microscopy and field emission scanning electron microscopy 30 

revealed almost no variation difference in their free-volume hole-radius (0.270–0.275 nm), 31 

effective surface area (198–212%) and thickness (30–35 nm) of the skin layer. The results 32 

suggest that there could be other RO skin layer properties, such as the interconnectivity of the 33 

protuberances within the polyamide skin layer additional to the free-volume hole-size and 34 

thickness of the skin layer, which can also govern water and solute permeation. 35 

Keywords: free-volume hole; N-nitrosodimethylamine; positron annihilation lifetime 36 

spectroscopy; potable reuse; reverse osmosis.  37 

38 
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1. Introduction 39 

N-nitrosodimethylamine (NDMA; C2H6N2O) and N-nitrosomethylethylamine (NMEA; 40 

C3H8N2O) are micropollutants of significant concern in potable water reuse since they are 41 

probable carcinogenic chemicals [1]. With a molecular weight of 74 g/mol, NDMA is the 42 

smallest in the N-nitrosamine group. NDMA and NMEA are neutral and hydrophilic 43 

compounds at environmental pH (i.e. pH 6–8). Although reverse osmosis (RO) membrane 44 

separation can achieve excellent rejection of a range of impurities in reclaimed water including 45 

salts, macro-organics, and many micropollutants, the rejection of NDMA, NMEA and several 46 

other N-nitrosamines is low and highly variable because of its small molecular size and lack of 47 

charge [2-5]. Thus, they are often detectable in RO permeate at concentrations higher than 48 

guideline or target values set by water authorities around the world. For example, California 49 

has established a notification level of 10 ng/L for NDMA and a public health goal of 3 ng/L 50 

[6]. Similarly, in Australia, the guideline value of NDMA in water intended for potable reuse 51 

has been also set at 10 ng/L [7]. The low and highly variable separation performance of RO 52 

with respect to NDMA rejection necessitates post treatment by advanced oxidation (UV 53 

irradiation and H2O2) [8]. Recent research [9] suggests that NDMA rejection by RO 54 

membranes varies significantly amongst the many RO membranes available on the market. 55 

Thus, further insights which lead to better membrane selection and improvement of the 56 

separation performance of RO for N-nitrosamine removal can directly contribute to the 57 

economic viability and public safety of potable water reuse.  58 

Given the significant importance of low molecular weight micropollutants in potable reuse, 59 

numerous previous studies have been conducted to reveal the permeation mechanisms of 60 

micropollutants through RO membranes [10-13]. The significance of steric (size) interaction 61 

between solutes and the free-volume holes within the RO membrane active skin layer has been 62 
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clearly demonstrated from the viewpoint of solute properties. A strong correlation between 63 

molecular size (e.g. minimum molecular width or projected area) of uncharged solutes and 64 

their removals by RO has been established [14, 15]. Nevertheless, mechanisms underlying the 65 

difference in NDMA permeation among RO membranes are still poorly understood from the 66 

perspective of membrane properties. This is mainly due to analytical limitations in 67 

characterising the membrane skin layer at sub-nanometre scale resolution.  68 

The free-volume holes – holes in the membrane skin layer in polymeric matrix – are thought 69 

to play an important role in water and solute transport through the RO membrane.  Nevertheless, 70 

findings to date remain inconclusive. The free-volume hole size can be determined by positron 71 

annihilation lifetime spectroscopy (PALS) [16]. Previous measurements of the free-volume 72 

hole-radius of commercial RO membranes [16-18] varied considerably from 0.20 and 0.29 nm. 73 

Several previous studies [18-20] have demonstrated a strong correlation between solute 74 

permeation and free-volume hole-size. In contrast, no clear correlation between solute 75 

permeation and free-volume hole-size was reported by several other studies [17, 21, 22]. To 76 

date, there have been very few PALS studies on the characterisation of RO membranes due to 77 

the limited availability of slow positron beam based instruments.  78 

The thickness of the skin layer has also been considered as an important property of an RO 79 

membrane governing water and solute transport. According to the solution-diffusion model 80 

[23-25], permeation of solutes and solution through RO membranes occurs via their penetration 81 

into the membrane material and diffusion through the RO membrane. The key role of the 82 

polymeric membrane thickness on solute permeation can also be supported by the finding that 83 

the thickness is inversely proportional to water permeance and there is a trade-off between 84 

water permeance and solute selectivity [26, 27]. This mechanism is plausible, however, it is 85 

difficult to validate for commercial RO membranes. Recent RO membranes are designed with 86 
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a rougher membrane surface that holds a higher surface area and a higher permeance [28-32]. 87 

As a result, they commonly have a so-called “ridge-and-valley” structure and hollow interior 88 

of crumpled nodules throughout the surface of the skin layer [29]. The entire thickness of the 89 

skin layer of commercial RO membranes is about 200-300 nm as reported by previous studies 90 

using transmission electron microscopy (TEM) [33-36]. The crumpled film forming the 91 

crumpled structure of the skin layer and the flat film comprising the interface between 92 

polyamide and polysulfone layers both have a thickness as low as 20 nm [31, 37, 38]. 93 

Characterisation using a field emission - scanning electron microscope (FE-SEM) [37] allows 94 

for a quantification of each polyamide film. Nevertheless, due to the complex inner structure 95 

and rough surface morphology of the RO membrane skin layer and its variation among RO 96 

membranes, it is still difficult to identify the location of the most important polyamide films 97 

and quantify their thickness for comparison among different RO membranes.  98 

A systematic evaluation of several RO membranes with similar chemical ingredients can 99 

potentially yield new insights into the role of the membrane skin layer on solute permeation. 100 

This study aims to identify key structure parameters that govern NDMA transport in the RO 101 

process by characterising the skin layer properties of five RO membranes that have similar 102 

chemical composition and skin layer structure. State-of-the-art analytical techniques including 103 

PALS, FE-SEM and atomic force microscopy (AFM) were used for the characterisation of the 104 

skin layer including free-volume hole-size, thickness and surface area, respectively.  105 

2. Materials and methods 106 

2.1. Chemicals 107 

Analytical grade NDMA and N-nitrosomethylethylamine (NMEA) (Table 1) were purchased 108 

from Ultra Scientific (Kingstown, RI, USA). All stock solutions were prepared in methanol to 109 

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed



6 

 

obtain 1 µg/mL of each chemical and were stored at 4 °C in the dark. Both chemicals can be 110 

classified as hydrophilic and neutral (uncharged) at environmental pH (pH 6 to 8) [39]. 111 

Table 1 – Structure and properties of the selected N-nitrosamines. 112 

Compound NDMA NMEA 

Structure 

 

 

 

  
Molecular formula C2H6N2O C3H8N2O 

Molecular weight [g/mol] 74.05 88.06 

Log D at pH8a [-] 0.04 0.4 

pKa at pH8a [-] 3.5 3.4 

Minimum projection areaa, b [nm2] 0.20 0.22 

a Chemicalize (http://www.chemicalize.org). 113 
b Minimum projection area is the area of the compound projected with the minimum plane of 114 

its circular disk, based on the van der Waals radius.  115 

2.2. Membranes and membrane treatment system 116 

Two commercially available RO membranes – namely ESPA2 and ESPAB – and a prototype 117 

RO membrane were obtained as flat sheet samples from Hydranautics/Nitto (Osaka, Japan). 118 

The active skin layers of these membranes have similar chemical ingredients although the 119 

detailed information is proprietary. The ESPA2 membrane has been employed in many potable 120 

water reuse schemes [14], while the ESPAB membrane is designed for boron removal and has 121 

been widely used in the second pass of RO seawater desalination plants. In addition, samples 122 

of the ESPAB and Prototype membranes were also subjected to heat treatment to alter the 123 

physical properties. These heat-treated samples are designated as heated ESPAB and heated 124 

Prototype, respectively. Thus, in total, five different membrane samples were used in this 125 

investigation. 126 
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2.3. Experimental protocols 127 

2.3.1. Heat treatment 128 

Heat treatment was conducted by heating the RO membrane coupons in 80 °C ultrapure water 129 

solution. The RO membrane coupons were first rinsed with ultrapure water (18.0 MΩcm). 130 

Thereafter, each coupon was stored in a 200 mL beaker filled with ultrapure water, and the 131 

beakers were placed in a temperature-controlled water bath (SWB-11A, AS ONE, Osaka, 132 

Japan) that maintained the water temperature at 80 °C. After 4 h of heat treatment, the 133 

membrane coupons were rinsed with ultrapure water and stored at 4 °C in the dark.  134 

2.3.2. RO filtration experiments 135 

The separation of NDMA and NMEA by each RO membrane was evaluated in ultrapure water 136 

using the bench-scale cross-flow RO system (Fig. S1). Filtration experiments were started with 137 

permeance evaluation in which RO membrane filtration experiments were conducted with 138 

ultrapure water at 2000 kPa to measure the pure water permeance. Thereafter, NDMA and 139 

NMEA stock solution was added to obtain 200 ng/L of each compound in the feed solution. 140 

The membrane system was operated at a 20 L/m2h permeate flux and 20 °C feed temperature. 141 

Concentrations of NDMA and NMEA were determined by high-performance liquid 142 

chromatography-photochemical reaction-chemiluminescence as described in our previous 143 

studies [40, 41]. The passage is defined as 𝑅 = 100 × 𝐶𝑝/𝐶𝑓 , where Cp and Cf are solute 144 

concentration in the permeate and feed, respectively.  145 

2.4. Membrane characterisations 146 

2.4.1. Surface chemistry 147 

Major functional groups of RO membranes was analysed using Fourier transform infrared 148 

spectroscopy (FTIR) spectrophotometer (Nicolet iS5, Thermo Fisher Scientific, Waltham, MA, 149 

USA) in attenuated total reflection (ATR) method. The RO membrane samples were freeze-150 
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dried for 24 hours using a freeze drier (FD-1000, Tokyo Rikakikai, Tokyo, Japan). The 151 

spectrum was obtained in the range of 400-4000 cm-1 at 1 cm-1 resolution. 152 

2.4.2. Positron annihilation lifetime spectroscopy (PALS) 153 

The free-volume hole-radius of each RO membrane was measured using PALS with a slow 154 

positron beam that is housed at the National Institute of Advanced Industrial Science and 155 

Technology (AIST) in Tsukuba, Japan. Details of PALS for the analysis of RO membranes are 156 

provided elsewhere [9]. The radius of free-volume hole (r) of the skin layer in RO membranes 157 

was determined from the pick-off annihilation lifetime of ortho-positronium (τo-Ps) using the 158 

Tao-Eldrup model [42, 43]: 159 
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where r (< 1nm) is approximated as a spherical shape. Positron irradiation was carried out 161 

under vacuum (~ 10-5 Pa) and about 2 × 106 positron annihilation events were collected for the 162 

positron lifetime spectrum of each sample. Spectra were analysed using a non-linear least-163 

squares fitting program. Unless otherwise stated, the incident energy (Ein) was set at 1.0 keV, 164 

which corresponds to a mean implantation depth of 31 nm from the top (implantation depth 165 

range = 0–90 nm) with a material density of 1.3 g/cm3 (Fig. 1). This incident energy was 166 

selected according to previous studies [18, 19] that revealed the lowest free-volume hole-radius 167 

of polyamide RO at 1.0 keV. The dry material density of RO membranes (1.3 g/cm3) was 168 

determined based on the data reported by Kolev and Freger [44]. 169 
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 170 

Fig. 1 – Distribution of positron implantation depth in a polyamide membrane sample with a 171 

material density of 1.3 g/cm3 at a positron incident energy of 0.5, 1.0 or 1.5 keV. The mean 172 

implantation depth at each positron incident energy is shown in brackets. 173 

2.4.3. Atomic force microscopic analysis 174 

Membrane surface area was analysed using an atomic force microscope (AFM) (MFP-3D-SA, 175 

Asylum Research – Oxford Instruments Company, CA, USA). Membranes underwent sample 176 

pre-treatment steps involving the replacement of water in the membranes with tert-Butyl 177 

alcohol followed by freeze drying. Images were obtained in air using tapping mode with a 178 

silicate cantilever. The scanning area was 5 μm × 5 μm. The effective surface area of each 179 

membrane was calculated based on the data of three samples. Effective surface area here was 180 

defined as a ratio between the actual (measured) area and the sample area as described in the 181 

following formula: 182 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑐𝑣𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 [%] =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑎𝑟𝑒𝑎 [𝜇𝑚2] 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑎𝑟𝑒𝑎 [𝜇𝑚2]
× 100  (2)  183 

2.4.4. Field emission scanning electron microscopic analysis 184 

Cross-sectional images of the RO membrane skin layer were attained using a field emission - 185 

scanning electron microscope (FE-SEM) instrument (S-4800, Hitachi, Japan) at 3 kV 186 

accelerating voltage. Cross-sections of each membrane sample were prepared by freeze-187 
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fracturing wet membranes in liquid nitrogen followed by air drying. Thereafter, the target 188 

cross-sectional area was coated with conductive material prior to the analysis. The thickness of 189 

the skin layer of each RO membrane was calculated by determining the average of 5 different 190 

locations. 191 

3. Results and discussion 192 

3.1. Solute permeation 193 

The five RO membrane samples examined in this study spanned over a large range of water 194 

permeance as well as solute passage with respect to both NDMA and NEMA (Fig. 2). Heat 195 

treatment was effective to reduce solute passage and water permeance. After heat treatment, 196 

NDMA passage through the ESPAB and the Prototype membranes decreased from 56 to 37% 197 

and from 18 to 9%, respectively. The pure water permeance of these membrane also 198 

proportionally decreased as can be seen from Fig. 2. A strong linear correlation between solute 199 

passage with respect to both NDMA and NMEA and water permeance can be confirmed in Fig. 200 

2. As noted in section 2.2, all five RO membrane samples were from the same manufacturer 201 

with similar chemical ingredients of the active skin layer. Thus, data from Fig. 2 allow for a 202 

systematic investigation of the role of the active skin layer in transport of small and neutral 203 

solutes as well as water across the membrane.  204 



11 

 

 205 

Fig. 2 – Correlation between the passage of NDMA and NMEA in pure water, and pure water 206 

permeance (feed temperature = 20.0 ± 0.1 ºC and permeate flux = 20 L/m2h). Error bars show 207 

the range of two replicate experiments. 208 

3.2. Characterisations of the RO skin layer 209 

3.2.1. Membrane chemistry 210 

Variation in the top layer chemistry of RO membranes can be qualitatively evaluated by 211 

examining the FTIR spectra [45, 46]. Notable peaks for fully aromatic polyamide were 212 

observed at 1668, 1608 and 1539 cm-1 that correspond to  C=O and C-N stretching and C-C-N 213 

deformation vibration (amide I), N-H deformation vibration and C=C ring stretching vibration 214 

of aromatic amide, and N-H in-place bending and N-C stretching vibration of a -CO-NH- group 215 

(amide II), respectively [47] (Fig. S2). Peaks at 1586, 1505, 1488 and 1245 cm-1 can be 216 

assignable to polysulfone. The ratio in peak intensity between 1668 cm-1 (C=O stretching of 217 

the amide group formed by the reaction between diamine and acid chloride) and 1245 cm-1 (C-218 

O stretching of the polysulfone support) was 0.21, 0.21 and 0.17 for ESPA2, ESPAB and 219 

Prototype, respectively. This indicates that these RO membranes have a similar chemical 220 

propertycomposition. In contrast,It is noted that heat treatment increased the peak intensity 221 

ratio from 0.21 to 0.30 and from 0.17 to 0.18 for ESPAB and Prototype membrane, respectively. 222 

The cause of the changes in the peak intensity for ESPAB after heat treatment remains unclear, 223 

but it will be in the scope of our future study.   224 
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3.2.2. Free-volume hole-radius 225 

The mean free-volume hole-radius of the selected RO membranes was determined at a mean 226 

implantation depth of 31 nm using τo-Ps values (pick-off annihilation lifetime of o-Ps) from 227 

PALS analysis (Table S3). The free-volume hole-radius of the three unheated RO membranes 228 

(i.e. ESPA2, ESPAB and Prototype) was almost identical, ranging from 0.270 to 0.275 nm (Fig. 229 

3). Heat treatment did not show any discernible impact on the free-volume hole-radius. It is 230 

noteworthy that PALS analysis at other implantation depths (i.e. 10 and 59 nm) of the ESPAB 231 

membrane did not show any significant variation in the free-volume hole-radius due to heat 232 

treatment (Fig. S4). It is noted that current PALS technique cannot confirm a small difference 233 

in free-volume hole-radius of RO membranes less than 0.01 nm due to the inherent errors in 234 

PALS and the inhomogeneity of the membrane samples. Thus, the free-volume hole-radius of 235 

all five membrane samples in Fig. 3 are considered to be similar. 236 

 237 

Fig. 3 – Free-volume hole-radius of the five RO membranes. The data here is the average and 238 

range of two replicates. 239 

The cross-sectional areas of spherical free-volume holes with radii of 0.270 and 0.275 nm are 240 

0.23 and 0.24 nm2, respectively. These values are comparable to the minimum projection area 241 

of NDMA (0.20 nm2) and NMEA (0.22 nm2) (Table 1). Because the passage of NDMA and 242 

NMEA varied with a difference of only 0.02 nm2 in the minimum projection area of the two 243 
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molecules, a variation of 0.01 nm2 in free-volume hole-area among the five RO membranes 244 

may still be an important factor. However, there was no observable correlation between the 245 

measured free-volume hole-radius and the passage of NDMA and NMEA (Fig. S5). Given the 246 

similar free-volume hole-size of the five membrane samples, these results suggest that a factor 247 

other than the free-volume hole-size can also govern the permeation of NDMA and NMEA by 248 

these RO membranes. 249 

3.2.3. Effective surface area 250 

The effective membrane surface area was determined by taking into account the topography of 251 

the RO skin layer at the microscopic level (i.e. surface roughness) using AFM. Indeed, at the 252 

microscopic level, the effective membrane surface area can differ considerably from the surface 253 

area normally used to calculate the permeate flux  [9]. It is noted that permeate flux 254 

considerably influences NDMA permeation [13]. Since the skin layer can play an important 255 

role in solute permeation through the RO membrane as proposed in literature [30, 38], it is 256 

important to take into account the effective membrane surface area when assessing solute 257 

permeation.  258 

Despite the large variation in the visualized “ridge-and-valley” structure among the three 259 

different types of RO membranes (i.e. ESPA2, ESPAB and Prototype), their effective surface 260 

area was almost identical, ranging from 198 and 212% (Fig. 4). In other words, the effective 261 

membrane surface area at the microscopic level is approximately two times the plain area. 262 

Likewise, heat treatment did not cause any discernible changes in the effective surface area. 263 

Results from Fig. 4 confirm that separation experiments in this study were also at the same 264 

permeate flux for a systematic comparison of solute permeation among all selected RO 265 

membranes. More importantly, the observation of the large variation in permeance (Fig. 2) and 266 

almost identical effective surface area (Fig. 4) among the RO membranes suggests that in this 267 
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study, water permeance is not influenced by the effective surface area of the RO skin layer. It 268 

is noteworthy that the surface area determined by AFM does not necessarily represent the entire 269 

surface area. Surface areas through which feed solution can penetrate include the backside of 270 

bent protuberance and confined rumpled films with packed protuberances that cannot be 271 

measured by AFM [32]. Therefore, actual surface area taking account of all morphology is 272 

necessary to conclusively determine the role of surface area for water permeance. 273 

  
(a) ESPA2 (unheated) 

Area = 212 ± 10%  

 
(b) ESPAB (unheated) 

Area = 204 ± 6%   

 
(c) ESPAB (heated) 

Area = 202 ± 3% 

 
(d) Prototype (unheated) 

Area = 198 ± 5% 

 
(e) Prototype (heated) 

Area = 205 ± 3% 

Fig. 4 – AFM images of the five RO membranes. The surface area (and error) is determined 274 

from the average (and measurement variation) of three membrane coupons. 275 
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3.2.4. Thickness 276 

The thickness of the skin layer of the selected RO membranes was evaluated using a cross-277 

sectional view obtained by FE-SEM. The FE-SEM analysis (Fig. 5) revealed a distinctive 278 

“ridge-and-valley” structure and a hollow interior of crumpled nodules throughout the skin 279 

layer of all RO membranes investigated in this study. These complex structures are similar to 280 

other commercial RO membranes recently reported in literature [36-38]. The estimated 281 

thickness of the skin layer was 300-400 nm for ESPA2 and ESPAB RO membranes and 200-282 

300 nm for Prototype RO membranes. There was no apparent change in the skin layer thickness 283 

after heat treatment. The skin layer of these membranes comprised of two major polyamide 284 

films (A) a flat polyamide film that forms a film base at the interface with the polysulfone 285 

support layer and (B) a crumpled polyamide film that forms crumpled nodules with internal 286 

hollow structure (also called as protuberance) (Fig. 5). Ultrahigh resolution FE-SEM images 287 

in Fig. 5 show a similar thickness between the flat polyamide film and crumpled polyamide 288 

film. In addition, it appears that the crumpled polyamide film is almost always on top of the 289 

flat polyamide film. Using SEM, Yan et al. [37] also reported that the ESPA2 RO membrane 290 

has a through-bore that interconnects the cavity of the protuberance and open structure of the 291 

polysulfone support layer. The interconnections can also be found at the other four RO 292 

membranes used in this study. The majority of the protuberances did not appear to have 293 

interconnections. Although high water permeance of RO membranes (e.g. ESPA2) can be 294 

associated with the number of the interconnections, it was not possible to quantify the 295 

connectivity through the FE-SEM cross-sectional images.  296 

Field Code Changed

Field Code Changed



16 

 

  297 

ESPA2 

(unheated) 

   

ESPAB 

(unheated)   

  

ESPAB 

(heated) 

  

Prototype 

(unheated)  

  

Prototype 

(heated)   

  

Fig. 5 – FE-SEM cross-sectional images of the five RO membranes: (a, c, e, g, i) skin & 298 

polysulfone layers (scale = 1000 nm) and (b, d, f, h, j) areas enclosed with dash lines in the 299 

skin & polysulfone layers (scale = 300 nm).  300 

Skin layer 

Polysulfone 
Support layer 

(A) Flat film  
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 (B) Crumpled film 

Protuberance 

1000 nm 

1000 nm 

1000 nm 

1000 nm 

1000 nm 300 nm 

300 nm 

300 nm 

300 nm 

300 nm 

(a) (b) 

(d) (c) 

(e) (f) 

(g) (h) 

(i) (j) 

Formatted: Centered

Formatted: Centered

Formatted: Centered

Formatted: Centered

Formatted: Centered



17 

 

Given the importance of the crumpled polyamide films on water and solute permeation [30, 301 

37], the crumpled film thickness was measured for all the RO membranes. It is noted that the 302 

values were attained through two representative FE-SEM images; thus, there could be a 303 

variation in thickness throughout the RO membranes. The results revealed that unheated 304 

ESPA2, ESPAB and Prototype RO membranes had similar crumpled film thickness of 36, 29, 305 

and 34 nm, respectively (Fig. 6). Results in Fig. 6 indicate that there was no discernible 306 

variation in thickness among the three RO membranes in this study. In addition, heat treatment 307 

did not appear to alter the crumpled film thickness. Indeed, differences in the crumpled film 308 

thickness between heated and unheated samples were within the measurement error margin (i.e. 309 

standard deviation of two samples of the same membrane). As a result, in this study, variation 310 

in water flux and the passage of NDMA and NMEA cannot be attributed to the measured 311 

crumpled film thickness (Fig. S7), suggesting that other skin layer properties such as 312 

conformation of the crumpled polyamide films could also govern their permeation. 313 

 314 

Fig. 6 – Thickness of the crumpled film of the five RO membranes. The thickness was 315 

determined based on two RO membrane coupons, each of which was measured at 5 locations 316 

(Table S6). 317 
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3.3. Discussions 318 

Comprehensive analysis of the skin layer of five RO membrane samples using PALS, FE-SEM 319 

and AFM revealed that there could be other RO skin layer properties besides the free-volume 320 

hole-radius and thickness of the crumpled film that can govern water and solute permeation. 321 

This is a significant finding in membrane transport, because the free-volume hole-radius and 322 

thickness of the crumpled film have often been considered the only membrane properties 323 

governing the membrane transport.  324 

FE-SEM images obtained here identified that the free-volume hole-radius analysed by PALS 325 

was likely to result from the crumpled polyamide film. According to the distribution of positron 326 

implantation depth (Fig. 1), most positrons of PALS at a positron incident energy of 1 keV 327 

were expected to have annihilated within the crumpled polyamide films that have the thickness 328 

of about 30 nm. The flat polyamide film is mostly covered by several layers of the crumpled 329 

film and it is 300 to 400 nm away from the top ridge (Fig. 5). Thus, the flat polyamide film 330 

located at the interface with the polysulfone supporting layer is not accessible by positrons with 331 

1 keV. Although the flat polyamide film beneath the crumpled films can be reached by 332 

increasing the positron incident energy (Fig. 1), increasing the incident energy also broadens 333 

out the positron implantation depth distribution, meaning that signals can be obtained from 334 

both the flat and crumpled films. As a result, thickness of the flat film that has far less surface 335 

area than the crumpled film cannot be accurately determined. If the flat polyamide film plays 336 

an important role in solute permeation, a sample preparation method that enables us to 337 

preferentially analyse the flat polyamide films should be developed. 338 

In regard to the flat polyamide film, perhaps water permeance and separation performance of 339 

the selected RO membranes is related to the degree of the interconnections between the cavity 340 

of the protuberance and the open structure of the polysulfone support layer. In other words, RO 341 
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membranes with less interconnections have less water permeance but high separation capability. 342 

The importance of hollow protuberance on the water permeance of RO membranes has been 343 

confirmed by Pacheco et al. [48] who evaluated 3D images of two commercial RO membranes 344 

using TEM tomography technique. The FE-SEM cross-sectional images in Fig. 5 revealed that 345 

not all of the protuberances have interconnections toward the polysulfone support layer. 346 

Protuberances without interconnections allow the solute and solvent (water) to permeate 347 

through two barriers – crumpled film and flat film, which could reduce water permeance but 348 

improve the separation performance. The projected area TEM technique previously reported 349 

by Pacheco et al. [36] and Yan et al. [37] has the potential to visualize the structure inside the 350 

ridges including the interconnections from its top view, but the correlation between the 351 

interconnections and separation performance has not yet been quantified.  352 

There are some other limitations and challenges for the characterization of the RO skin layer 353 

with respect to PALS analysis. The analysis here was conducted under dry conditions, while 354 

wet RO membranes may have swelling effects [49], which can expand the polymer network 355 

and alter the water permeance and selectivity [50, 51]. In addition, the size distribution of free-356 

volume holes may be more important than mean free-volume hole-radius, because the narrower 357 

passages connecting the major free-volume holes could actually determine solute permeations 358 

as suggested by Dražević et al. [52]. More accurate analysis with wet membrane samples and 359 

the determination of size distribution of free-volume holes requires a significant improvement 360 

in PALS method, thus, it is a scope of our future study.  361 

In addition to the swelling effects, chemical properties of the internal skin layer could be a 362 

major contributor to a variation in diffusion coefficient and sorption coefficient of water and 363 

solutes, which ultimately leads to a variation in their water permeance and separation 364 

performance. Typically, increases in the degree of polyamide cross-linking can cause less water 365 
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and solutes to sorb onto the polymer due to restriction in swelling effects [53]. This could cause 366 

a decrease in both effective water and salt diffusion coefficients [54], leading to a decrease in 367 

water permeance but an increase in selectivity (Dw/Ds) (trade-off theory) [26]. If that is the case, 368 

chemical properties of the skin layer such as cross-linking levels should be more important 369 

than the physical properties analysed in this study (i.e. free-volume hole-radius and thickness) 370 

to determine the major skin layer properties.  371 

4. Conclusions 372 

This study shows that RO membranes with distinct separation performance and water 373 

permeance can have similar crumpled film properties including free-volume hole-size and 374 

thickness. PALS, AFM and FE-SEM revealed that major crumpled polyamide film properties 375 

such as free-volume hole-size, effective surface area and thickness are almost identical among 376 

three different types of unheated RO (ESPA2, ESPAB and Prototype) and two heated RO 377 

(ESPAB and Prototype). The results suggest that there exist at least another RO skin layer 378 

property other than the free-volume hole-size and thickness that can also govern the transport 379 

of water and small and neutral solutes such as NDMA and NMEA that are of signifincant 380 

concern in potable water reuse. Such property is likely to be the protuberance conformation or 381 

interconnectivity of the protuberance within the membrane polyamide skin layer. In addition, 382 

FE-SEM data also reveal that current PALS technique may not be suitable for determining 383 

free-volume hole-radius of the flat polyamide film located at the interface between the 384 

polyamide skin and the polysulfone supporting layer beneath the crumpled polyamide films. 385 

Further advances in analytical technique that allows for the quantification of interconnections 386 

between the protuberances and the polysulfone support layer, the comprehensive 387 

characterisation of RO membranes by PALS (size distribution and wet conditions), and the 388 
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evaluation of chemical properties of the polyamide films is necessary to fully decode the 389 

permeation mechanism of NDMA. 390 
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