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ABSTRACT Inspired by the concept of software-defined network and network function virtualization,
vast virtual networks are generated to isolate and share wireless resources for different network operators.
To achieve fine-grained resource control and scheduling among virtual networks (VNs), network perfor-
mance monitoring is essential. However, due to limitation of hardware, real-time performance monitoring is
impossible for a complete virtual network. In this paper, taking advantage of the low-rank characteristic of
90 virtual access points (VAPs) measurement data, we propose an intelligent measurement scheme, namely,
adaptive and sequential sampling based on matrix completion (MC), which exploits from the MC to
construct the complete data of VN performance from a partial direct monitoring data. First, to construct
the initial measurement matrix, we propose a sampling correction model based on dispersion and cov-
erage. Second, a stopping condition for the sequential sampling is introduced, based on the stopping
condition, the sampling process for a period can stop without waiting for the matrix reconstruction
to reach certain of accuracy level. Finally, the sampled VAPs are determined by referring the back-
forth completed matrixes’ normalized mean absolute error. The experiments show that our approach can
achieve a constant network perception and maintain a relatively low error rate with a small sampling
rate.

INDEX TERMS Performance monitoring, low-rank, matrix completion, adaptive.

I. INTRODUCTION
Wireless network virtualization (WNV), an integration of
Software-defined network (SDN) and Network Function Vir-
tualization (NFV) technologies, has become one of the main
trends in wireless systems. WNV abstracts the physical
resources (e.g., network infrastructure, backhaul, licensed
spectrum, core and radio access network [RAN], energy/
power etc.) to a number of virtual resources, and facilitates
common resource sharing among different network operators
and consumers [1], [2].

Based on the real-time performance monitoring
(e.g., traffic, signal strength) on ubiquitous virtual net-
works (VNs), high resource utilization, better quality-of-
experience (QoE) and easier migration can be provided for
end users [3]. However, performance monitoring is very
difficult for every virtual network in complex heterogeneous

deployments [4]. This is mainly reflected in two aspects.
First, a large number of virtual networks are created that are
much larger than the traditional network, meanwhile, have
brought additional consumption of I/O, storage and processed
resources on wireless devices [5]. Second, as shown in Fig. 1,
when a user migrates from one type of network to another
during the walk, it is difficult to monitor performance indi-
cators which can provide handover strategy in real-time [6].
Moreover, to support multi-connection for multi-path trans-
mission, it is responsible for monitoring the parameters of the
application layer and network layer.

To address the problems mentioned above, two main tech-
nical challenges should be considered. First, to reduce the
network cost, we must precisely take partial measurement
samples from the data, rather than taking all samples together;
second, to enhance the accuracy of estimation and improve
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Fig. 1. By using open interfaces and protocols to programmatically control network elements, a user can be
migrated seamlessly and multipath-supported transmission can be achieved in real-time in heterogeneous
network.

the self-adaption of the scheme in dynamic environments,
we need to repeatedly learn the behavior of the measured
results in real-time.

In order to minimize the measurement points, the pervasive
use of samples can be extracted from the network-wide.
In 1989, the idea of probability and mathematical statistics of
sampling was introduced into the network measurement. But
it is impractical to learn the complete network information
with a subset of samples. The availability of the Nyquist
sampling theory offers new opportunities for reconstruction
matrix, which can recover the whole condition with partial
measurements. When the number of measurements increases
higher than the Nyquist sampling rate, Compressive Sens-
ing (CS) is proposed to reconstruct sparse signals. Nguyen
and Teague [7] integrate between CS and clustering methods
to collect data that significantly reduce power consumption
for the networks. However, since VAP’s network perfor-
mance has unique patterns, CS cannot be directly applied
to gain notable accuracy. Matrix Completion (MC) as the
evolution of CS technology provides a new perspective for
data gathering in wireless sensor networks with benefits of
high accuracy and practicality [8]. By fully exploiting the
low-rank and sparse nature of readings among sensor nodes,
Malboubi et al. [9] proposes an energy efficient manner to
gather data based on MC and CS. An on-line weather data
gathering scheme is proposed based onMC theory, which can
adaptively sample different locations according to environ-
mental and weather conditions [10].

Note that, existing MC-based data gathering solutions are
only applied with an assumption that the sensed data has a

constant rank. However, the rank of the matrix is dynamicly
changing due to unstable and time-varying network condi-
tions during the on-line monitoring of a practical environ-
ment. Our solution is highly inspired by Xie et al. [11]
who proposes an adaptive monitoring systems based on MC.
We analyze the characteristic of 90 VAPs’ measurement data,
which reveals the features of low-rank. Motivated by this
finding, we seek effective use of MC to complete the mea-
surement. According to the theory of MC, if the rank varies,
real-time sampling set will be required to achieve recovery.

Aiming to realize a controllable measurement for all the
VAPs, we propose VAP’s three performance indicators mea-
suring method respectively based on libpcap open source
library, Netlink mechanisms and OpenFlow protocol includ-
ing signal strength, the number of associated Users and
Traffic (SUT). In order to solve the problem of recover-
ing from a small number of real-time measurement data to
obtain the whole network data set, a method of Adaptive and
Sequential Sampling based onMatrix Completion (MC-ASS)
is proposed, based on few VAPs’ direct measurements,
MC-ASS algorithm uses matrix completion recovery method
for estimating the other virtual AP’s corresponding per-
formance value. We propose a sampling correction model
based on dispersion and coverage during sampling initiation,
which can avoid the same location sampling in adjacent
time slots. Furthermore, we propose an adaptive sampling
strategy to identify the sampling set by calculating the recon-
struction error until it reaches the accuracy requirement.
The real-world experiments show that our scheme can main-
tain a relatively low error-rate while minimizing network

VOLUME 6, 2018 14525



X. Wang et al.: Efficient Performance Monitoring for Ubiquitous VNs Based on MC

resource consumption. The detailed contributions are as
follows.
• By mining the large datasets in real measurement
data collected, a good feature of low-rank is revealed.
Based on these observations, an online data collection
framework for ubiquitous virtual networks is designed
by exploiting MC techniques for estimating the non-
observed data.

• To construct the initial measurement matrix, we pro-
pose a sampling correction model based on dispersion
and coverage. Compared with other models, our model
ensures that the matrix has better features for higher MC
performance.

• Instead of random sampling, we design a more intel-
ligent sampling strategy, which can choose the sample
node set with adaptive methodology based on the back-
forth completed matrixes’ normalized mean absolute
error until it achieves a reasonable recovery accuracy.

• Finally, we implement our virtual network measurement
scheme in an SDWN system and deploy it in real net-
work of our campus to evaluate its performance. The
experimental results demonstrate that our scheme can
reconstruct the complete matrix with required precision
by only a third of the total VN data.

The remainder of the paper is organized as follows.
In section II, we give an overview of the related work.
We present the fundamentals of MC theory, and discuss the
existing problems in section III. In section IV, we analyze the
characteristics of matrix rank. We illustrate the implementa-
tion details of MC-ASS in section V. Section VI shows the
experimental evaluation. Finally, the paper is concluded in
Section VII.

II. RELATED WORK
We review the related work and identify the differences
between our research and existing research.

A. TRAFFIC MEASUREMENT
Recently, Yassine et al. [12] described current trends and
challenges about the traffic measurement methods in SDNs,
in terms of real-time and flexibility is weak. In fact, traf-
fic measurement in SDNs is still in its infancy stage,
further research is required to provide effective measurement
scheme.

There had been some studies on leveraging SDN in wired
network, and the most relevant work is iSTAMP [13]. How-
ever, iSTAMP faced aggregation feasibility issues in practical
implementation and only focused on single-switch scenario.
While the Gong et al. [14] focused on accurate and feasible
traffic matrix estimation approaches by extending iSTAMP
framework. A similar approach is described in [15] designed a
traffic matrix estimator by keeping track of statistics for each
flow in OpenFlow switches, called OpenTM. In [9], an intel-
ligent network measurement framework was designed which
can be applied to a variety of network performance mea-
surements via applying MC techniques. Given the network

measurement and inference, Liu et al. [16] performed adap-
tive measurement with online learning. When it comes to the
wireless networks, a recent work [17] proposed a software
defined wireless measurement architecture called TinySDM,
which defined a set of carefully selected hooks that allowed
multiple measurement tasks.

Due to the difficulty of deployment, existing methods are
hard to be used in practical. In our work, we propose a
framework to leverage the global view of SDN controller,
then the direct measurement points of the whole network can
be determined through the continuous online learning.

B. DATA RECONSTRUCTION
The intractable plights that the future network architecture
is becoming large-scale, it will be costly and operationally
difficult for users to monitor the properties of all links due
to the strict energy limitation and the common vulnerability
of wireless environment. The common measurement strategy
usually takes random samples nodes from the full traffic
data, which will result in the partial missing or non-observed
data. Inspired by the great convenience offering by Nyquist
sampling theorem, several works (e.g., CS, MC) have been
studied to address the data reconstruction [18].

CS is a powerful and generic technique for reconstruct-
ing matrix, which requires the data containing the fea-
tures of sparse/low-rank. By the specific feature of sparsity,
Wang et al. [19] propose an adaptive data gathering scheme
based on CS, which performs badly for large-scale WSNs.
In [20], a random walk algorithm is proposed, which allows
to collect measurements for CS along random routing paths.
Note that sparsity is the guarantee of accurate reconstruction
of measured data in CS theory, but most applications in the
real scenarios do not have obvious sparsity features.

Building on ideas of CS, MC which has emerged very
recently is a more efficient data gathering method. The work
in [21] is the state-of-the-art MC based data gathering scheme
which utilizes the low-rank and short-term stability features
in WSNs to achieve both reduced data traffic and high level
of recovery accuracy based on MC techniques. A similar
approach is described in [11], this paper proposes aMC-based
weather data recovery scheme by identifying the successive
data corruption, which can achieve very high recovery accu-
racy in the presence of successively missing and corrupted
data. However, traditional work usually assumes that the rank
is known and stable, only the research in [22] tries to study
data gathering in a dynamic network environment, which
highly inspired our solution.

Recently, the idea of MC has been introduced into SDN’s
measurement. Polverini et al. [23] enhances the traffic matrix
estimation by utilizing SDN concept. So as to get accurate
and efficient network-wide traffic, the work in [16] integrates
SDN and MC to perform adaptive measurement with online
learning. The same scheme is adapted in [9], Malboubi lever-
ages the flexibility provided by SDN to design the optimal
observation or measurement matrix that can achieve the best
estimation accuracy using MC techniques.
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The proposed MC-ASS scheme builds upon the recently
proposed framework of the MC techniques. The scheme pro-
vides a more practical approach, which relaxes the traditional
MC theory in a fix rank and allows to collect measurements
in a dynamically changing rank.

III. PRELIMINARY AND PROBLEM FORMULATION
In this section, the fundamentals of matrix completion is
introduced. We also describe the problem need to be solved
in the existing measurement schemes.

A. FUNDAMENTALS OF MC
We give some preliminarys of MC. Based on the low
rank MC theory, which considers recovering the incomplete
data matrix by observing a small part of the matrix ele-
ments [24], [25]. Let X ∈ Rn1×n2 be an unknownmatrix with
rank r << min{n1, n2}. If a subset of its entries (i, j) ∈ � are
known, the subset� is formed with randomly selected entries
of the matrix and the sampling operator P� : Rn1×n2 −→
Rn1×n2 is defined by:

[P�(X )]ij =

{
Xij (i, j) ∈ �,
0 otherwise.

(1)

If the set� has enough information and the low-rank struc-
ture problem can be achieved through solving a minimization
problem.

min rank(X ),

s.t. P�(X ) = P�(M ), (2)

where rank(.) denotes the rank of a matrix. However, solving
this rank minimization problem in (2) turns out to be the
convex optimization problem because it is NP-hard. Hence
people tend to consider its relaxation:

max ‖X‖∗,

s.t. P�(X ) = P�(M ). (3)

Here, ‖X‖∗ is the nuclear norm of the matrix ‖X‖∗ =∑ r
i=1δi(X ), which is the sum of its singular values. Intu-

itively, it’s a question of semidefinite programming.
In order to recover the full matrix, Candes [26] pointed out

that m should be met with the restricted condition (4).

m ≥ Cn6/5r log n, (4)

where C is a constant value.

B. PROBLEM DESCRIPTION
In order to measure and analyze the real-time network per-
formance of large-scale, as is shown in Fig. 2, the traditional
measurement scheme is to directly measure all nodes of VAP.
In these scenarios, all the nodes of the network result in sub-
stantial increase in load consumption and high sensing cost.
Furthermore, the measurement results will not only consume
storage resources but also take up network bandwidth when
they are uploaded to the Controller. It is impractical due to
the strict network resource limitation.

Fig. 2. The traditional measurement scheme VS MC-ASS measurement
scheme.

Involuntarily, for the sake of reducing the the waste of
resources, some conventional technologies are deployed,
such as distributed source coding techniques, and clustered
data aggregation. However, These methods are not suitable
for the dynamic environment.

An effective way to reduce the energy consumption of
energy constrained wireless sensor network is reducing the
number of collected data, which causes the problem that
how to recover missing values from the partial direct mea-
sured. Furthermore, simply choosing the random sample can
hardly meet the accuracy demands. Our goal is to efficiently
schedule the data collection process to significantly reduce
the sensing resources needed while maintaining the sensing
quality.

C. PROBLEM FORMULATION
To better understand the problem, we take signal strength as
an example of network performance for a detailed descrip-
tion, and then propose our solutions. This method will help to
apply the theory to various network performance monitoring.

Suppose there are N VAPs, and the number of mobile
terminals in a certain time period is M . Define XN×M as the
signal strength matrix, the VAP as the row of the matrix, and
STA as the column of the matrix, where the Xij represents the
signal strength of the ith VAP in the matrix X and the jth STA.
Before introducing our solutions, we give two definitions for
easily presenting the theorem.

We use a Binary Sample Matrix,
→

B (t):
→

B (t) ∈ RN to show
whether the entries are non-observed. If the measurement
points are selected, nonzero is marked, otherwise, we use zero
as a placeholder to replace the empty entry.

B = (Bij)N×M =

{
1 Direct Measurement,
0 Otherwise.

(5)

We seek to estimate non-observed data based on the partial
direct measurements.

Incomplete sensory matrixMN×M

MN×M = XN×M • BN×M . (6)

In (6), • is representation of inner product operation. Based
onmatrix theory described in Section II(V), when the number
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of samples is more enough and meets the conditions (4),
the matrix XN×M can be reconstructed from sensory
matrixMN×M by solving the following problem

min ‖X‖∗,

s.t. Xij = Mij,

MN×M = XN×M • BN×M . (7)

Obviously, the matrix BN×M denotes which VAP needs to
take samples. In order to minimize the cost of the network,
the optimal should be considered.

We give the basic idea of our approach using MC tech-
nologies. In fact, the proposed MC-ASS consists of two
phases: the learning phase and the measurement phase in
Fig. 3. The learning phase means to figure out the numbers of
samples and the direct measurement points with theMC-ASS
algorithm. In measurement phase, the Controller periodically
reads traffic counters from the learning phase and estimates
the traffic matrix.

Fig. 3. The process of MC-ASS measurement scheme.

D. CHALLENGES
In order to make the matrix reconstruction reach a cer-
tain accuracy level, some problems should be considered
in the implementation of MC-ASS, namely, when and how
the matrix can be reconstruction based on the known data.
We conclude the challenges as the following aspects:
• Based on the theory of MC, it is difficult to confirm
how many samples are sufficient to satisfy the matrix
reconstruction conditions due to the constantly changing
rank in real-time network monitoring.

• The measured points are chosen not randomly but
through an intelligent strategy. However, without a prior
knowledge of the matrix structure, designing such a
sampling strategy is very hard.

Note that, the low-rank is the prerequisite for using MC.
Before we present our data collection algorithm, we first
analyze a large set of monitoring data to better understand the
characteristics of network performance in the next section.

IV. MEASUREMENT DATA MINING
In this section, we first propose the layered architecture,
and then describe our approach to efficient datasets gath-
ering. To check whether the data matrix has a good low-
rank approximation, the features of datasets are thoroughly
analyzed.

A. DATA SETS
A flexibility measure framework for network analysis is
necessary, especially, numerous emerging network architec-
tures and protocols have triggered the demand for network
measurement [27]. Benefit from the application of SDN
and NFV, Fig. 4 gives an overview of Software-defined
Wireless Network (SDWN) measurement architecture which
mainly includes Controller, AP Agent Daemon and Open
vSwitch (OVS). Each of the components will be presented
in detail in the following sections.

Fig. 4. SDWN measurement framework.

1) MEASUREMENT FRAMEWORK
a: CONTROLLER
The Controller is a software which runs on a centralized
server. As an SDN controller, which provides a set of inter-
faces (the northbound interface) to the applications and trans-
lates their requests into a set of commands (the southbound
interface) to the network executing devices. Network applica-
tions (seamless handover, load balancing) execute as a thread
on the Controller, which are easy to design and modify. Con-
trollers can use southbound API to obtain information about
capacity and demand from the underlying devices, and set up
forwarding policy. The Controller needs monitor and analyze
module uses the information gathered from the OVS and AP
Daemon by using the openflow protocol. This reporting is one
of the key components allowing controllers to take decisions,
such as mobility handover, load balancing strategy.

b: AP DAEMON
APDaemon runs on the physical APs, executes the command
from the Controller to orchestrate the wireless network, mea-
sures and reports the performance of Clients on APs. As the
measurement system of execution module, it sniffers the
wireless frames in real time for monitoring the performance,
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to support a publish-subscribe information system when a
certain measurement task is triggered.

c: OVS
OVS [28] is a popular software switch widely employed
by SDN. OVS runs on AP and acts as the bridge module.
It includes: one wireless interface belonging to the Wireless
Mesh Network (wlan0); an optional wired interface towards
client Access Networks (eth0); a virtual interface br0, which
is a software bridge using OpenFlow switching logic.

2) DATA COLLECTION
In literature, a huge amount of work [29]–[32] shows that
monitoring and analyzing real-time network traffic is very
useful for decision-making in Controller. In the SDWN
framework, we make it possible to achieve the data collec-
tion of three major performance indicators, including the AP
signal strength, the number of associated users and data flow,
through the traditional AP equipment software and libpcap,
Netlink, Open vSwitch and other technology applications.
At the same time, the MC-ASS algorithm running on the
application plane handles the AP data collected by the con-
troller through the API and instructs API to issue the data
acquisition instruction. The acquisition of the whole network
AP performance data are realized in the final, and recorded
in the database. In this experiment, there are 90 virtual AP
nodes in the SDWN test bed, in which the number of mobile
terminals is the actual number of users in the scenario.
We have recorded data reading from the Controller with a
time granularity 20 seconds. The dataset spans a duration of
nearly one month.

B. THE CHARACTERISTICS OF MATRIX RANK
From the theory of MC, low-rank is the cornerstone of MC.
Through an in-depth analysis of the real datasets, we verify
whether the monitoring matrix has a good low-rank structure.
Any i × j matrix X can be decomposed into three matrices
using Singular Value Decomposition (SVD), as shown in the
type (8):

X = U
∑

V T , (8)

where U is an N × N unitary matrix, V is an N × N unitary
matrix, and

∑
is an N × N diagonal matrix with diagonal

elements organized in decreasing order.
If a matrix has low-rank, its top K singular values occupy

the total or near-total energy. In order to verify whether
the VAP data traffic matrix has low rank, define functions
expression is:

g(K ) =

∑K
i=1 δ

2
i∑r

i=1 δ
2
i

. (9)

Fig. 5(a) plots the fraction of the total variance captured by
the top k singular values. It is observed that the top 20 singular
values capture 70%-90% variance in the real traces. These
results indicate that the data matrix X has a good low-rank
approximation in all the scenarios under investigation.

Fig. 5. The matrix rank of dynamic change. (a) Low-rank feature.
(b) Temporal stability feature.

In order to better investigate the characteristics of rank,
Fig. 5(b) shows the rank of top twelve measurement matrices.
The X -axis is the ordinal number of the measurement matrix,
and the Y -axis is the rank of the corresponding matrix. Obvi-
ously, the rank does not have a constant rank, so the number
of samples that needs to take should adapt accordingly.

V. MEASUREMENT SCHEME
In this section, the implementation details of MC-ASS
include four strategies. Firstly, to construct the initial mea-
surement matrix, we propose a sampling correction model
based on dispersion and coverage. Secondly, benefiting from
the features of VAP’s network performance, the clustering
operation is firstly performed. Thirdly, we propose a sampling
stopping condition for determining the nodes to be measured.
Finally, we predict the sampling set by comparing normalized
difference values between two consecutive time slots.

A. INITIALIZE THE MEASUREMENT MATRIX
In the training phase, we suppose the number of VN nodes
is N and the user is M . The initial measurement matrix
can be denoted as XN×M (t), and the rank of the matrix is
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r = rank(XN×M (t)). Therefore, the number of samples m of
the matrix can be calculated according to m ≥ Cn6/5r log n.
From Section V, since the initial matrix determines the RW
process, the distribution of samples has great influence on
the accuracy of reconstruction. To successfully apply the MC
techniques, the initial sampling matrix is constrained to have
at least one samples in each row and column, which should
have an appropriate interval bounds.

To fend off the obstacle, a great deal of existing work has
been done. In [33], the authored analyze two models to obtain
the sample set, the Bernoulli model and the Uniform model.
The former is generally designed for a particular test scenario
which lacks flexibility. In this model, each entry has same
probability that is p = m

/
(N ×M ). The latter assumes that

� is sampled uniformly at random among all subsets of cardi-
nality m. However, due to the temporal stability of sampling
data, the desired sampling principle should avoid sampling
the same location in adjacent time slots. To overcome this
limitation, in [10] proposed a cross sampling principle so that
the sampling has different location in adjacent time slots.

In contrast, instead of gathering data through uniform
sampling, we come up with a novel rule which can avoid
parameter tuning and guarantee the matrix to have better
feature for higher matrix completion performance. Based on
dispersion and coverage, the effective sampling set can be
determined.

The details of algorithm is show in Algorithm 1, we use
taui and tauj to denote the standard deviation threshold of AP
number and time slot number. The two values have strong
correlationwith the size of the datamatrix andwe obtain them
through the training for large times. In step 3, when a random
sampling result can’t meet the requirement of the threshold,
we consider that the sampling result is not widely distributed
in the data matrix and go back step 1 to resample. Meanwhile,
In order to reconstruct the matrix, the samples should avoid
a row or a column being un-sampled which will cause matrix
completion failure. When these two conditions are satisfied,
we consider the samples of initial sliding window data matrix
are reliable and efficient.

The model takes the dispersion and the coverage, which
yield a better guide for the adaptive sampling strategy into
consideration. Thus, according to the samples and Singular
Value Thresholding (SVT) matrix reconstruction algorithm,
we calculate the reconstruction error rate as the benchmark
reconstruction error which is used in the adaptive sampling
algorithm.

B. DETERMINE THE NUMBER OF
DIRECT MEASUREMENTS
In the actual measurement, it is impossible to know the size of
the result matrix rank before the measurement is performed.
According to Eq.(4), how many direct measurements are suf-
ficient to recover matrix accurately is difficult to determine.
To discover the relationship between the sample number
and the reconstruction performance, we change the sample
and analyze the error-rate based on the real sensory data.

Algorithm 1 Sampling Correction Model Based on
Dispersion and Coverage
1: Select m samples randomly from the data matrix XN×M .
2: For each sample Xij, i is the number of VAP, j is the

number of user, calculate the standard deviation σi and
σj of all samples.

σi =

m∑
k

(
ik − i

)2
m

,

σj =

m∑
j

(
jk − j

)2
m

,

3: if σi ≥ taui&σj ≥ tauj then
4: Samples with high discrete degree;
5: else
6: Samples with low discrete degree, must sample again.
7: end if
8: if sum(APi) 6= 0&sum(STAj) 6= 0 then
9: All the rows and columns of the data matrix are cov-

ered by samples;
10: else
11: Some rows and columns of the data matrix are not

covered by samples, must sample again.
12: end if
13: Obtain a valid sampling results, set for B.
14: According to the SVT matrix reconstruction algorithm,

obtain the recovery data matrix X̂ .
15: Compare X(N×M ) with X̂(N×M ), calculate the benchmark

reconstruction error rate ε0 as

ε0 =

∑∣∣∣∣Xij − ∧Xij∣∣∣∣∑ ∣∣Xij∣∣ .

Before we discuss the relationship, we give two definitions as
follows.

Normalized Mean Absolute Error (NMAE) is a metric for
measuring the reconstruction error after interpolation. That is,
we calculate the error rate by comparing the recovered data
with the raw data.

NMAE =

∑∣∣∣∣Xij − ∧Xij∣∣∣∣∑ ∣∣Xij∣∣ , (10)

Sample Ratio (S-Ratio)

S− Ratio =
m

N×M
, (11)

where m is a direct measurement of the sample size,
N ∗M is the total number of samples.

Based on above definitions, we characterize the relation-
ship between NMAE and S-Ratio by increasing the sample
number sequentially. Fig. 6 plots the results between them.
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Fig. 6. The relationship between NMAE and S-Ratio.

We observe that when the sample number becomes large,
the reconstruction error converges to a small value. Therefore,
we have a conclusion that the monitoring matrix can be
accurately recovered from the measurement matrix when the
sample number is large enough, beyond which adding extra
samples will not significantly increase the reconstruction
accuracy.

Since the measurement results have those characteristics,
so excessive number of samples is not helpful for matrix
recovery. In order to minimize the number of direct mea-
surements, we propose a sampling stopping condition for
sequential sampling.

Considering that there are two matrices An×m and Bn×m,
we define A ∼= B if these two matrices satisfy the following
expression: √∑

(Aij − Bij)2√∑
( 12 (Aij + Bij))

2
≤ ε, (12)

where ε is a small constant (0.03).

Fig. 7. The process of the sampling stopping condition.

This process is shown in Fig. 7. At the time of t , themmea-
surement node is randomly selected. At the time of t + 1,
the number of measured nodes at t time was randomly added

to theC measurement node.We obtain the recoveredmatrices
denoted as X ′(t) and X ′(t+1), respectively. If these recovered
matrices satisfy X ′(t) ∼= X ′(t + 1), then stop measurement.
Otherwise, we will continue to randomly add C nodes until
the conditions are met.

C. DETERMINE THE DIRECT MEASUREMENT
SAMPLING SET
In order to provide a satisfactory accuracy and meet the real-
time requirement, the direct measurement sampling set may
change with time. Based on the above analysis, we pro-
pose the sampling stopping condition. However, which nodes
should be chosen is a challenge.

When SVT algorithm is used to reconstruct the observation
matrix, we find that the difference between the recovery value
and the actual value of some nodes has a great influence on
the NMAE reconstructed by the measurement matrix.We call
this kind of node named ‘‘KEY ’’ node. To quantitatively eval-
uate whether an entry is necessary, we measure the ‘‘KEY ’’
value by computing the normalized difference values between
adjacent time slots.

KEY (i, j) =

∣∣X ′ij(t + 1)− X ′ij(t)
∣∣

1
2

∣∣X ′ij(t + 1)+ X ′ij(t)
∣∣ . (13)

This guides us to choose a appropriate measured point
when the sample is not enough. Fig. 8 describes the adaptive
sampling strategy. We calculate all the KEY (i, j) in descend-
ing order at time t + 1, the former C corresponding to
the corresponding subscript node to t + 2 time as a set of
measurement nodes.

D. THE PROCESS OF MC-ASS
The complete MC-ASS scheme is shown in Algorithm 2.

When the matrix is created in the time slot t = 0, pre-process
strategy is performed to reduce the measured VAPs. In the
training phase, due to the lack of enough history measure-
ments to guide the sampling process, we construct the initial
measurement matrix based on dispersion and coverage.

The process of adaptive sampling scheme is described from
step 4 to step 13, and the while-do iteration will be ended
when the similarity degree between matrix X ′(t) and X ′(t+1)
is less than a threshold 0.03. At step 8, the sampling stop-
ping condition is judged. If it achieves a reasonable recovery
accuracy, and then jump out the endless cycle, otherwise,
additional � entries which are determined by the ‘‘KEY ’’
value should be participated in the next iteration.

According to detailed steps of MC-ASS algorithm, we can
easily find themost of computing time is used for running two
times SVT algorithm in step 4 and step 7, respectively, which
is a popular and widely-used method for matrix completion
problems [26]. In SVT algorithm, Lanczos iteration is used
to compute singular values and the SVD should be computed
in each iteration. Hence, its per-iteration complexity as low
as mr time and nr +mmemory, where n represents the order
of matrix and r represents the rank of matrix. Meanwhile,
the algorithm converges sub-linearly in the worst-case and
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Fig. 8. The adaptive sampling strategy.

Algorithm 2 Matrix Completion-Adaptive Sequential
Sampling (MC-ASS) Algorithm
Input: the number of VAPs N , the number of STAsM ;
Output: the recovery matrix X .
1: Initialize t = 0.
2: Initialize the number of direct measurement samples m,

wherem < N×M and N×M is the size of result matrix.

3: Obtain the sampling matrix B(t) through the Sampling
correction model based on dispersion and coverage.

4: Obtain the direct measurement matrix M (t) according
to B(t). Run the SVT algorithm to reconstruct M (t) and
get recovery matrix X ′(t).

5: t = t + 1, add � points to get B(t + 1) on the basis of m,
where � = 0.5alogb, a = max(N ,M ), b = min(N ,M )
and m ∩� = ∅.

6: Obtain the direct measurement matrixM (t+1) according
to B(t + 1).

7: Run the SVT algorithm to reconstruct M (t + 1) and get
recovery matrix X ′(t + 1).

8: if X ′ (t) ∼= X ′ (t + 1) then
9: X ′(t + 1) is the result matrix;

10: else
11: Calculate the value of KEY by (i, j) /∈ (m ∪�),

and descending order. Then choose � points which
correspond to the former � KEY value.

12: end if
13: Obtain the result matrix X ′.

requires O (1/ε) iterations, where ε is the convergence accu-
racy which always be a sufficiently small value like 10−4.
From the above, the total time complexity of our MC-ASS
algorithm is close to O (mr/ε).

Fig. 9. Experimental platform hardware device configuration information.

VI. EVALUATION
In this section, the prototypical MC-ASS implementations in
real network, and accuracy and error-rates are evaluated.

A. EXPERIMENT SETUP
The practical deployment of the experimental platform in
an experimental building is under the way, and the plane
distribution is shown in Fig. 9. Fig. 10 shows the picture of
this lab. There are a number of IEEE 802.11n enabled APs
running distributed in each office room across this floor, SDN
switches and SDN Controller. TABLE 1 shows the detailed
configuration.

B. EXPERIMENT RESULTS
There are two purposes of the experimental tests: one is to
verify the accuracy of the signal strength, associated user
number and data flow of a individual VAP node. The other is
to verify the low measurement sample rate and high accuracy
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Fig. 10. Experimental platform hardware device configuration
information.

TABLE 1. Experimental platform hardware device configuration
information.

recovery effect of the whole network performance measure-
ment method.

1) COMPARISON OF SAMPLING METHODS
FOR INITIAL WINDOW
To investigate the performance of the proposed correction
model, we compare it to the Bernoulli model and the Uniform
model. In this experiment, with the AP data traffic rate as
experimental data, the improvedmodel will make comparison
with Bernoulli model and uniform sampling model so as to
acquire m points in three ways from the initial matrix in
accordance with the sampling rate of 28.6%. The number
of VN nodes N is equal to 90 in this experiment, sliding
window size T equals 240, and a total number of sampling
calculationsM equals 30. The results are shown in Fig. 11.

ε0 =

∑
ε

M
,

τ =

∑
|ε − ε0|

M
. (14)

Through the above three methods of the comparative
analysis, we can see that the proposed scheme has better
performance.

2) THE RESULT OF SINGLE VAP PERFORMANCE
In order to verify the accuracy of the measurement method,
in the previous built SDWN experimental bed, the Fluke
AirCheck Wi-Fi Tester is placed aside the AP which is about
to be measured so as to detect and record the related per-
formance data of AP in real-time. To run the Wi-Fi tester
and meanwhile implement the collection of data with the
VAP-SUT measurement method, to compare the recorded
measurement results between the controller and Wi-Fi tester.
We carry out a quantitative analysis about the error rate
between the VAP-SUT measured value and the true value.

Fig. 11. Comparison of sampling models.

In the measurement process, in order to avoid the lack
of a comparison between the Wi-Fi tester and the proposed
method of VAP-SUT measurement method due to the dif-
ferent time of the implementation of a single measurement,
this section takes the test results made during the period from
9:00am to 7:00pm, making the measurement data of half an
hour as a group, 20 groups relatively for three data, and thus
making the median of each test data as valid data.

Fig. 12 shows the results of the 20 groups of measurement
results for the Wi-Fi tester and the VAP-SUT measurement
method. The abscissa indicates the serial number of each
group and the ordinate indicates the VAP signal strength, VAP
associated user number and VAP data flow.

According to the measurement results of Fig. 12, based
on the standard with the test results of the Wi-Fi tester,
the normal mean absolute error (NMAE) of (a), (b) and (c)
are respectively calculated by the measurement result of the
Wi-Fi tester as shown in TABLE 2. Obviously, the measure-
ment results are close to the measurement results of theWi-Fi
tester at a probability of at least 98%, and the accuracy of the
number of VAP associated users is 100%.

TABLE 2. The result of NMAE.

3) VERIFY THE ACCURACY OF THE VAP PERFORMANCE
MEASUREMENT METHOD FOR THE ENTIRE NETWORK
In order to verify the accuracy and low sample rate of
the VAP performance measurement method based on the
MC-ASS algorithm, in the previous built SDWN experimen-
tal bed, the controller collect all the signal strength, associated
user number and data flow rate of 90VAP nodes as a reference
data set, while running on VAP performance measurement
system based on the MC-ASS algorithm. Then to make the
comparison of the performance data when the MC-ASS algo-
rithm is executed and all the collected data set, and the NMAE
value and the S-Ratio value are obtained.
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Fig. 12. Compare the WiFi-Tester and VAP-SUT. (a) AP signal strength. (b) Number of associated users. (c) Data flow.

Fig. 13. The NMAE of the three performance data. (a) AP signal strength. (b) Number of associated users. (c) Data flow.

Same as in the previous experiment, this section takes
the test results during the measurement time from 9:00am
to 7:00pm, making half an hour of measurement data as a
group, 20 groups relatively for three data, and thus making
the median of each test data as valid data. Based on the
reference data set of the whole VAPs which is collected by
the VAP-SUT measurement method, and thus calculating the
error NMAE and the sample rate S-Ratio after each data is
recovered by the MC-ASS algorithm.

In Fig. 13, the abscissa indicates the serial number of
each group, and the ordinate represents the calculated NMAE
error, where the dotted line represents the average of the
NMAE error. It can be seen that the the NMAE error
of three performance indicators of SUT in the VAP per-
formance measurement system is relatively stable, where
the NMAE of the VAP signal strength basically is con-
trolled at 6.0%, the NMAE of the VAP associated with the
number of users basically is controlled at 5.5%, and the
NMAE of the VAP data traffic NMAE basically is controlled
at 6.2.

In order to verify the low sample rate characteristics of the
MC-ASS algorithm, Fig. 14 shows the S-Ratio of the three
performance indicators of the MC-ASS algorithm, where the
dashed lines represent the average. The abscissa indicates
the serial number of each group, and the ordinate indicates
the measured sample rate. It can be seen that the S-Ratio of
VAP signal strength is controlled at 20%, the S-Ratio of VAP

associated users is controlled at 25%, and the S-Ratio of VAP
data is basically controlled at 27%.

C. SYSTEM PERFORMANCE
Fig. 15 shows the data traffic of the central switching node
over time in the experimental platform. APs in the system
exchange data with the controller and Internet through the
node. In process of the test, a data stream of 10 Mbps was
applied to each VN as the background traffic of the exper-
iment. By taking the whole network method and MC-ASS
scheme to measure the network performance of VN in the
same test environment, and comparing the results of the two
methods, it can be seen that the consumption of the whole
network measurement is 3 times of the MC-ASS measure-
ment mode. The simulation results show that our scheme
can achieve highly accurate recovery performance with less
resource consumption.

D. DISCUSSION ABOUT THE SCHEME
The above architecture combines the benefits of MC and
SDNwhich only requires modification at AP side. The results
indicate that the performance measurement method for VAP
can realize VAP performance measurement of the entire net-
work and significantly reduce the measurement sample rate
and error while ensuring stability. Based on the research
on VAP performance measurement method, it can reduce
AP’s load and save the storage resources. What’s more, the
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Fig. 14. The S-Ratio of the three performance data. (a) AP signal strength. (b) Number of associated users. (c) Data flow.

Fig. 15. Comparison of the center node data traffic.

measurement data can facilitate the research on load balanc-
ing, handover, energy saving and other network optimization
works.

VII. CONCLUSION
As the main challenge for WNVmanagement, the perception
of the complete virtual network status in real-time is very
difficult under insufficient resources. In this paper, motivated
by the emergingMC theory, we exploit an intelligent network
measurement framework based on the MC techniques to
monitor and analyze real-time network performance, which
can recover incomplete matrix with partial network mea-
surements. We have formulated a mathematical model which
can determine the smallest sample sizes that makes matrix
reconstruction reach a certain accuracy level. Furthermore,
a dynamic adjustment strategy is designed to continuously
amend the direct measurement VAP. For practical imple-
mentation, MC-ASS offers the invaluable quality monitoring
for Controller’s management which can reduce the network
overhead obviously.

There are three avenues for our future work. Firstly, exploit
the correlations between multiple environmental factors to
further improve the accuracy of estimation, such as radio
interference, temperature and etc. Secondly, study the trade-
off between the computation time and accuracy in envi-
ronment reconstruction. Thirdly, it is also interesting and
challenging that the measurement results be transmitted effi-
ciently to the Controller.

We will also extend the system to be able to measure other
type performances, such as, traffic, delay, etc. Our system
leverages the benefit of SDN property, and thereby it can
be easily applied to the future 5G communication system.
Furthermore, the idea of design in this paper could also be
enlightening.
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