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Superadditivity in trade-off capacities of quantum
channels
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Abstract—In this article, we investigate the additivity phe-
nomenon in the dynamic capacity of a quantum channel for
trading the resources of classical communication, quantum com-
munication, and entanglement. Understanding such an additivity
property is important if we want to optimally use a quantum
channel for general communication purposes. However, in a lot of
cases, the channel one will be using only has an additive single or
double resource capacity, and it is largely unknown if this could
lead to a strictly superadditive double or triple resource capacity,
respectively. For example, if a channel has additive classical
and quantum capacities, can the classical-quantum capacity be
strictly superadditive? In this work, we answer such questions
affirmatively.

We give proof-of-principle requirements for these channels to
exist. In most cases, we can provide an explicit construction of
these quantum channels. The existence of these superadditive
phenomena is surprising in contrast to the result that the
additivity of both classical-entanglement and classical-quantum
capacity regions imply the additivity of the triple resource
capacity region for a given channel.

Index Terms—Additivity; Quantum Channel Capacity; Trade-
off Capacity Regions; Quantum Shannon theory.

I. INTRODUCTION

IN studying classical communication, Shannon developed
powerful probabilistic tools that connect the theoretic

throughput of a channel to an entropic quantity defined on
a single use of the channel [1]. Shannon’s noiseless channel
coding theorem involves a random coding strategy to prove
achievability and entropic inequalities that show optimality,
i.e., the converse. This methodology has now become standard
in proving finite or asymptotic optimal resource conversions
in information theory.

Quantum Shannon information starts by mimicking clas-
sical information theory: typical sets can be generalized to
typical subspaces to prove achievability while various entropic
inequalities, such as the quantum data processing inequality,
can be used to prove the converse. However, the differences
between quantum and classical Shannon information are also
significant. On one hand, additional resources available in the
quantum domain diversify the allowable capacities, resulting in
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trade-off regions for the resources that are consumed or gener-
ated [2]–[4]. The most common, and useful, quantum resource
in communication settings is quantum entanglement. Unlike
classical shared randomness, which does not increase a clas-
sical channel’s capability to send more messages, preshared
quantum entanglement will generally increase the throughput
of a quantum channel for sending classical messages or
quantum messages or both [2], [5]–[9]. It thus makes sense
to consider the trade-off capacity regions among these three
useful resources: entanglement, classical communication, and
quantum communication, and this was done in Ref. [4]. The
result in Ref. [4] further shows that a coding strategy that
exploits the channel coding of these three resources as a whole
performs better than strategies that use each of these three
resources individually.

On the other hand, even though single-lettered channel
capacity formulas have been found in the classical regime for
certain communication tasks, when considering related tasks
in the quantum regime, the known formulas are generally no
longer tractable and are instead regularized capacity formulas
[10]–[14]. In other words, evaluation of these capacity quan-
tities requires optimizing information formulas over an arbi-
trarily large number of uses of a given channel. This largely
blocks our understanding of quantum communication capaci-
ties. An extreme example shows the existence of two quantum
channels that cannot be used to send a quantum message
reliably individually but will have a positive channel capacity
when both are used simultaneously [15]. However, there are
also several examples showing that when additional resources
are used to assist, the corresponding assisted capacity will
also become additive. The classical capacity over quantum
channels is generally superadditive; however, when assisted
by a sufficient amount of entanglement, the entanglement-
assisted capacity becomes additive [6], [16]. The quantum
capacity also exhibits similar properties. When assisted by
either entanglement [2], [3] or an unbounded symmetric side
channel [17], its assisted quantum capacity becomes additive.

This superadditive property of quantum channel capacities
has accordingly attracted significant attention. Hastings [18]
proved that the classical capacity over quantum channels is not
additive, a result built upon earlier developments by Hayden-
Winter [19] and Shor [20]. Recently, three of us showed a
rather perplexing result [21]: when assisted by an insufficient
amount of entanglement, a channel’s classical capacity could
be strictly superadditive regardless of whether the unassisted
classical capacity is additive. Further, the additivity property of
the entanglement-assisted classical capacity shows a form of
phase transition. Even if the channel is additive when assisted



2

by a sufficient amount of entanglement or no entanglement at
all, it can still be strictly superadditive when assisted with
an insufficient amount of entanglement. This phenomenon
indicates that quantum channels behave fundamentally differ-
ently from classical channels, and our understanding of their
behavior is still quite limited.

Ref. [21] used the idea of a switch channel, with one end
of the switch a symmetric classical channel, the other end
of the switch a quantum channel constructed in Ref. [18],
having a strictly superadditive classical capacity. By design
the two channels have the same classical capacity. Hence,
without entanglement assistance, only the classical channel is
used and the classical capacity is additive. However, as the
rate of entanglement assistance increases, the quantum channel
dominates the communication protocol. With some delicate
concavity argument, one can show that there exists some rate
of entanglement assistance such that the classical capacity is
indeed strictly superadditive.

This paper is inspired by, and aims to extend Ref. [21]. Will
additivity of single or double resource capacities always lead
to additivity of a general resource trade-off region? We will
study superadditivity in a general framework that considers
the three most common resources: entanglement, noiseless
classical communication and quantum communication. Our
results show that (i) additivity of single resource capacities
of a quantum channel does not generally imply additivity of
double resource capacities, except for the known result [2] that
an additive quantum capacity yields an additive entanglement-
assisted quantum capacity region (see Table I); and (ii) addi-
tive double resource capacities does not generally imply an
additive triple resource capacity, except for the known case
[8] that additive classical-entanglement and classical-quantum
capacity regions yield an additive triple dynamic capacity (see
Table II). These results again demonstrate how complex a
quantum channel can be, and further investigation is required.

The paper is structured as follows. Section II introduces the
various definitions, notations and previous results on the triple
resource quantum Shannon theory. Section III summarizes the
various superadditivity results that we establish in the paper.
Section IV establishes the switch channel that we use for all
our constructions, and expresses the triple resource trade-off
formula of the switch channel in terms of those of the sub-
channels. Section V gives a detailed construction of all the
possible superadditivity phenomena.

II. PRELIMINARIES

In this section, we give definitions of basic entropic quanti-
ties used in the paper. We also describe the dynamic capacity
theorem. Special cases of this include the various single and
double resource capacities. Finally, we define the elementary
channels that will be used in our explicit constructions.

A bipartite quantum state ρAB is a positive semi-definite
operator on a Hilbert space HA ⊗ HB with trace one. We
define the von Neumann entropy, coherent information and
quantum mutual information of ρAB, respectively, as follows:

S(AB)ρ = −Tr [ρAB log ρAB],
I(A〉B)ρ = S(B)ρ − S(AB)ρ,

I(A; B)ρ = S(A)ρ + I(A〉B)ρ,

where S(A)ρ is the von Neumann entropy of the reduced state
ρA = TrB[ρAB].

For an ensemble {p(x), σx
AB
}x∈X , let

σXAB =
∑
x∈X

p(x)|x〉〈x |X ⊗ σx
AB,

where {|x〉} forms a fixed orthonormal (computational) basis
in a Hilbert space HX . We need the following information-
theoretic quantities as well:

I(A〉BX)σ =
∑
x

p(x)I(A〉B)σx , (1)

I(A; B |X)σ =
∑
x

p(x)I(A; B)σx , (2)

I(AX; B)σ = I(X; B)σ + I(A; B |X)σ, (3)

where I(A〉BX)σ and I(A; B |X) in Eqs. (1) and (2) are the
conditional coherent information and the conditional mutual
information, respectively. I(X; B)σ in Eq. (3) is the Holevo
information of σXB = TrA[σXAB].

A quantum channel N is a completely positive and trace-
preserving map. With it, we can transmit either classical or
quantum information or both with possible entanglement assis-
tance between the sender and the receiver [8]. More generally,
the authors in Ref. [4] proved the following capacity theorem
that involves a noisy quantum channel N and the three
resources mentioned above; namely, classical communication
(C), quantum communication (Q) and quantum entanglement
(E).

Theorem 1 (CQE trade-off [4]): The dynamic capacity
region CCQE (N) of a quantum channel N is equal to the
following expression:

CCQE (N) =

∞⋃
k=1

1
k
C
(1)
CQE

(
N ⊗k

)
,

where the overbar indicates the closure of a set. The region
C
(1)
CQE

(N) is equal to the union of the state-dependent regions

C
(1)
CQE,σ

(N):

C
(1)
CQE

(N) ≡
⋃
σ

C
(1)
CQE,σ

(N) .

The state-dependent region C(1)
CQE,σ

(N) is the set of triples
(C,Q, E) of rates such that

C + 2Q ≤ I(AX; B)σ, (4)
Q + E ≤ I(A〉BX)σ, (5)

C +Q + E ≤ I(X; B)σ + I(A〉BX)σ . (6)

The above entropic quantities are with respect to a classical-
quantum state (cq state) σXAB, where

σXAB ≡
∑
x

p(x) |x〉 〈x |X ⊗ NA′→B

(
φxAA′

)
, (7)

and the states φx
AA′

are pure.
The dynamic capacity of a channel N is always superadditive,
i.e.,

CCQE (N) ⊇ C
(1)
CQE

(N) .
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We say that the dynamic capacity of a channel N is (weakly)
additive if

CCQE (N) = C
(1)
CQE

(N) . (8)

Thus if
CCQE (N) ) C

(1)
CQE

(N) ,

then the dynamic capacity of N is strictly superadditive, i.e.,
non-additive.

We will also be using the following stronger notion of
additivity in our proofs. The dynamic capacity of a channel
N is strongly additive if

C
(1)
CQE

(N ⊗ Ψ) = C
(1)
CQE

(N) + C
(1)
CQE

(Ψ) (9)

for an arbitrary channel Ψ. Here, addition means Minkowski
sum1.

The dynamic capacity region CCQE (N) in Theorem 1
allows us to recover known capacity theorems by choosing
certain (C,Q, E) in Eqs. (4)-(6) as follows:
• the classical capacity CC(N) when choosing Q = E = 0

[10], [11];
• the quantum capacity CQ(N) when choosing C = E = 0

[12]–[14];
• the classical and quantum capacity CCQ(N) when choos-

ing E = 0 (CQ trade-off) [23];
• the entanglement assisted classical capacity CCE (N)

when choosing Q = 0 (CE trade-off) [7], [16];
• the entanglement assisted quantum capacity CQE (N)

when choosing C = 0 (QE trade-off) [2], [3];
The additivity of these special cases is defined similarly as in
Eq. (8).

We note that the dynamic capacity region is convex, as a
convex combination of any two points in the region can be
achieved by a time-sharing strategy, i.e., using the channel for
a fraction of uses to achieve one point, and using it for the
other fraction to achieve the second point.

Below we will briefly describe a few channels which we
will repeatedly use.

A quantum channel NA→B can be written as

NA→B (ρA) = TrE
[
UρAU†

]
,

where UA→BE is an isometry fromHA toHB⊗HE , commonly
called the isometric extension of N . E is usually called the
environment. Then the complementary channel N c is defined
by

N c
A→E (ρA) = TrB

[
UρAU†

]
.

Definition 2: A entanglement-breaking channel NA→B is a
quantum channel with the property that σRB = NA→B (ρRA)

is a separable state for any input state ρRA, where σRB is
separable if it can be written as

σRB =
∑
k

p(k)φkR ⊗ φ
k
B, (10)

where
∑

k p(k) = 1 and all φkR, φ
k
B are pure states.

1For two sets of position vectors A and B in Euclidean space, their
Minkowski sum A+B is obtained by adding each vector in A to each vector
in B, i.e., A+ B = {a + b |a ∈ A, b ∈ B} [22].

Definition 3: A Hadamard channel is a quantum channel
whose complementary channel is entanglement-breaking.

Suppose ΨA′→B is a Hadamard channel, with the com-
plementary channel Ψc

A′→E
. Then there is a degrading map

DB→E [24] such that

Ψ
c
A′→E = DB→E ◦ ΨA′→B .

Moreover, D can be decomposed as

DB→E = D
2
Y→E ◦ D

1
B→Y,

where Y is a classical variable.
A Hadamard channel has an additive quantum dynamic

capacity region, when tensored with an arbitrary quantum
channel [24]. Examples of Hadamard channels include the
qubit dephasing channel, 1 → N cloning channels, and the
Unruh channel. We’ll define the qubit dephasing channel and
1→ N cloning channel below. We refer the interested readers
to Ref. [24] for more details and properties of these channels.

Definition 4: The qubit dephasing channel Ψdph
η , with de-

phasing probability η, is defined as

Ψ
dph
η (ρ) = (1 − η)ρ + ηZρZ,

where Z is the Pauli-Z operator.
Definition 5: A 1 → N qubit cloning channel Ψ1→N is a

channel that approximately copies the input qubit state with
maximal copy fidelity independent of the input state.

Let {| j〉B , j = 0, . . . , N} be an orthonormal basis of the
normalized completely symmetric state for the output sys-
tem of N qubits, where | j〉B is a uniform superposition of
computational basis states with N − j 0’s and j 1’s. Let
{|i〉E , i = 0, . . . , N − 1} be an orthonormal basis of of the
normalized completely symmetric state for the environment
system of N − 1 qubits, where |i〉E is a uniform superposition
of computational basis states with N − i − 1 0’s and i 1’s. An
isometric extension of Ψ1→N has the form

UA→BE =
1
√
∆N

N−1∑
i=1

√
N − 1 |i〉B 〈0|A ⊗ |i〉E

+
1
√
∆N

N−1∑
i=1

√
i + 1 |i + 1〉B 〈0|A ⊗ |i〉E ,

where ∆N ≡ N(N + 1)/2.
Definition 6: The qubit depolarizing channel Ψdpo

p , with
depolarizing probability p, is defined as

Ψ
dpo
p (ρ) = (1 − p)ρ + p

I
2
.

The qubit depolarizing channel is known to have an additive
classical capacity [25], but a non-additive quantum capacity
when p = 0.746 [26].

Definition 7: A random orthogonal channel Ψro is defined
as

Ψ
ro (ρ) =

D∑
i=1

PiOiρOᵀi ,

where Oi are chosen from the orthogonal group and the
probabilities Pi are roughly equal.
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Imply the additivity of
Additive capacities CE CQ QE

C N [21] N [26] N [26]
Q N (SecV-C) N (SecV-C) Y [3]

C&Q⇔ C&QE N (SecV-B) N (SecV-D) Y[3]
TABLE I

SUMMARY OF RESULTS FOR DOUBLE RESOURCES. “N” STANDS FOR
“DOES NOT IMPLY ADDITIVITY”, WHILE “Y” MEANS “IMPLIES

ADDITIVITY”.

For 1 � D � N , with N the input dimension, such a channel
will have a strictly subadditive minimum output entropy with
high probability [18].

Definition 8: Consider an arbitrary channel ΨC→B. Append
a register R to the input, with a set of orthonormal bases {|k〉}.
We define a unitally extended channel [20], [27] ΦRC→B as

ΦRC→B(ρRC) =
∑
k

UkΨC→B (〈k | ρRC |k〉R)U
†

k
, (11)

where {Uk ∈ U(|B|) : k ∈ {1, . . . , |R|}} form a unitary 1-
design.

A set of K unitaries {Uk} ∈ U(d) form a unitary 1-design
if it satisfies the following property

1
K

∑
k

Uk AU†
k
= Tr(A)

I
d

(12)

for any d × d matrix A.
Note that unital extensions are not unique. For practical

purposes, we will mostly use Heisenberg-Weyl operators
{X(x, z) ∈ U(d) : x, z ∈ {0, , . . . , d − 1}, defined as

X(x, z) |l〉 = exp(i2πzl/d) |l ⊕ x〉 (13)

on the computational basis states {|l〉}l∈{0,...,d}. For notational
simplicity, we will denote them as {X( j), j ∈ {1, . . . , d2}}.

If a channel has a strictly subadditive minimum output
entropy, its unital extension will have a strictly superadditive
classical capacity [20]. Hence a unital extension of a random
orthogonal channel will have a strictly superadditive classical
capacity with high probability.

III. SUMMARY OF RESULTS

We summarize all of our results here. We will denote a
single-resource capacity region by a single letter, e.g., C for
CC(N). We will also use short notation for double and triple-
resource trade-off regions, e.g., CE for CCE (N) and CQE
for CCQE (N). We will use the arrow notation, with “→”
meaning additivity of the capacity on the left-hand side implies
additivity of the capacity on the right-hand side , and “ 6→”
meaning additivity of the capacity on the left-hand side does
not imply additivity of the capacity on the right-hand side .

A. Double resources (see table I)

1) CE:
a) C 6→ CE [21]: There exists a quantum channel N ,

such that its classical capacity is additive, but its CE
trade-off capacity region is non-additive. We will give
a simplified construction in Sec V-A.

Imply the additivity of
Additive capacities CQE

QE N (SecV-C)
CQ N (SecV-G, conjecture)
CE N (SecV-E)

CE&Q⇔CE&QE N (SecV-F)
CE&CQ Y[8]

TABLE II
SUMMARY OF RESULTS FOR TRIPLE RESOURCES. “N” STANDS FOR “DOES

NOT IMPLY ADDITIVITY”, WHILE “Y” MEANS “IMPLIES ADDITIVITY”.

b) C&Q 6→ CE: There exists a quantum channel N ,
such that its classical and quantum capacities are both
additive, but its CE trade-off capacity region is non-
additive. An explicit construction of N is given in Sec
V-B.

2) QE:
Q→ QE [3]: For any quantum channel N , if its quantum
capacity is additive, then its QE trade-off capacity region
is always additive.

3) CQ:
a) C 6→ CQ [26]: There exists a quantum channel N ,

such that its classical capacity is additive, but its CQ
trade-off capacity region is non-additive.
The depolarizing channel has a non-additive quantum
capacity at some dephasing parameter, and hence a
non-additive CQ trade-off capacity, while its classical
capacity is additive.

b) Q 6→ CQ: There exists a quantum channel N , such that
its quantum capacity is additive, but its CQ trade-off
capacity region is non-additive. A construction of such
a quantum channel is given in Sec V-C.

c) C&Q 6→ CQ: Moreover, there exists a quantum channel
N , such that its classical and quantum capacities are
additive, but its CQ trade-off capacity region is non-
additive. A construction of such a quantum channel is
given in Sec V-D.

B. Triple resources (see table II)

1) CE 6→ CQE: There exists a quantum channel N such
that its CE trade-off capacity region is additive, but its
dynamic capacity region is non-additive. An example is
constructed in Sec V-E.

2) CE&Q 6→ CQE: There exists a quantum channel N such
that its quantum capacity and its CE trade-off capacity
region are additive, but its dynamic capacity region is
non-additive. An example is constructed in Sec V-F.

3) CQ 6→ CQE: (Conjecture) There exists a quantum chan-
nel N such that its CQ trade-off capacity region is
additive, but its dynamic capacity region is non-additive.
This is the only case in which we do not have an explicit
example. We outline a possible construction in Sec V-G.

4) CE&CQ → CQE [8]: If a quantum channel N has
additive CE and CQ trade-off capacity regions, then its
dynamic capacity region is also additive. This statement
is first observed in Ref. [8], and an explicit argument can
be found in Ref. [24].



5

IV. FRAMEWORK

This section presents technical tools that we require for
demonstration of superadditivity in trade-off capacities. We
first recall the concept of switch channels.

Definition 9: A switch channel NMC→B between N0
C→B

and N1
C→B with M being a 1-bit switch register is defined as

NMC→B (ρMC)

=N0
C→B (〈0| ρMC |0〉M ) +N1

C→B (〈1| ρMC |1〉M ) .

In quantum information theory, switch channels were first
used in Ref. [7] to demonstrate the existence of quantum
channels such that the quantum capacity is nonzero, but for
which pre-shared entanglement does not improve the classical
capacity. Subsequently, they were used in Ref. [29] to show
the superadditivity of private information, with an alternative
definition. A more complicated version was used in Ref. [28]
to demonstrate the uncomputability of quantum capacity. Re-
cently, they were also used in Ref. [21] to show the super-
additivity of the classical capacity with limited entanglement
assistance.

One immediate difficulty is that, even if N0 and N1 are
well-studied, the dynamic capacity region of N may not
always have a simple expression in terms of those of N0 and
N1. This is due to the fact that the switch register M can be
in a statistical mixture. However, if N0 and N1 are unitally
extended channels, then the dynamic capacity region of N
does have a simple expression.

Lemma 10: Consider a switch channel NA′→B between
N0

RC→B
and N1

RC→B, with input partition A′ = MRC and M
being a switch register. Here N0

RC→B
and N1

RC→B are unital
extensions of Ψ0

C→B
and Ψ1

C→B respectively. Then

C
(1)
CQE

(N) = Conv
(
C
(1)
CQE

(
N0

)
∪ C

(1)
CQE

(
N1

))
,

where Conv denotes the convex hull of points from the two
sets.

If, in addition, the quantum dynamic capacity region for N0

is strongly additive, then we also have

CCQE (N) = Conv
(
CCQE

(
N0

)
∪ CCQE

(
N1

))
.

We note that Lemma 10 also applies to the single and double
resource capacity regions. This is because these capacity
regions are determined by the same set of entropic quantities
[8].

The rest of this section is devoted to the proof of this lemma.
Firstly, we note that switch channels and unitally extended

channels fall under a broader class of channels that we call
partial classical-quantum channels (partial cq channels).

Definition 11: A channel ΨRC→B is a partial cq channel if
there exists a noiseless classical channel ΠR→R with orthonor-
mal basis {| j〉R}

ΠR→R (ρ) =
∑
j

〈 j | ρ | j〉 | j〉 〈 j |R ,

such that
ΨRC→B = ΨRC→B ◦ ΠR→R . (14)

If there is no register C, then such channels are classical-
quantum channels (cq channels).

For partial cq channels, one can always assume inputs are
cq states with respect to the input partition R and C for the
purpose of evaluating capacities, as we show in Lemma 12
below.

Lemma 12: If ΨA′→B is a partial cq channel with partition
A′ = RC, then the optimal trade-off surface of the 1-shot
dynamic capacity region C(1)

CQE
(Ψ) can be achieved with

respect to cq states σXAB = ΨA′→B (ρXAA′), where ρXAA′ is
of the form

ρXAA′ =
∑
x, j

p(x, j) |x, j〉 〈x, j |X ⊗ | j〉 〈 j |R ⊗ φ
x j
AC
. (15)

For ρXAA′ described above, each input state to the channel
| j〉 〈 j |R ⊗ φ

x j
AC

has entanglement entropy at most log |C |
between input space RC and ancilla A. We can therefore
conclude that at most log |C | ebits of entanglement is useful
for the 1-shot dynamic capacity region. This extends similarly
to the n-shot dynamic capacity region, for n > 1.
Proof. We will show that, for any input state

ρ̃XAA′ =
∑
x

p(x) |x〉 〈x |X ⊗ φ
x
AA′, (16)

with its output state

ςXAB ≡ ΨA′→B (ρ̃XAA′) =
∑
x

p(x) |x〉 〈x |X ⊗ ς
x
AB,

where ςx
AB
= ΨA′→B

(
φx
AA′

)
, there exists a corresponding state

ρXAA′ , in the form of Eq. (15), which can achieve the same
rate, if not better.

In fact, the state ρXAA′ can be obtained by applying ΠR→R

on ρ̃XAA′ and expanding its classical register X . This can be
achieved by the following quantum instrument T : R→ RXR,

T (ψR) :=
∑
j

〈 j | ψR | j〉 | j〉 〈 j |R ⊗ | j〉 〈 j |XR

so that

ρXAA′ = T(ρ̃XAA′)

=
∑
x, j

p(x, j) |x, j〉 〈x, j |X ⊗ | j〉 〈 j |R ⊗ φ
x j
AC

(17)

where we abuse the notation X to denote X XR in Eq. (17),
p(x, j) ≡ p(x)p( j |x), p( j |x) ≡ Tr[(| j〉 〈 j |R ⊗ IAC) φxARC] and
φ
x j
AC
≡ 〈 j | φx

ARC
| j〉R /p( j |x) is still a pure state.

Let σXAB = ΨA′→B (ρXAA′). Then

σXAB =
∑
x, j

p(x, j) |x, j〉 〈x, j |X ⊗ σ
x j
AB

where
σ

x j
AB
= ΨA′→B

(
| j〉 〈 j |R ⊗ φ

x j
AC

)
.

It follows that

ςxAB =
∑
j

p( j |x)σx j
AB
. (18)

Since the dynamic capacity region is fully determined by
the three entropic quantities I(AX; B), I(A〉BX) and I(X; B) in



6

Eqs. (4)-(6), it suffices to show that all three entropic quantities
evaluated on σXAB are greater than those evaluated on ςXAB.

1) First consider I(A〉BX).

I(A〉BX)σ =
∑
x, j

p(x, j)I(A〉B)σx j

=
∑
x, j

p(x)p( j |x)I(A〉B)σx j

≥
∑
x

p(x)I(A〉B)ςx

= I(A〉BX)ς, (19)

where the inequality is due to Eq. (18) and the convexity
of coherent information with respect to inputs.

2) Now consider I(AX; B). Similarly,

I(AX; B)σ = S(B)σ + I(B〉AX)σ
≥ S(B)ς + I(B〉AX)ς
= I(AX; B)ς,

where the inequality is due to σB = ςB and

I(B〉AX)σ ≥ I(B〉AX)ς

follows similarly as Eq. (19), after swapping A and B.
3) Finally consider I(X; B). Writing |x, j〉 as |x〉 | j〉, it can

be shown
I(X; B)σ ≥ I(X; B)ς

using the data processing inequality when we apply the
partial trace map |x〉 〈x | ⊗ | j〉 〈 j | → |x〉 〈x | to σXB.

Lemma 13: The optimal trade-off surface of the 1-shot quan-
tum dynamic capacity region of a unitally extended channel
can always be achieved with σXAB such that S(B)σ = log(|B |).
This extends similarly to the n-shot dynamic capacity region
for n > 1.
Proof. Suppose ΦRC→B is unitally extended from ΨC→B.
Since a unitally extended channel ΦRC→B is a partial cq
channel, by Lemma 12, we can consider states of the form

ρ̃XAA′ =
∑
x, j

p(x, j) |x, j〉 〈x, j |X ⊗ | j〉 〈 j |R ⊗ φ
x j
AC
.

Let ςXAB = ΦRC→B(ρ̃XAA′) with A′ ≡ RC. Then

ςXAB =
∑
x, j

p(x, j) |x, j〉 〈x, j |X ⊗ ς
x j j
AB
,

where ςx jk
AB
= X(k)ςx j

AB
X(k)† and ς

x j
AB
= ΨC→B

(
φ
x j
AC

)
.

We can construct another state of the form in Eq. (15):

ρX′AA′ =
∑
x, j,k

p(x, j, k) |x, j, k〉 〈x, j, k |X′ ⊗ |k〉 〈k |R ⊗ φ
x j
AC
,

(20)
where p(x, j, k) = p(x, j)/|R|, and σX′AB = ΦRC→B(ρX′AA′):

σX′AB =
∑
x, j,k

p(x, j, k) |x, j, k〉 〈x, j, k |X′ ⊗ σ
x jk
AB
,

where σ
x jk
AB
= X(k)σx j

AB
X(k)† and σ

x j
AB
= ΨC→B

(
φ
x j
AC

)
. The

state σX′AB satisfies

S(B)σ = S ©­«
∑
x, j,k

p(x, j, k)σx jk
B

ª®¬
≥

∑
x, j

p(x, j)S

(
1
|R|

∑
k

σ
x jk
B

)
= log(|B |),

where we’ve used the 1-design formula (12).
One can verify that the dynamic capacity region with σX′AB

is larger than that with ςXAB as follows:

I(A〉BX ′)σ =
∑
x, j,k

p(x, j, k)I(A〉B)σx jk

=
∑
x, j

p(x, j)I(A〉B)ςx j j = I(A〉BX)ς (21)

I(AX ′; B)σ = S(B)σ +
∑
x, j,k

p(x, j, k)I(B〉A)σx jk

= log(|B |) +
∑
x, j

p(x, j)I(B〉A)ςx j j ≥ I(AX; B)ς

I(X ′; B)σ = S(B)σ −
∑
x, j,k

p(x, j, k)S(B)σx jk (22)

= log(|B |) −
∑
x, j

p(x, j)S(B)ςx j j ≥ I(X; B)ς .

(23)

The key property used in the above equations is, for any
Heisenberg-Weyl operator X(k),

S(σB) = S(X(k)σBX(k)†).

Proof of Lemma 8. Following from Lemma 13 and Eq. (20),
we only need to consider states of the form

ρXAA′ =

1∑
m=0

pm |m〉 〈m|M ⊗ ρ
m
XARC (24)

where pm =
∑

x,k p(x,m, k) and

ρmXARC =
∑
x,k

p(x,m, k)
pm

|x,m, k〉 〈x,m, k |X ⊗ |k〉 〈k |R ⊗ φ
xm
AC,

with p(x,m, k) = p(x,m, k ′) for all k, k ′ and m ∈ {0, 1}.
The corresponding channel output is

σXAB =

1∑
m=0

pmσm
XAB (25)

where

σm
XAB =

∑
x,k

p(x,m, k)
pm

|x,m, k〉 〈x,m, k |X ⊗ σ
xmk
AB (26)

and

σxmk
AB = X(k)Ψm

C→B

(
φxmAC

)
X(k)†.
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Then all three of the entropic quantities evaluated on σXAB

in Eq. (25) can be decomposed to the corresponding ones
evaluated on σm

XAB
given in Eq. (26):

I(A〉BX)σ =
1∑

m=0

∑
x,k

p(x,m, k)I(A〉B)σxmk

=

1∑
m=0

pmI(A〉BX)σm .

Likewise,

I(AX; B)σ = log(|B |) +
1∑

m=0

∑
x,k

p(x,m, k)I(B〉A)σxmk

=

1∑
m=0

pmI(AX; B)σm

and

I(X; B)σ =
1∑

m=0
pmI(X; B)σm .

This means if we consider inputs of the form (24), the
triple rate for using N can always be expressed as a linear
combination of the triple rates of N0 and N1. It is also clear
that any linear combination is achievable by the time-sharing
principle. Since using states of the form (24) is optimal, we
have

C
(1)
CQE

(N) =
⋃

0≤p≤1
pC(1)

CQE

(
N0

)
+ (1 − p)C(1)

CQE

(
N1

)
= Conv

(
C
(1)
CQE

(
N0

)
∪ C

(1)
CQE

(
N1

))
.

Here again, addition means Minkowski sum. We have also
used the fact that the dynamic capacity region of any channel
is convex.

Similarly, we have

C
(1)
CQE

(N ⊗ N) =Conv
(
C
(1)
CQE

(
N0 ⊗ N0

)
∪

C
(1)
CQE

(
N0 ⊗ N1

)
∪ C

(1)
CQE

(
N1 ⊗ N1

))
.

If the quantum dynamic capacity region is strongly additive
for N0, then we have

C
(1)
CQE

(
N0 ⊗ N1

)
= C

(1)
CQE

(
N0

)
+ C

(1)
CQE

(
N1

)
(27)

and
C
(1)
CQE

((
N0

) ⊗n)
= nCCQE

(
N0

)
. (28)

In this case

C
(1)
CQE

(
N0 ⊗ N1

)
=

1
2

(
2CCQE

(
N0

)
+ C

(1)
CQE

(
N1 ⊗ N1

))
⊆Conv

(
2CCQE

(
N0

)
∪ C

(1)
CQE

(
N1 ⊗ N1

))
.

Thus the 1-shot quantum dynamic capacity region for N ⊗N
can be greatly simplified to

C
(1)
CQE

(N ⊗ N) = Conv
(
2CCQE

(
N0

)
∪ C

(1)
CQE

(
N1 ⊗ N1

))
.

Similarly,

C
(1)
CQE

(
N ⊗k

)
=Conv

(
C
(1)
CQE

((
N1

) ⊗k )
∪ C

(1)
CQE

(
N0 ⊗

(
N1

) ⊗k−1
)
∪

· · · ∪ C
(1)
CQE

((
N0

) ⊗k−1
⊗ N1

)
∪ C

(1)
CQE

((
N0

) ⊗k ))
.

Each term C(1)
CQE

( (
N0) ⊗m ⊗ (

N1) ⊗k−m)
, 0 ≤ m ≤ k, can

be upper bounded as

C
(1)
CQE

((
N0

) ⊗m
⊗

(
N1

) ⊗k−m)
=mCCQE

(
N0

)
+ C

(1)
CQE

((
N1

) ⊗k−m)
⊆mCCQE

(
N0

)
+ (k − m)CCQE

(
N1

)
⊆kConv

(
CCQE

(
N0

)
∪ CCQE

(
N1

))
.

Here the second line follows from the addivity of the dynamic
capacity region of N0. The third line follows from the defini-
tion of CCQE . The fourth line follows from the definition of
convex hull. Thus C(1)

CQE

(
N ⊗k

)
can also be upper bounded as

C
(1)
CQE

(
N ⊗k

)
⊆ kConv

(
CCQE

(
N0

)
∪ CCQE

(
N1

))
.

and

CCQE (N) =

∞⋃
k=1

1
k
C
(1)
CQE

(
N ⊗k

)
⊆Conv

(
CCQE

(
N0) ∪ CCQE

(
N1) )

=Conv
(
CCQE

(
N0

)
∪ CCQE

(
N1

))
.

The last equality follows because of the topology of the
dynamic capacity region, as we show in Appendix C.

By a time-sharing protocol, it is obvious that

CCQE (N) ⊇ Conv
(
CCQE

(
N0

)
∪ CCQE

(
N1

))
.

Hence

CCQE (N) = Conv
(
CCQE

(
N0

)
∪ CCQE

(
N1

))
.

While we’ve been working with Heisenberg-Weyl opera-
tors only, we’ve only used the unitarity of Heisenberg-Weyl
operators and the 1-design property (12) in proving the above
lemmas. Hence, lemmas 10 and 13 will hold for any unital
extension. 2

Moreover, unital extensions are preserved under tensor
product of channels: if Φ1 is a unital extension of Ψ1, and Φ2 is
a unital extension of Ψ2, then Φ1⊗Φ2 is also a unital extension
of Ψ1⊗Ψ2. This follows from the fact that if {Uj} ∈ U(d1) and
{Vk} ∈ U(d2) both satisfy Eq. (12), then {Uj ⊗Vk} ∈ U(d1d2)
also satisfies Eq. (12).

2Note that we do not even require N0 and N1 to have the same unital
extension. However, to ensure the input dimensions of N0 and N1 are the
same, their unital extensions must involve the same number of unitaries. For
this reason, we stick with the Heisenberg-Weyl operators most of the time.
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V. EXPLICIT CONSTRUCTION OF VARIOUS
SUPERADDITIVITY PHENOMENA

With the tools developed in Sec IV, we can now explicitly
construct channels that satisfy the superadditivity properties
stated in Sec III. All our constructions utilize the switch
channel idea. We always assume that N is a switch channel
of two unitally extended channels N0 and N1. Further, we
assume that
(U) N0 has a strongly additive dynamic capacity region, when

tensored with another arbitrary channel.
In this setting, we can use Lemma 10 and its reduction to

various single-resource and two-resource capacities.
In each construction, we first state the properties that N0

and N1 need to satisfy, in addition to Property (U). We then
show how the desired superadditivity of the switch channel
N follows from these properties. In the end, we explicitly
construct channels that satisfy the properties we required.

Before we start, we first propose two families of unital
extended channels that satisfy (U). Many of our explicit
constructions of N0 will be chosen from these candidates. The
first family comes from unital extensions of Hadamard chan-
nels. The following lemma shows that the dynamic capacity
of the unitally extended Hadamard channels is also additive.

Lemma 14: The dynamic capacity region is strongly additive
for a unital extension of a Hadamard channel.
The proof follows from the proof of strong additivity of the
dynamic capacity region of a Hadamard channel [24] and the
stucture of optimal input states for unitally extended channels.

The second family is unital extensions of classical channels.
Lemma 15: The dynamic capacity region is strongly additive

for a classical channel. The same holds for a unital extension
of a classical channel.
The dynamic capacity region of a classical channel and its
unital extension only has non-trivial classical information
transmission. Hence the strong additivity follows from the
strong additivity of classical capacity for classical channels.

The detailed proofs of the above lemmas are left to the
Appendices, as they are not essential in understanding the
construction.

A. Additive C, Superadditive CE
Here we review the original argument in [21] and recast it

in the current framework.
We use CP (N) when we view C (N) as a function of the

amount of entanglement assistance P, where (C (N) , P) are
points on the CE trade-off curve of N . When P = 0, we
return to the classical capacity CC (N). When P is maximal,
we arrive at the classical capacity with unlimited entanglement
assistance CE (N). C(1)P (N) denotes the 1-shot case.

We require N0 and N1 to have the following properties:
(A1) CC

(
N0) = CC (

N1) .
(A2) N1 has a non-additive CE trade-off capacity region, i.e.,

CCE

(
N1

)
) C

(1)
CE

(
N1

)
,

and CCE

(
N1) is strictly concave and non-additive at a

boundary point of the trade-off region with entanglement
consumption P̄.

(A3) CCE

(
N0) ( CCE

(
N1) and the CE trade-off capacity

region of N0 is strictly smaller than that of N1 when
entanglement consumption is at P̄.

In the CP notation, property (A2) means at P = P̄,
CP

(
N1) > C(1)P

(
N1) and CP

(
N1) is strictly concave3 in P

at P = P̄ . Property (A3) means that CP

(
N0) ≤ CP

(
N1) for

all P and CP

(
N0) < CP

(
N1) at P = P̄ 4.

Note that Ref. [21] requires N0 to be a classical channel.
However, that is not necessary here.

These three properties (A1)-(A3), together with (U), will
guarantee that (i) the classical capacity of N is additive; and
(ii) the CE trade-off capacity region of N is non-additive at
entanglement consumption rate P̄.

Combining property (A1) with (U) yields statement (i):

CC (N)
Lem.10,(U)
= max

{
CC

(
N0

)
, CC

(
N1

)}
(A1)
= CC

(
N0

)
(U)
= C

(1)
C

(
N0

)
(A1),(U)
= max

{
C
(1)
C

(
N0

)
, C
(1)
C

(
N1

)}
Lem.10
= C

(1)
C
(N) .

Here in the first equality, we’ve used the reduction of Lemma
10 to the classical capacity, with the fact thatN0 has a strongly
additive dynamic capacity region (U). The second equality
follows from property (A1). In the third equality, we’ve again
used the fact that N0 has a strongly additive dynamic capacity
region (U). By definition CC

(
N1) ≥ C(1)

C

(
N1) , thus from

(A1) we can get CC
(
N0) = C(1)

C

(
N0) ≥ C(1)

C

(
N1) , and the

fourth equality follows. The last equality follows from Lemma
10. Similar lines of reasoning are used in subsequent sections.
Thus we will only indicate the properties used in each step by
the superscript.

Property (A3) and Lemma 10 ensure that

CCE (N)
Lem.10,(U)
= Conv

(
CCE

(
N0

)
∪ CCE

(
N1

))
(A3)
= CCE

(
N1

)
. (29)

Since

C
(1)
CE
(N)

Lem.10,(U)
= Conv

(
CCE

(
N0

)
∪ C

(1)
CE

(
N1

))
,

there exists P0, P1 ≥ 0 and p ∈ [0, 1] such that pP0+(1−p)P1 =
P̄ and

C(1)
P̄
(N) = pCP0

(
N0

)
+ (1 − p)C(1)P1

(
N1

)
. (30)

Statement (ii) follows after considering three different cases.
1) p = 0.

C(1)
P̄
(N)

Eq.(30)
= C(1)

P̄

(
N1

) (A2)
< CP̄

(
N1

)
Eq.(29)
= CP̄ (N) ,

where the inequality follows from the superadditivity part
of property (A2).

3Here by saying a function f is strictly concave at y, we mean f (y) >
(1 − p) f (v) + p f (w) for all v < y < w satisfying (1 − p)v + pw = y, with
p ∈ (0, 1).

4We wish to emphasize that as long as there are some points in CCE (N1)
that is not included in CCE (N0), the inclusion is strict. Hence the two
descriptions are the same.
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2) 0 < p < 1. We have

C(1)
P̄
(N)

Eq.(30)
= pC(1)P0

(
N0

)
+ (1 − p)C(1)P1

(
N1

)
(A3)
≤ pCP0

(
N1

)
+ (1 − p)CP1

(
N1

)
(A2)
< CP̄

(
N1

)
Eq.(29)
= CP̄ (N) .

The second inequality follows from the strict concavity
part of property (A2).

3) p = 1. Then

C(1)
P̄
(N)

Eq.(30)
= CP̄

(
N0

) (A3)
< CP̄

(
N1

)
Eq.(29)
= CP̄ (N) .

Explicit Construction of N : We quote the following prop-
erty about concave functions [30]: A concave function u(y)
is continuous, differentiable from the left and from the right.
The derivative is decreasing, i.e., for x < y we have u′(x−) ≥
u′(x+) ≥ u′(y−) ≥ u′(y+). We use “±” to denote the right and
left derivatives when needed.

We first construct N1. Choose Ψro to be a random or-
thogonal channel with a strictly subadditive minimum output
entropy, and Ψro has input dimension N . This is unitally
extended to Φro. As explained in the remark after Definition
7, Φro will have a non-additive classical capacity.

Due to Lemma 12, the useful entanglement assistance is at
most log(N). Thus we restrict to 0 ≤ P ≤ log(N).

Let
ε = CC (Φ

ro) − C
(1)
C
(Φro) > 0. (31)

Since5

C(1)P (Φ
ro) ≤ C

(1)
C
(Φro) + P, (32)

C(1)E (Φ
ro) ≤ C

(1)
C
(Φro) + log(N).

Since CE (Φ
ro) = C(1)E (Φ

ro) [7], we can conclude

CE (Φ
ro) ≤ CC (Φ

ro) + log(N) − ε .

This implies dCP (Φ
ro) /dP cannot always be 1. Thus there

exists P̄ ∈ [0, log(N)) such that

dCP (Φ
ro) /dP = 1, ∀ 0 ≤ P ≤ P̄

and
dCP (Φ

ro) /dP < 1, ∀P > P̄.

Next we discuss different cases of P̄.
1) P̄ > 0. Then CP (Φ

ro) is strictly concave at P̄. Fur-
thermore, CP̄ (Φ

ro) − C(1)
P̄
(Φro) ≥ ε since CP̄ (Φ

ro) =

CC (Φ
ro) + P̄ but C(1)

P̄
(Φro) ≤ C

(1)
C
(Φro) + P̄. Thus

N1 = Φro satisfies (A2).
2) P̄ = 0. Let N1 = Φro ⊗ Φ

dph
η , where Φdph

η is the unital
extension of the qubit dephasing channel.
Since dCP (Φ

ro) /dP |0+< 1, choose η > 0 small such that
dCP

(
Φ

dph
η

)
/dP |1−> dCP (Φ

ro) /dP |0+ . This is possible,

as CP

(
Φ

dph
η

)
= CP

(
Ψ

dph
η

)
and dCP

(
Ψ

dph
η

)
/dP |1− → 1

as η→ 0. This ensures that when 0 < P ≤ 1,

CP

(
N1

)
= CC (Φ

ro) + CP

(
Φ

dph
η

)
, (33)

5This is implicitly shown in Ref. [8]. Please see Appendix E for a proof.

where we’ve also used Lemma 14.
For Φdph

η , it can be shown that CP

(
Φ

dph
η

)
is strictly

concave in P when η < 1/2 (see Appendix D). Hence
CP

(
N1) is also strictly concave with respect to P, for

0 < P ≤ 1. Also, when P < ε ,

CP

(
N1

)
> CC (Φ

ro) + CC

(
Φ

dph
η

)
> C

(1)
C
(Φro) + CC

(
Φ

dph
η

)
+ P ≥ C(1)P

(
N1

)
.

Here the first inequality comes from Eq. (33) and
CP

(
Φ

dph
η

)
> CC

(
Φ

dph
η

)
when P > 0. The second

inequality comes from our assumption P < ε and Eq.
(31). The last inequality comes from Eq. (32).
This ensures that CP

(
N1) is non-additive. Thus when

0 < P < min{1, ε}, CP

(
N1) is strictly concave and non-

additive, satisfying (A2).
For N0, as long as it is a unital extension of a classical

channel with CC
(
N0) = CC (

N1) , it will automatically satisfy
property (A3).

B. Additive C and Q, Superadditive CE

In Section V-A, we constructed a channel N with an
additive classical capacity, but a non-additive CE trade-off
capacity region. It’s unclear if our construction N has an
additive quantum capacity. To extend the argument, we need
to make some modifications to the original construction.

In addition to properties (A1)-(A3), the channels N0 and
N1 need to satisfy

(B1) CQ
(
N0) ≥ CQ (

N1) .
This ensures that the quantum capacity ofN is also additive:

CQ (N)
Lem.10,(U)
= max

{
CQ

(
N0

)
, CQ

(
N1

)}
(B1)
= CQ

(
N0

)
(U)
= C

(1)
Q

(
N0

)
(B1),(U)
= max

{
C
(1)
Q

(
N0

)
, C
(1)
Q

(
N1

)}
Lem.10
= C

(1)
Q
(N) .

Explicit Construction of N : We take the channels N0 and
N1 that were constructed in Sec V-A, and compare their
quantum capacities. Since CQ

(
N0) = 0, we can only have

CQ
(
N0) ≤ CQ (

N1) . If

CQ

(
N0

)
= CQ

(
N1

)
,

then (B1) is automatically satisfied. Hence we will focus on
the case where

CQ

(
N0

)
< CQ

(
N1

)
.

In this case, we call these two channelsΦ0 andΦ1 respectively.
We will construct two new channels N0 and N1 that satisfy
properties (A1)-(A3) and (B1).

We will use the qubit dephasing channel and 1→ N cloning
channel. The expressions of trade-off capacities for these two
channels were computed analytically in Ref. [24]. To make
the argument work, we will modify them so that the two
channels have the same input and output dimension, and the
same classical capacity. However, the shape of the trade-off
curves are unchanged.
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Fig. 1. Comparison of trade-off curves between qubit dephasing channel
Ψ

dph
η and modified 1→ N cloning channel ΨN , when η = 0.2 and N = 15.

(a) CQ trade-off. (b) CE trade-off.

For the 1→ N cloning channel Ψ1→N , we always tensor an
appropriate classical channel, such that the resulting channel
has its classical capacity equal to 1, and the output dimension
is the same as the input dimension. We denote the resulting
channel ΨN .

For the dephasing channel, we will tensor a complete
depolarizing channel, so that its input and output dimensions
match those of ΨN . Since tensoring a complete depolarizing
channel does not modify the dynamic capacity region of the
qubit dephasing channel, we will continue using Ψdph

η to
denote it.

After the above modifications, we observe that for η = 0.2
and N = 15, their trade-off capacities satisfy the following
properties (see Fig. 1)

CQ

(
Ψ

dph
η

)
> CQ

(
Ψ

N
)
.

and
CCE

(
Ψ

dph
η

)
( CCE

(
Ψ

N
)
, (34)

in the sense that ΨN achieves a strictly better classical com-
munication rate than Ψdph

η , if we have any non-zero amount
of entanglement assistance. In the CP notation, it means
CP

(
Ψ

dph
η

)
< CP

(
ΨN

)
for all P > 0.

Since unital extensions do not change the CE and CQ trade-
off capacity regions of these two channels (see Appendix D),
the above properties hold if we replace Ψdph

η and ΨN by their
unital extensions Φdph

η and ΦN respectively.
Since

CQ

(
Φ

dph
η

)
> CQ

(
Φ

N
)
,

let n be large enough so that

nCQ
(
Φ

dph
η

)
+ CQ

(
Φ0

)
≥ nCQ

(
Φ

N
)
+ CQ

(
Φ1

)
.

Define
N0 =

(
Φ

dph
η

) ⊗n
⊗Φ0

and
N1 =

(
Φ

N
) ⊗n
⊗Φ1.

Our choice of n ensures that

CQ

(
N0

)
≥ CQ

(
N1

)
.

We also need to ensure our newly constructed N0 and N1

still satisfy properties (A1)-(A3).
As

CC

(
Φ

dph
η

)
= CC

(
Φ

N
)
= 1

and
CC

(
Φ0

)
= CC

(
Φ1

)
,

we immediately have

CC

(
N0

)
= CC

(
N1

)
and property (A1) is satisfied.

The CE trade-off curve of Ψ1→N is strictly concave for
N , 1 [24], hence property (A2) is also satisfied for N1.

Property (A3) is satisfied due to Eq. (34).

C. Additive Q, Superadditive CQ

We require N0 and N1 to have the following properties:
(C1) CQ

(
N0) ≥ CQ (

N1) .
(C2) CC

(
N1) > C(1)

C

(
N1) .

(C3) CC
(
N1) > CC (

N0) .
These properties (C1)-(C3) will allow us to show that (i)
CQ (N) = C

(1)
Q
(N); and (ii) CCQ (N) ) C

(1)
CQ
(N) .

Statement (i) follows from property (C1) and (U) that N0

has an additive quantum capacity:

CQ (N)
Lem.10,(U)
= max

{
CQ

(
N0

)
, CQ

(
N1

)}
(C1)
= CQ

(
N0

)
(U)
= C

(1)
Q

(
N0

)
(C1),(U)
= max

{
C
(1)
Q

(
N0

)
, C
(1)
Q

(
N1

)}
Lem.10
= C

(1)
Q
(N) .

Properties (C2) and (C3) together ensure

CC (N)
Lem.10,(U)
= max

{
CC

(
N0

)
, CC

(
N1

)}
(C3)
= CC

(
N1

)
(C2),(C3)
> max

{
C
(1)
C

(
N0

)
, C
(1)
C

(
N1

)}
Lem.10
= C

(1)
C
(N) ,

i.e., the classical capacity of N is non-additive; hence state-
ment (ii) follows.

Explicit Construction of N : Next we construct N0 and N1

that satisfy the above properties.
Let Ψro be a random orthogonal channel, such that its

unital extension has a non-additive classical capacity. For
convenience, we also assume Ψro has the input dimension
N = 2n. Choose η for the qubit dephasing channel Ψdph

η such
that CQ (Ψro) + CQ

(
Ψ

dph
η

)
= m for some integer m.

Define
N1 = Φro ⊗ Φ

dph
η ,

where Φro is a unital extension of Ψro and Φdph
η is a unital

extension of Ψdph
η . N1 has the property that its quantum

capacity is CQ
(
N1) = m, whereas its classical capacity is

non-additive, and greater than m.
Define

N0 =
(
Φ
I
) ⊗m
⊗

(
Φ

dpo
1

) ⊗n+1−m
,
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where ΦI is a unital extension of the qubit noiseless chan-
nel, and Φdpo

1 is a unital extension of the qubit completely
depolarizing channel.

We note that the qubit noiseless channel is a special instance
of a qubit dephasing channel. Its classical and quantum
capacity are both 1, and this remain unchanged under a unital
extension (following Appendix D). For the qubit completely
depolarizing channel, it always outputs a maximally mixed
state, and this remain unchanged under a unital extension.
Thus Φdpo

1 has zero classical and quantum capacity.
As a result, N0 has its classical and quantum capacity as
CC

(
N0) = CQ (

N0) = m, thus fulfiling the properties (C1)
and (C3) above.

D. Additive C and Q, Superadditive CQ
We require N0 and N1 to satisfy the following properties:

(D1) CC
(
N0) = CC (

N1) and CQ
(
N0) = CQ (

N1) .
(D2) N1 has a non-additive CQ trade-off capacity region,

meaning
CCQ

(
N1

)
) C

(1)
CQ

(
N1

)
.

CCQ

(
N1) is strictly concave and non-additive at a bound-

ary point with classical communication rate C̄.
(D3) CCQ

(
N1) ) CCQ

(
N0) and the CQ trade-off capacity

region of N1 is strictly larger than that of N0 when
classical communication rate is at C̄.

With these properties, we can show that (i) CC (N) =
C
(1)
C
(N); (ii) CQ (N) = C

(1)
Q
(N); and (iii) CCQ (N) )

C
(1)
CQ
(N) .

We’ll focus on the CQ trade-off curve. Same as in Section
V-A, we use a simplified notation QC (N) when we view
Q (N) as a function of C (N). In the 1-shot scenario, it is
denoted by Q(1)

C
(N). We’ll show there exists C̄ , 0 such that

QC̄ (N) > Q(1)
C̄
(N).

In the QC notation, property (D2) means at C = C̄,
QC

(
N1) > Q(1)

C

(
N1) and QC

(
N1) is strictly concave in C

at C = C̄. Property (D3) implies that QC

(
N1) > QC

(
N0) at

C = C̄.
Properties (D1) and (U) ensure that

CC (N)
Lem.10,(U)
= max

{
CC

(
N0

)
, CC

(
N1

)}
(D1)
= CC

(
N1

)
(U)
= C

(1)
C

(
N1

)
(D1),(U)
= max

{
C
(1)
C

(
N0

)
, C
(1)
C

(
N1

)}
Lem.10
= C

(1)
C
(N)

and similarly

CQ (N)
Lem.10,(U)
= max

{
CQ

(
N0

)
, CQ

(
N1

)}
(D1)
= CQ

(
N0

)
(U)
= C

(1)
Q

(
N0

)
(D1),(U)
= max

{
C
(1)
Q

(
N0

)
, C
(1)
Q

(
N1

)}
Lem.10
= C

(1)
Q
(N) ,

i.e., N has an additive classical and quantum capacity.
By properties (D3) and (U), we have

CCQ (N)
Lem.10,(U)
= Conv

(
CCQ

(
N0

)
∪ CCQ

(
N1

))
(D3),(U)
= CCQ

(
N1

)
. (35)

Since

C
(1)
CQ
(N)

Lem.10,(U)
= Conv

(
CCQ

(
N0

)
∪ C

(1)
CQ

(
N1

))
,

there exists C0,C1 and p ∈ [0, 1] such that pC0+ (1− p)C1 = C̄
and

Q(1)
C̄
(N) = pQC0

(
N0

)
+ (1 − p)Q(1)

C1

(
N1

)
. (36)

Now consider three different cases.
1) p = 0. We have

Q(1)
C̄
(N)

Eq.(36)
= Q(1)

C̄

(
N1

) (D2)
< QC̄

(
N1

)
Eq.(35)
= QC̄ (N) .

2) 0 < p < 1.

Q(1)
C̄
(N)

Eq.(36)
= pQC0

(
N0

)
+ (1 − p)Q(1)

C1

(
N1

)
(D3)
≤ pQC0

(
N1

)
+ (1 − p)QC1

(
N1

)
(D2)
< QC̄

(
N1

)
Eq.(35)
= QC̄ (N) .

Here the second inequality follows from the strict con-
cavity part of property (D2).

3) p = 1. Then

Q(1)
C̄
(N)

Eq.(36)
= QC̄

(
N0

) (D3)
< QC̄

(
N1

)
Eq.(35)
= QC̄ (N) .

Hence statement (iii) follows.
Explicit Construction: Now we explicitly construct N0 and
N1.

Choose p such that the qubit depolarizing channel Ψdpo
p is

known to have a non-additive quantum capacity. Consider its
unital extension Φdpo

p . Note that the gradient dQC

(
Φ

dpo
p

)
/dC

of the CQ trade-off curve cannot always stay at 0 for the choice
of Ψdpo

p with a positive quantum capacity. It means there exists
0 ≤ C̄ < CC

(
Φ

dpo
p

)
such that

dQC

(
Φ

dpo
p

)
/dC = 0, ∀0 ≤ C ≤ C̄− (37)

and

dQC

(
Φ

dpo
p

)
/dC < 0, ∀C̄+ ≤ C ≤ CC

(
Φ

dpo
p

)
.

1) C̄ > 0. In this case, we know QC

(
Φ

dpo
p

)
is strictly

concave at C̄. Also

QC̄

(
Φ

dpo
p

)
= Q0

(
Φ

dpo
p

)
> Q(1)0

(
Φ

dpo
p

)
≥ Q(1)

C̄

(
Φ

dpo
p

)
.

Here the equality follows from Eq. (37). The first in-
equality follows because Ψdpo

p has a non-additive quantum
capacity, as both CQ and C(1)

Q
remain unchanged after a

unital extension, and QC reduces to the quantum capacity
at C = 0. The second inequality follows as the rate of
quantum communication along the CQ trade-off curve
must not exceed the quantum capacity.
Choose the noise parameter η for the qubit dephasing
channel Ψdph

η appropriately such that

CQ

(
Ψ

dph
η

)
= 1 − CQ

(
Ψ

dpo
p

)
.

Define
N1 = Φ

dpo
p ⊗ Φ

dph
η .
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It’s clear that N1 is a unitally extended channel of Ψdpo
p ⊗

Ψ
dph
η and has CQ

(
N1) = CQ (

Ψ
dpo
p ⊗ Ψ

dph
η

)
= 1. The CQ

trade-off curve is strictly concave and non-additive at C̄.
The corresponding Ψ0 is

Ψ
0 = I ⊗ Ψ

dpo
1 ,

i.e., a noiseless channel tensor a complete qubit depolar-
izing channel. N0 is a unital extension of Ψ0.

2) C̄ = 0. Choose η1 close to 1/2 such that

dQC

(
Φ

dph
η1

)
dC

����
CC

(
Ψ

dph
η1

)
−

>
dQC

(
Φ

dpo
p

)
dC

����
0+
.

Let
N1 = Φ

dph
η1 ⊗ Φ

dpo
p ⊗ Φ

dph
η2 ,

where η2 is chosen such that

CQ

(
N1

)
=CQ

(
Ψ

dph
η1 ⊗ Ψ

dpo
p ⊗ Ψ

dph
η2

)
=CQ

(
Ψ

dph
η1

)
+ CQ

(
Ψ

dpo
p

)
+ CQ

(
Ψ

dph
η2

)
= 1.

By our choice of η1, QC

(
Φ

dph
η1 ⊗ Φ

dpo
p

)
is strictly concave

in C for 0 < C < 1. QC

(
Φ

dph
η2

)
is also strictly concave in

C. Thus QC

(
N1) is strictly concave in C, for 0 < C < 1.

In this case, the corresponding Ψ0 is

Ψ
0 = I ⊗

(
Ψ

dpo
1

) ⊗2
,

i.e., a noiseless channel tensor two copies of the complete
qubit depolarizing channel. N0 is a unital extension of
Ψ0.

E. Additive CE, Superadditive Q and CQE

Here we construct a channel that has an additive CE trade-
off capacity region, but a non-additive quantum capacity, hence
a non-additive quantum dynamic capacity region.

Let Ψ0 be a classical channel and Ψ1 be the depolarizing
channel Ψdpo

p . p is chosen such that Ψdpo
p has a non-additive

quantum capacity. Also, we require

CC

(
Ψ

0
)
> CE

(
Ψ

1
)
. (38)

Now consider the switch channel N , consisting of N0 and
N1, which are unital extensions of Ψ0 and Ψ1. It can be
easily shown that unital extension does not change the classical
capacity with umlimited entanglement assistance of the qubit
depolarizing channel. Thus Eq. (38) implies

CCE

(
N0

)
⊇ CCE

(
N1

)
⊇ C

(1)
CE

(
N1

)
. (39)

Hence

CCE (N)
Lem.10,(U)
= Conv

(
CCE

(
N0

)
∪ CCE

(
N1

))
Eq.(38)
= CCE

(
N0

)
(U)
= C

(1)
CE

(
N0

)
Eq.(38)
= Conv

(
CCE

(
N0

)
∪ C

(1)
CE

(
N1

))
Lem.10,(U)
= C

(1)
CE
(N) , (40)

i.e., its CE trade-off capacity region is additive.
Since CQ

(
N0) = 0, it is clear that the quantum capacity of

N is the same as that of N1, which is non-additive.
Note that N is a unitally extended channel. This fact will

be implicitly used in Section V-F.

F. Additive CE and Q, Superadditive CQE

Previously in Section V-D, we give an example of a channel
with an additive classical and quantum capacity, but whose CQ
trade-off capacity region is non-additive. It is unclear if the
channel has an additive CE trade-off capacity region, because
the CE trade-off capacity region of the depolarizing channel
has not been shown to be additive. This is itself an interesting
question but we’ll not explore it here.

We replace Ψdpo
p in the original argument of Section V-D by

the channel constructed in Section V-E. It’s clear that the rest
of the argument is not changed and N still has a non-additive
CQ trade-off capacity region.

Now bothN0 andN1 have an additive CE trade-off capacity
region. It’s clear that

CCE (N)
Lem.10,(U)
= Conv

(
CCE

(
N0

)
∪ CCE

(
N1

))
Eq.(40),(U)
= Conv

(
C
(1)
CE

(
N0

)
∪ C

(1)
CE

(
N1

))
Lem.10
= C

(1)
CE
(N) ,

i.e., the CE trade-off capacity region of N is additive.

G. Additive CQ, Superadditive CQE (Conjecture)

Our construction in Section V-A has a non-additive CE
trade-off capacity region. But most likely its CQ trade-off
capacity region is also non-additive. This is because in Section
V-A, N0 is the unital extension of a classical channel, and its
CQ trade-off capacity region is trivial. Hence the CQ trade-off
capacity region of N is given by that of N1, which is most
likely non-additive as well.

To achieve an additive CQ trade-off capacity region, we
have to substitute N0 with a channel that has a non-trivial CQ
trade-off capacity region.

Recall that our construction in Section V-A requires N0

and N1 to have properties (A1)-(A3). These three properties
ensure that N will have a non-additive CE trade-off capacity
region, while its classical capacity is still additive.

In extending to a channel with an additive CQ trade-off
capacity region, the additional properties we need are

(G1) CCQ

(
N0) ⊇ CCQ

(
N1) .

Property (G1) and (U) ensure the CQ trade-off capacity
region of N is additive, as

CCQ (N)
Lem.10,(U)
= Conv

(
CCQ

(
N0

)
∪ CCQ

(
N1

))
(G1)
= CCQ

(
N0

)
(U)
= C

(1)
CQ

(
N0

)
(G1)
= Conv

(
C
(1)
CQ

(
N0

)
∪ C

(1)
CQ

(
N1

))
Lem.10
= C

(1)
CQ
(N) .

Unfortunately, we cannot find quantum channels N0 and
N1 that satisfy all the properties. Hence we do not have an
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explicit construction in this case. This is because there are very
few channels whose dynamic capacity regions we understand.
This leaves us with a limited choice of candidates for N0.
However, in principle there is no obstacle and the construction
will be readily available once we have a better understanding
of quantum channels.

VI. CONCLUSION

Unlike previous studies on additivity of single resource
channel capacity, our work aimed to understand how ad-
ditivity of single or double resource capacity regions will
effect additivity of a general resource trade-off capacity. In
contrast to the two known results in the literature; namely, (i)
additivity of the quantum capacity implies additivity of the
entanglement-assisted quantum capacity region and (ii) addi-
tivity of classical-quantum and classical-entanglement capacity
regions implies additivity of the three resource capacity region,
the additivity of all the remaining situations does not hold. In
this work, we identified nearly all possible occurrences where
superadditivity could occur in the trade-off quantum dynamic
capacity. Furthermore, we provided an explicit construction of
quantum channels for most instances. Our main technical tool
combines properties of switch channels and unital extension
of known quantum channels.

An obvious open question is an explicit construction of
a quantum channel whose classical-quantum capacity region
is additive, but its triple trade-off capacity is non-additive.
Moreover, there are other triple resource trade-off capacity
regions [4], [31]. Could similar statements made in this work
hold in these scenarios as well?
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APPENDIX A
PROOF OF LEMMA 14

Proof. Consider Φ0
RC→B0 and Ψ1

A1→B1 , where Φ0 is a unital
extension of a Hadamard channel Ψ0

C→B0 , and Ψ1 is an
arbitrary channel.

The result follows if both the CQ and CE trade-off capacity
regions of Φ0 are additive [4]. To show that the CQ trade-off
capacity region is additive for Φ0, it was shown in Ref. [24]
it suffices to prove that

fλ
(
Φ

0 ⊗ Ψ1
)
= fλ

(
Φ

0
)
+ fλ

(
Ψ

1
)

(41)

for any channel Ψ1, where

fλ (N) = max
ρ

I(X; B)σ + λI(A〉BX)σ . (42)

The state σ is the channel output state with ρ being the
input state (see, e.g., Theorem 1). The reason why fλ (N)
is considered is that, with different values of λ, the function

leads to points on the CQ trade-off curve. For a more detailed
argument, please see Ref. [24].

In the following, we will only show that fλ
(
Φ0 ⊗ Ψ1) ≤

fλ
(
Φ0) + fλ

(
Ψ1) because the other direction is trivial from its

definition.
Since Φ0⊗Ψ1 : CRA1 → B0B1 is a partial cq channel, then

by the same argument as that in Lemma 12, fλ
(
Φ0 ⊗ Ψ1) can

be achieved with input states of the following form

ρXRACA1 =
∑
x, j

p(x)
|R|
|x, j〉 〈x, j |X ⊗ | j〉 〈 j |R ⊗ φ

x
ACA1,

with output states

σXAB0B1 =
∑
x, j

p(x)
|R|
|x, j〉 〈x, j |X ⊗ σ

x j

AB0B1, (43)

where

σ
x j

AB0B1 = Φ
0 ⊗ Ψ1

(
| j〉 〈 j |R ⊗ φ

x
ACA1

)
.

Let U0
C→B0E0 and U1

A1→B1E1 be the isometric extensions of
Ψ0 and Ψ1, and let

%XACA1 =
∑
x

p(x) |x〉 〈x |X ⊗ φ
x
ACA1

ωXAA1B0E0 =
(
U0 ⊗ I

)
%XACA1

(
U0 ⊗ I

)†
ςXAB0B1E0E1 =

(
U0 ⊗ U1

)
%XACA1

(
U0 ⊗ U1

)†
.

Moreover, let

θXYAB1E0E1 = D1
B0→Y

(ςXAB0B1E0E1 ) ,

where D2
Y→E0 ◦D

1
B0→Y

= DB0→E0 is a degrading map for the
Hadamard channel Ψ0.

For any state σXAB0B1 in Eq. (43), we have

fλ
(
Φ

0 ⊗ Ψ1
)

=I
(
X; B0B1

)
σ
+ λI

(
A〉B0B1X

)
σ

=S
(
B0B1

)
σ
+

[
(λ − 1)S

(
B0B1 |X

)
σ
− λS

(
AB0B1 |X

)
σ

]
=S

(
B0B1

)
ς
+

[
(λ − 1)S

(
B0B1 |X

)
ς
− λS

(
AB0B1 |X

)
ς

]
,

where the last equality follows from the same argument used
in Eqs. (21) and (23). Then subadditivity of the von Neumann
entropy and chain rule yield

≤S
(
B0

)
ς
+ (λ − 1)S

(
B0 |X

)
ς
− λS

(
E0 |X

)
ς

+S
(
B1

)
ς
+ (λ − 1)S

(
B1 |B0X

)
ς
− λS

(
E1 |E0X

)
ς

≤S
(
B0

)
ς
+ (λ − 1)S

(
B0 |X

)
ς
− λS

(
E0 |X

)
ς

+S
(
B1

)
θ
+ (λ − 1)S

(
B1 |XY

)
θ
− λS

(
E1 |XY

)
θ



14

where the last inequality uses the fact that S
(
B1 |B0X

)
ς ≤

S
(
B1 |Y X

)
θ due to the existence of D1 and S

(
E1 |E0X

)
ς ≥

S
(
E1 |Y X

)
θ due to the existence of D2. Finally,

=
(
I
(
X; B0

)
ω
+ λI

(
AA1〉B0X

)
ω

)
+

(
I
(
XY ; B1

)
θ
+ λI

(
AE0〉B1XY

)
θ

)
≤ fλ

(
Φ

0
)
+ fλ

(
Ψ

1
)

because S(E0 |X)ς = S(AA1B0 |X)ω and S
(
E1 |XY

)
θ =

S
(
AB1E0 |XY

)
θ .

To prove that the CE trade-off capacity region of the channel
Φ0 is additive is equivalent to showing that [24]:

gλ

(
Φ

0 ⊗ Ψ1
)
= gλ

(
Φ

0
)
+ gλ

(
Ψ

1
)
, (44)

where 0 ≤ λ < 1,

gλ (N) = max
σ

I(AX; B)σ − λS(A|X)σ (45)

and σ is of the form given in Eq. (7).
However this proof proceeds similarly; hence, we will omit

it.

APPENDIX B
PROOF OF LEMMA 15

Lemma 15: The dynamic capacity region of a classical
channel Ψ0 is strongly additive. It is described by the following
relation

C + 2Q ≤ CC
(
Ψ

0
)
,

Q + E ≤ 0,

C +Q + E ≤ CC
(
Ψ

0
)
,

where CC
(
Ψ0) is the classical capacity of Ψ0.

The same holds for a unital extension of a classical channel.
Proof. Consider the 1-shot dynamic capacity region of
Ψ0

A0′→B0 . By Lemma 12, C(1)
CQE

(
Ψ0) can be achieved with

respect to cq states σXA0B0 = Ψ0 (
ρXA0A0′

)
, where ρXA0A0′ is

of the form

ρXA0A0′ =
∑
x, j

p(x, j) |x, j〉 〈x, j |X ⊗ | j〉 〈 j |A0′ ⊗ φ
x j

A0 .

Thus
σXA0B0 =

∑
x, j

p(x, j) |x, j〉 〈x, j |X ⊗ σ
x j

A0B0,

where
σ

x j

A0B0 = Ψ
0
A0′→B0

(
| j〉 〈 j |A0′ ⊗ φ

x j

A0

)
is now a product state with respect to A0 and B0.

The three entropic quantities of interest can be simplied
when evaluated with respect to σXA0B0 , as

I
(
A0X; B0

)
σ
= S

(
B0

)
σ
−

∑
x, j

p(x, j)S
(
B0

)
σx j
≤ CC

(
Ψ

0
)
,

I
(
A0〉B0X

)
σ
= −

∑
x, j

p(x, j)S
(
A0

)
σx j
≤ 0,

I
(
X; B0

)
σ
≤ CC

(
Ψ

0
)
.

It’s also clear that those inequalities can be achieved. Thus
C
(1)
CQE

(
Ψ0) is described by

C + 2Q ≤ CC
(
Ψ

0
)
,

Q + E ≤ 0,

C +Q + E ≤ CC
(
Ψ

0
)
.

Since the classical capacity of a classical channel is additive,
the dynamic capacity region of Ψ0 is additive and is described
by the same set of inequalities.

Next we show that the dynamic capacity region is additive
for Ψ0 and Ψ1, with Ψ1 arbitrary.

Since Ψ0
A0′→B0 ⊗ Ψ

1
A1′→B1 is a partial cq channel, its

1-shot dynamic capacity region C(1)
CQE

(
Ψ0 ⊗ Ψ1) can be

achieved with respect to cq states σXAB0B1 = Ψ0
A0′→B0 ⊗

Ψ1
A1′→B1

(
ρXAA0′A1′

)
, where ρXAA0′A1′ is of the form

ρXAA0′A1′ =
∑
x, j

p(x, j) |x, j〉 〈x, j |X ⊗ | j〉 〈 j |A0′ ⊗ φ
x j

AA1′ .

For ρXAA0′A1′ of this form, σXAB0B1 is of the form

σXAB0B1 =
∑
x, j

p(x, j) |x, j〉 〈x, j |X ⊗ σ
x j

AB0B1,

with

σ
x j

AB0B1 = Ψ
0
A0′→B0 ⊗ Ψ

1
A1′→B1

(
| j〉 〈 j |A0′ ⊗ φ

x j

AA1′

)
.

For such σXAB0B1 , each of the three entropic quantities have
simple upper bounds,

I
(
AX; B0B1

)
σ
≤ I

(
X; B0

)
σ
+ I

(
AX; B1

)
σ
,

I
(
A〉B0B1X

)
σ
= I

(
A〉B1X

)
σ
,

I
(
X; B0B1

)
σ
≤ I

(
X; B0

)
σ
+ I

(
X; B1

)
σ
,

where we’ve used subadditivity of the von Neumann entropy.
Thus the 1-shot dynamic capacity region of Ψ0 ⊗ Ψ1 has a
simple upper bound

C
(1)
CQE

(
Ψ

0 ⊗ Ψ1
)
⊆ C

(1)
CQE

(
Ψ

0
)
+ C

(1)
CQE

(
Ψ

1
)
.

It’s trivial to extend it to the dynamic capacity region of Ψ0 ⊗
Ψ1

CCQE

(
Ψ

0 ⊗ Ψ1
)
⊆ CCQE

(
Ψ

0
)
+ CCQE

(
Ψ

1
)
.

Since the other direction of inclusion is obvious, we have

CCQE

(
Ψ

0 ⊗ Ψ1
)
= CCQE

(
Ψ

0
)
+ CCQE

(
Ψ

1
)
.

For unital extensions of a classical channel, we observe that,
if the Heisenberg-Weyl operators are defined on the standard
basis for the output of the channel, then the resulting channel
is also a classical channel. Hence the above result applies.
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APPENDIX C
CONVEX HULL

Here we show that6

Conv
(
CCQE

(
N0) ∪ CCQE

(
N1) )

=Conv
(
CCQE

(
N0

)
∪ CCQE

(
N1

))
.

We quote a few properties about convex hull and Minkowski
addition that we will use [22]: (i) For two closed sets A and
B in Rk , if A is bounded, then A + B is closed. (ii) For two
sets A and B in Rk , Conv(A+ B) = Conv(A) +Conv(B) . (iii)
The convex hull of a bounded set in Rk is also bounded.

First, we note that, by Ref. [4], all points in the 1-shot
dynamic capacity region can be achieved by the classically
enhanced father protocol, combined with unit protocols, i.e.,

C
(1)
CQE

(N) =
⋃
σ

C
(1)
CQE,CEF (N)σ + CCQE,unit,

where

C
(1)
CQE,CEF (N)σ = {I(X; B)σ,

1
2

I(A; B |X)σ,−
1
2

I(A; E |X)σ}

is the rate achieved using the classically enhanced father
protocol, and σ is of the form in Eq. (7).

The unit protocols are teleportation, superdence-coding and
entanglement distribution. CCQE,unit are all the rates achieved
by the unit protocols. They are described by [4]

C +Q + E ≤ 0,
Q + E ≤ 0,

C + 2Q ≤ 0.

Clearly CCQE,unit is convex and closed. Define

C
(1)
CQE,CEF (N) =

⋃
σ

C
(1)
CQE,CEF (N)σ .

Clearly C(1)
CQE,CEF (N) is bounded by the input and output

dimensions of N .
Then

CCQE (N) =
⋃
k=1

1
k

(
C
(1)
CQE,CEF

(
N ⊗k

)
+ CCQE,unit

)
=

⋃
k=1

1
k
C
(1)
CQE,CEF

(
N ⊗k

)
+ CCQE,unit.

Denote

A =
⋃
k=1

1
k
C
(1)
CQE,CEF

(
N ⊗k

)
,

B = CCQE,unit.

Since A is bounded, B is closed, by (i) and (iii), A+ B is also
closed.
Since A + B ⊆ A + B, and A + B is closed, we have

A + B ⊆ A + B.

It is also obvious that

A + B ⊇ A + B,

6N0 and N1 are assumed to be finite-dimensional.

hence
A + B = A + B.

Denote

CCQE,CEF (N) =
⋃
k=1

1
k
C
(1)
CQE,CEF

(
N ⊗k

)
.

Then by the above arguments,

CCQE (N) = CCQE,CEF (N) + CCQE,unit.

Now we apply the above result to N0 and N1.

Conv
(
CCQE

(
N0

)
∪ CCQE

(
N1

))
=Conv

(
CCQE,CEF

(
N0

)
∪ CCQE,CEF

(
N1

)
+ CCQE,unit

)
=Conv

(
CCQE,CEF

(
N0

)
∪ CCQE,CEF

(
N1

))
+ CCQE,unit.

In the last line, we used (ii).
Since CCQE,CEF (N) is closed and bounded for any

finite dimensional quantum channel N , the same must
be true for CCQE,CEF

(
N0) ∪ CCQE,CEF

(
N1) . Hence

Conv
(
CCQE,CEF

(
N0) ∪ CCQE,CEF

(
N1) ) is closed and

bounded. Thus Conv
(
CCQE,CEF

(
N0) ∪ CCQE,CEF

(
N1) ) +

CCQE,unit is also closed.

APPENDIX D
UNITAL EXTENSION OF THE QUBIT DEPHASING CHANNEL

AND 1→ N CLONING CHANNEL

Lemma 16: The CE and CQ trade-off curve of the qubit
dephasing channel and 1→ N cloning channels are unchanged
after a unital extension.
Proof. Consider the qubit dephasing channel Ψdph

η and a 1→
N cloning channel Ψ1→N , and their unital extensions Φdph

η and
Φ1→N . The statement of this lemma is equivalent to showing
that

fλ (Ψ) = fλ (Φ) ∀λ ≥ 1,
gλ (Ψ) = gλ (Φ) ∀0 ≤ λ < 1.

for
(Ψ,Φ) =

(
Ψ

dph
η ,Φ

dph
η

)
,
(
Ψ

1→N,Φ1→N
)
.

In Lemma 13, we have argued that the 1-shot dynamic
capacity region of a unitally extended channel can be achieved
with input of the form in Eq. (20). Evaluating fλ (Φ) on such
states, one obtains

fλ (Φ) = log(|B |) + (λ − 1)S (B |X ′)σ − λS (AB|X ′)σ
= log(|B |) +

∑
x, j,k

p(x, j, k) [(λ − 1)S(B)σx jk − λS(AB)σx jk ]

= log(|B |) +
∑
x, j

p(x, j) [(λ − 1)S(B)σx j − λS(AB)σx j ]

≤ log(|B |) +max
σ
[(λ − 1)S (B)σ − λS (AB)σ] , (46)

where
σAB = ΨC→B (φAC) . (47)
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For such a σAB = Ψ (φAC) that achieves Eq. (46), one can
construct

ρXAA′ =
1
|R|
|k〉 〈k |X ⊗ |k〉 〈k |R ⊗ φAC . (48)

This state will saturate the above inequality.
For Ψdph

η and Ψ1→N , it can be verified [24] that their fλ
have the same form, i.e.,

fλ (Ψ) = log(|B|) +max
σ
[(λ − 1)S (B)σ − λS (AB)σ] , (49)

with σ of the form given in Eq. (47).
The same argument also applies to gλ.
The CQ trade-off curve of the qubit dephasing channel

was computed in Ref. [23], and the CE trade-off curve was
computed in Ref. [8]. The CE and CQ trade-off curves of the
1 → N cloning channel were given in Ref. [24]. Other than
the special cases (η = 0, 1/2 for the dephasing channel, N = 1
for the 1 → N cloning channel), it can be verified that their
CE and CQ trade-off curves are strictly concave at every point.
By Lemma 16, this property is true for their unital extensions.

APPENDIX E
PROOF OF EQUATION (32)

In Ref. [8], it was shown that

C
(1)
C
(N) = max

σ
I(X; B)σ + I(A〉BX)σ,

where σ is of the form in Eq. (7).
It was also shown that the 1-shot CE trade-off capacity

region is described by the set of all C, E ≥ 0, such that

C ≤ I(AX; B)σ
C ≤ I(X; B)σ + I(A〉BX)σ + |E | (50)

In the language of CP , Eq. (50) means

C(1)P (N) ≤ C
(1)
C
(N) + P.
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