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Abstract

Background: Direct volume rendering is one of flexible and effective approaches to inspect large volumetric data
such as medical and biological images. In conventional volume rendering, it is often time consuming to set up a
meaningful illumination environment. Moreover, conventional illumination approaches usually assign same values
of variables of an illumination model to different structures manually and thus neglect the important illumination
variations due to structure differences.

Results: We introduce a novel illumination design paradigm for volume rendering on the basis of topology to
automate illumination parameter definitions meaningfully. The topological features are extracted from the contour
tree of an input volumetric data. The automation of illumination design is achieved based on four aspects of
attenuation, distance, saliency, and contrast perception. To better distinguish structures and maximize illuminance
perception differences of structures, a two-phase topology-aware illuminance perception contrast model is
proposed based on the psychological concept of Just-Noticeable-Difference.

Conclusions: The proposed approach allows meaningful and efficient automatic generations of illumination in
volume rendering. Our results showed that our approach is more effective in depth and shape depiction, as well as
providing higher perceptual differences between structures.

Keywords: Volume rendering, Topology, Automatic illumination design, Distance, Saliency, Perception

Abbreviations: CSL, Constant diffuse; CT, Contour tree; CVL, Conventional illumination; DIL, Distance illumination;
IML, Importance illumination; JND, Just-Noticeable-Difference; MS, Morse-Smale; PEL, Perceptual illumination;
SAL, Saliency illumination; SNR, Signal-to-noise ratio

Background
Direct volume rendering (DVR) is one of flexible and ef-
fective visualization methods for volumetric data. For
example, in biological image analysis, 3D microscopic
image visualization is widely used to help the user
explore biological structures easily and even guide the
user to perform smart microscopic imaging interactively
[1–3]. Therefore, a volume visualization that can discern
and depict more details is highly desirable. In volume
rendering, each voxel is usually regarded as a radiance
emitter having a certain degree of density, and relies on
the optical model of emission and absorption to visualize

objects. With the use of transfer functions mapping
from voxel values and other data features to different
opacities and colors, the structures contained inside the
volumetric data can be visualized without the use of any
external lighting. After the viewpoint and transfer func-
tions are defined in volume rendering, illumination pa-
rameters are the main factors which decide the visual
perception of objects in the volume [4]. Effectiveness of
visualizing structural details in volume rendering can be
affected by both insufficient and excessive illumination
[5], and therefore illumination is a significant factor
helping improving effectiveness of volume rendering in
depicting 3D objects. Local illumination models, such as
Blinn-Phong model, mainly help depict local details and
the structural shape. On the other hand, global illumin-
ation models focus on the depiction of the occlusion
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relationships between structures with the use of mutual
shadowing [4].
Illumination design in volume rendering has been in-

vestigated extensively from different perspectives, such
as optical model design [6], lighting optimization based
on perception [7] and structure [4]. Although different
data features (e.g. gradients, scalar values) and illumin-
ation settings (e.g. diffuse, ambient, and specular coeffi-
cients, position of lighting source) are used, more
realistic appearances based on user’s preferences are the
main objectives for most of conventional illumination
approaches. Since one of the ultimate goals of volume
rendering is to get useful insights of volume data, con-
ventional illumination approaches may mislead users
focusing on creating colorful images. Moreover, conven-
tional illumination approaches often assign same illu-
mination parameters for all structures, thus miss
variations of illumination of different structures. The
variations of illumination provide important visual cues
for spatial depth under natural lighting [8]. Despite the
concept of lighting transfer function [9] trying to vary
lighting coefficients of a local illumination model based
on gradient information, similar to conventional opacity
transfer functions based on gradients [10], it still cannot
depict differences of various structures effectively from
the illumination perspective. Therefore, in order to de-
pict perception and importance differences between
structures from the illumination perspective in volume
rendering, a new illumination approach is highly desir-
able. Moreover, conventional volume rendering often de-
fines illumination variables manually. Such tasks require
users have the complex knowledge in computer graphics
such as light behaviors and shading models and even re-
quire the knowledge in arts [11]. It is often time con-
suming to define meaningful illumination parameters for
visualization even for experienced users.
On the other hand, topology has been widely used in

visualization. For example, the contour tree is one of
data structures depicting topological relationships of
connected isosurfaces/contours [12]. Topology has been
used in volume rendering in following aspects: provide
topological features of a volume [12]; generate transfer
functions in volume rendering [13–15]; and index volu-
metric data segmentations [16]. Moreover, various topo-
logical measures of importance can be used to represent
importance of structures [17]. However, no work has
been found on how topology is used to control illumina-
tions in volume rendering. All these motivate us to
utilize topology in illumination design in volume render-
ing in order to describe differences between structures
in importance and perception with the use of illumina-
tions. The generated illumination parameters are ex-
pected to be used to get wide dissimilar rendering
outputs and to depict importance relationship between

structures. Therefore, measures that are used to control
illumination differences between structures based on the
topology also need to be defined.
This paper introduces an approach of automating illu-

mination design in volume rendering by utilizing topo-
logical features defined by the contour tree of a volume.
The objective of this work is to define a new illumin-
ation design diagram based on the topology. The gener-
ated illuminations can represent differences of structural
importance, depict perception differences between
neighboring structures, and maximize these differences
between structures from the illumination perspective.
The proposed approach allows more meaningful and ef-
ficient automation of illumination generations, and the
exploration on the data can be got from the illumination
perspective by the controlling of illumination weighting
factors meaningfully instead of complicated adjustments
of other physical concepts on illumination. This paper
focuses on using topological attributes to define shading
parameters such as diffuse coefficients and lighting pa-
rameters such as attenuation parameters. We refer to all
of these as illumination design.
The contributions of the paper are as follows:

� Topology is introduced into the illumination design
and a comprehensive framework is delivered
dedicated to generate illumination parameters
controlled by topological attributes.

� Based on the framework, topology-aware illumin-
ation attenuation is presented which allows dimming
out less important structures while keeping more
important structures.

� Based on the framework, topology-aware illumin-
ation transfer function based on topological saliency
and topological distance is presented to depict differ-
ences of structural importance from the illumination
perspective.

� A two-phase topology-aware illumination perception
contrast model is proposed to maximize illumination
perception differences between neighboring struc-
tures based on the psychological concept of Just-
Noticeable-Difference (JND).

Methods
Preliminaries
Definition of contour trees
The topology of data sets provides a compact and ab-
stract global view that leads to easier and enhanced ana-
lysis across applications [18]. The commonly used data
structures for explicitly storing topological attributes in-
clude: Reeb graphs [19] and Morse-Smale (MS) com-
plexes [20]. The MS complex decomposes the domain of
a function into regions which have uniform gradient
flow [21]. The Reeb graph [19] is a structure which
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summarizes the topology of a Morse function. Compo-
nents of isosurfaces are traced by the Reeb graph as iso-
surfaces sweep the domain. The Reeb graph is simply
connected for functions with simply connected regions,
and this graph is also called the Contour Tree (CT). The
contour tree is used in this paper for topological repre-
sentation of data sets.
The isosurface/contour concept is used to define the

contour tree. Considering a continuous scalar field F de-
fined on a domain Rd, f : Rd→ R, Rd is defined to be a
simplicial complex. The function value of a point inside
a simplex is a linear interpolation of values between
vertices. The interval between the minimum and
maximum values of the function f, [fmin, fmax], is de-
fined as the functional range of the field F. Given a
value h ϵ [fmin, fmax], the level set of the field F at the value
h is defined as L(h) = {x | f (x) = h}. The topology of the level
set changes only at critical points of F when h scans mono-
tonically through the entire range [fmin, fmax] of F. Con-
tours/isosurfaces appear at local minima of f, join or split at
saddles, and disappear at local maxima of f with the in-
crease of h in the level set of L(h) = {x | f (x) = h}. When
each contour is denoted as a node, the level set evolution in
the field F forms a tree structure which is called contour
tree. It shows the nesting relationships of connected con-
tours/isosurfaces.
The contour tree is typically denoted with a node list

and an arc list. Each node of the contour tree corre-
sponds to a critical point of a scalar field. A node pair is
defined as an arc. Pascucci et al. [22] proposed branch
decomposition approach, and a branch is defined as a
monotone path in the tree graph traversing a sequence
of nodes.
The noise in the data can add small scale topological

features in the contour tree and cause the size of con-
tour tree to increase dramatically [23]. It makes difficult
to recognize branches belonging to objects of interest,
and results in the contour tree being impractical in data
analysis and visualization. Therefore, the contour tree
simplification is often conducted to remove unimportant
branches and make the size of the tree small enough for
the user interaction while maintaining essential structure
of the data. Carr et al. [23] simplified the contour tree
by defining importance measures with local geometric
properties. The typical importance measures include
persistence, volume, and hypovolume [23]. Persistence is
defined as the absolute difference in scalar values be-
tween two critical nodes. Volume is defined as the voxel
count of the region enclosed by the isosurface/contour.
Hypervolume is the integral of the scalar field over the
enclosed region by the isosurface/contour. Zhou et al.
[17] integrated multiple measures of importance to-
gether to simplify the contour tree. An appropriate sim-
plification of the contour tree helps to improve its

capability of indexing objects in data sets and thus im-
prove the rendering quality.

Contour tree based data segmentation
Since the contour tree is set up based on the concept of
flexible isosurfaces, the data can be segmented into dif-
ferent regions when isosurfaces sweep through the data
[23]. Therefore the contour tree can be considered as a
visual index of different zones/subregions in the data
and topological relations (e.g. neighboring, inclusion)
between subregions are encoded in the contour tree.
Figure 1 shows a 2D mesh example and its correspond-
ing contour tree. It presents the segmented 2D mesh
with corresponding branches of the contour tree.
Branches of the contour tree and their corresponding
subregions are encoded with colors. Based on this con-
cept, Weber et al. [14] proposed a volume rendering
framework where the contour tree is used to classify vol-
ume data and unique transfer function is assigned to
each subregion indexed by a branch of the contour tree.
Zhou and Takatsuka [15] proposed a model to automat-
ically generate transfer functions for each subregion
utilizing the contour tree. The contour tree indexed data
segmentation approach makes volume rendering more
meaningful by encoding topology of structures in
rendering results.
In this paper, besides indexing various subregions, the

contour tree is also used to automatically generate
different illuminations for subregions with the use of
topological attributes derived from the contour tree. The
topology-aware illumination design allows users perceive
structural differences in various aspects (e.g. importance,
topological distance) from the illumination perspective.

Illumination models
Different illumination models have been developed for
volume rendering. With no loss of generality, we use the
classical Blinn-Phong model as the basis of our ap-
proach. With the use of the Blinn-Phong model, the
color of a voxel in rendered image can be computed as:

C ¼ ka þ Kd N⋅Lð Þð ÞCtf þ ks N ⋅Hð Þn ð1Þ

where kd, ka, and ks are the diffuse, ambient, and
specular lighting coefficients respectively, n is the shini-
ness exponent, Ctf denotes the color defined by the
transfer function, L denotes the normalized lighting dir-
ection, N denotes the normalized gradient vector of the
voxel, and H denotes the normalized half-way direc-
tion. ka is used to determine how much ambient light
is actually reflected. kd is used to control the amount
of diffuse light reflected. ks is used to control the
amount of specular light reflected. ka, kd, and ks are
usually restricted in [0,1].
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Ambient reflection is usually used to simulate the ‘ra-
diant’ effect in illumination. It comes from various light
sources and is also scattered in various directions.
Specular reflection is exhibited from shiny surfaces–it is
the reflection of the light source towards the viewer. It is
often used to simulate mirror-like reflection. The specu-
lar color in this study is defined to be white to preserve
the original color from transfer functions. Diffuse reflec-
tion is defined to simulate re-emission effects. Of all re-
flections, diffuse reflection is the most instinctive
meaning of the lighting for an object. Therefore, in this
paper we focus more on diffuse reflection modulation
based on topological features in order to emphasize
structures from the illumination perspective.
Real light has an attenuation factor—light intensity be-

comes weaker over distance. This is similar to the acous-
tic attenuation, where the perception of sound volume
decreases the further away the listener is from its source.
In computer graphics, an attenuation factor fatt [24] is
often introduced in order to include attenuation into the
illumination equation:

C ¼ Ka þ kdf att N⋅Lð Þð ÞCtf þ ksf att N⋅Hð Þn ð2Þ

Light falloff obeys what is commonly known as the
inverse square law, where light’s intensity decreases ex-
ponentially in relation to distance.
This paper proposes topology-aware lighting attenu-

ation, where the attenuation factor fatt is defined based
on various topological features.

Topology-aware illumination design
Framework overview
In this paper, the effectiveness of topology for the illu-
mination design is investigated from following aspects:

� The topology-aware illumination attenuation is
presented to selectively dim out structures based
on topological features;

� The topological saliency is used in the lighting
transfer function to depict relative structural
importance from illumination perspective;

� The topological distance (e.g. topological depth
which is defined as the number of the current
branch level from the root branch) is incorporated
into the lighting transfer function to depict
structural differences from distance (depth)
perspective;

� The illumination perception contrast is controlled
through Just-Noticeable-Difference (JND) based on
topological features in order to maximize illumin-
ation differences among structures from the percep-
tion perspective.

The framework of topology-aware illumination design
proposed in this paper is illustrated in Fig. 2. In this
framework, the contour tree from the original data is
firstly simplified to decrease the adverse effect from data
noise for topology. The topological attributes based on
the contour tree are then combined with the illumin-
ation model to define various topology-aware illumin-
ation effects. The details of each topology-aware

Fig. 1 A 2D mesh example and its corresponding contour tree. The 2D mesh is segmented into subregions based on the contour tree
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illumination approach are presented in the following
subsections.

Topology-aware lighting attenuation
Lighting attenuation shows that lighting becomes weaker
over distance. The distance is considered in the illumin-
ation model with the use of an attenuation factor fatt as
shown in Equation 2. In this paper, we adapt the Stokes’
law of sound attenuation to model the lighting attenu-
ation based on topological attributes. The Stokes’ law
[25] is the first successful theory of sound attenuation
due to the effect of molecular viscosity of the fluid. It
models the attenuation of sound in a Newtonian fluid,
such as water, due to the fluid’s viscosity [25]. It shows
that the amplitude of a plane wave decreases exponen-
tially with traveled distance, at a rate α defined by
Equation 3:

α ¼ 2ηξ2

3ρV 3 ð3Þ

where α is also called the attenuation coefficient, η de-
notes the dynamic viscosity coefficient of the fluid, ξ de-
notes the frequency of the sound, ρ denotes the density
of the fluid, and V denotes the speed of sound in the
fluid. The attenuation coefficient α characterizes how
easily a beam of light, sound, particles, or other energy
or matter can penetrate a material or medium. A large
value of attenuation coefficient corresponds to the situ-
ation that the beam is quickly ‘attenuated’ (weakened)
when it transmits through the medium.
Similarly, as the light transmits through a medium

such as the water, the shortwave radiation is attenuated

by the medium, and the intensity of light decreases ex-
ponentially with the distance passed by the light. The in-
tensity of light at distance z can be calculated using the
Beer-Lambert Law [26]:

Iz ¼ I0e
−αz ð4Þ

where I0 is the intensity of the incident light, Iz is the
light intensity at distance z in the medium, α is the at-
tenuation coefficient. Based on these preliminaries, the
lighting attenuation factor fatt in this study is defined as
in Equation 5:

f att ¼ e−αz ð5Þ

In this study, the light is modeled to pass through an
isotropic and homogeneous medium such as water dur-
ing rendering. Stokes’ law is applied to the light propaga-
tion to get attenuation coefficient α based on topological
attributes. Based on this idea, the distance z in Equa-
tion 5 is modelled as the persistence p of branches. The
light is assumed to pass through the water. Therefore,
various parameters in Equation 3 is modelled as follows:
water at 20 °C has a viscosity η of 0.001002 P∙as, the
density ρ at 20 °C is 998.2071 kg/m3. The frequency ξ is
modelled as the number of siblings ni

s, the Speed V
represents the lighting speed in the medium and
controlled by the user interactively. The sibling branch
refers to the one which has the same parent branch as
the current branch.
In this topology-aware illumination attenuation, fatt

has the inverse relation with topological features of per-
sistence p and number of siblings ni

s. Therefore, it allows
the option of dimming out less important structures

Fig. 2 Framework of topology-aware illumination design
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while keeping more important structures. As a result,
important structures are emphasized from the illumin-
ation perspective.

Topology-aware lighting transfer function
Lum and Ma [9] introduced lighting transfer function
(LTF) to define different lighting coefficients of k values
in the illumination model as in Equation 1. Following
the LTF concept, this section presents a method of
topology-aware lighting transfer function, which incor-
porates topological attributes into the LTF. In this
method, ka, kd, and ks in Equation 1 are defined as func-
tions of topological features for different regions corre-
sponding to branches in topology-aware lighting transfer
functions. The overall objective of topology-aware light-
ing transfer functions is to depict structural differences
from illumination perspective in order to identify various
objects easily and effectively.
In this subsection, topology-aware lighting transfer

function is defined based on two aspects:

� Topological saliency. Lighting coefficients (ka, kd,
and/or ks) for each region are defined as functions of
topological saliency (relative importance of
structures).

� Topological distance. Lighting coefficients for
each region are defined as functions of topological
distance.

Topological saliency-based illumination
We use an approach based on topological saliency [27]
to evaluate relative importance of branches. Let the set
B = {b1, b2, …, bn} be the set of branches in the contour
tree, ti is the topological feature created at bi, d(bi,bj) is
the distance between two branches of bi and bj.
Consider a r-neighborhood Nr(i) = {x ϵ B| d(x,bi) ≤ r},
which is the ball of radius r centred at branch bi. The
topological saliency depicts relative importance of
branches locally.
The topological saliency Si

r of the feature created at bi
is defined as:

Sri ¼
ωi
itiX

bj∈B

ωi
jtj

ð6Þ

where ti can be persistence pi or volume vi of
branches. ωj

i is a Gaussian weighting function for the
feature j with respect to i:

ωi
j ¼ e−

d ci ;cjð Þ2
r2 ð7Þ

In order to make inner structures more clear relative
to outmost structures, this paper focuses on the

topological saliency of structures between outmost
structures and inner structures. Therefore, d(ci,cj) in
Equation 7 is defined as the distance between the root
and children branches, more specifically, the topological
depth difference between branches is defined as the dis-
tance between two branches. r is defined as the max-
imum topological depth in the contour tree.
From the illumination model as shown in Equation 1,

ka, kd, and ks are used to control the contribution of
various reflections in the illumination model. Further-
more, as mentioned, the most instinctive illumination of
an object is the diffuse lighting. Therefore, in order to
introduce the topological saliency into the illumination
design in this section, we define the diffuse reflection co-
efficient kd as a function of topological saliency. This ap-
proach is also called saliency illumination in this paper.

kd ¼ f Sri
� � ð8Þ

where f is the function of the saliency Si
r of a branch,

for example, kd can be defined as:

kd ¼ wSri ð9Þ

where w is the weight modulated by the user. In this
saliency-based illumination model, higher illumination is
defined to objects which are relatively more important
by assigning higher kd to them. ka and ks are pre-defined
and have the same value for all structures. Therefore,
the variations of illumination of objects are primarily de-
termined by kd, which reflects topological importance of
structures.

Topological distance-based illumination
Besides topological saliency, topological distance of ob-
jects also plays significant roles in information depiction
in volume rendering. This subsection introduces the
topological distance, which is defined as the topological
depth in this paper, into the topology-aware illumination
design in order to highlight inner objects from the topo-
logical distance perspective. This approach is also called
distance illumination in this paper.
Because of properties of the monotonicity and finite

range of (0, 1) of a Sigmond function, it is used to intro-
duce topological distance into the illumination design in
this paper. This paper defines kd as a function of topo-
logical distance with Sigmond function in Equation 10.

kd ¼ w
1

1þ e−z
ð10Þ

where w is the weight interactively modulated by the
user, z is the topological distance, such as the depth of a
branch. In this illumination model, the objects with
higher topological depth are assigned with higher kd,
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which means that inner structures have high illuminance
in order to highlight them.

Topology-aware illumination perception contrast model
Overview
Illumination design has been regarded as one of signifi-
cant factors in conveying visual cues for 3D object
perception. This subsection presents a topology-aware
illumination perception contrast model which utilizes
topological features to maximize illuminance visual
perception differences between neighboring objects (also
called as perceptual illumination).
Naturally, when light is coming to a semi-transparent

object, the outer surface gets high illuminance and inner
surface gets less illuminance, which makes inner objects
obscure and difficult for users to understand. Therefore,
in order to make inner objects more visible in a data set,
less illuminance is applied to outside structures while
higher illuminance is applied to inner structures. From
illumination model perspective as shown in Equation 1,
higher values of ka, kd, and/or ks need to be defined to
inner structures than that to outside structures. The rea-
son that why this approach works can be obtained by
imagining that an object inside a semi-transparent box:
it is usually easier for users to perceive and better under-
stand the glittery object inside a semi-transparent box
than the dark object inside a glittery box.
Before the discussion of details of the topology-aware

illumination perception contrast model, two concepts
are firstly introduced in this subsection: illumination
contrast ratio and Just-Noticeable-Difference.
Illumination Contrast Ratio: it is a factor which de-

scribes the degree of illumination difference between
two regions. It is defined as in Equation 11:

γ ¼ Li
Lj

ð11Þ

where γ is the illumination contrast ratio between
branch i and j. In this study, the illumination for the par-
ent branch is usually lower than illumination for child
branches in order to emphasis inner structures. γ is the
illumination ratio between parent branch and child
branch. Therefore, the range of γ is [0,1], where γ = 0
corresponds to the situation where the lower illumin-
ation is black, while γ = 1 means that the two branches
have the same luminance. In our implementation, γ is
allowed to be interactively changed in order to let
users learn how illumination affects the perception of
visualization.
Just-Noticeable-Difference (JND): it is a frequently

used measure of perceptibility [7, 28], which is the min-
imal change of luminance required for an observer to
gain a perception difference. The relationship between

JND ΔLi and luminance Li is well studied in psychophys-
ics [29]. Ferwerda et al. [30] and Larson et al. [31] used
a function for the whole human vision range to depict
the relation between the JND ΔLi and the luminance Li
as formulated in Equation 12:

log ΔLið Þ ¼
−2:86; if log Lið Þ < −3:94
0:405� log Lið Þ þ 1:6ð Þ2:18−2:86;

if ‐3:94≤ log Lið Þ < −1:44
log Lið Þ−0:395; if ‐1:44≤ log Lið Þ < −0:0184
0:294� log Lið Þ þ 0:65ð Þ2:7−0:72;

if ‐0:0184≤ log Lið Þ < 1:9
log Lið Þ−1:255; if log Lið Þ≥1:9

8>>>>>>>><
>>>>>>>>:

ð12Þ

Wang et al. [7] enhanced visual perception of 3D volu-
metric objects using various types of directional lights. JND
in illumination is used to measure illumination differences
between objects. However, Because of the lacking of topo-
logical information in the visual perception enhancement,
it does not enhance topological relations between objects
from the illumination perspective. Our target is to optimize
the ΔLi based on topological features in order to maximize
illumination differences between neighboring structures.
In this subsection, a two-phase approach is pro-

posed for topology-aware illumination perception con-
trast model:

� Initialization Phase: Initialize illumination for each
branch based on the JND which is the minimum
luminance difference between branches;

� Optimization Phase: Optimize the luminance
difference between branches in order to maximize
luminance differences between branches.

Initialization phase
This phase initializes luminance of each branch based on
the JND. In this phase, the luminance L0 for the root of the
contour tree is firstly specified by the user. Then the lumi-
nance difference ΔL0

JND between the root and its children is
calculated based on the JND with Equation 12. The initial
luminance of child branches of root is Lc = L0 +ΔL0

JND. The
illumination of other branches is recursively defined in a
similar way from root to other branches until illumination
is defined for all branches.
After finishing the initialization phase, the illumination

is defined for each branch which has the minimum
luminance difference with its neighboring branches.

Optimization phrase
The objective of optimization phase is to optimize lu-
minance difference between neighboring branches to
maximize luminance JND based on topological
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properties. In this phase, a luminance contrast ratio γ0
between root and its child branches is firstly defined.
Based on γ0 and L0 defined at the initialization phase,
a combination of JND and contrast ratio is used to
optimize luminance differences between branches.
This paper focuses on the luminance contrast between
parent and child branches because this contrast is one
of significant factors that affect the visualibility of
inner structures. This process is shown in Table 1.
The optimization includes two processes: illumination
distribution from parent to children, and illumination
distribution among siblings.

Illumination distribution from parent to children
The optimisation phase begins from the root. The new
base luminance of root’s children is got based on the γ0
and L0:

L
0
1 ¼ L0=γ0 ð13Þ

where L1
' is the new base luminance of child branches

of the root. In general, given the luminance contrast ra-
tio γi−1, the new base luminance on the ith level is:

L
0
i ¼ Li−1=γ i−1 ð14Þ

The optimization needs to meet conditions on each
depth level as formulated in Equation

ΔLi≥ΔL
JND
i

γ i≥γ0

L
0
i≥Li

8>><
>>:

ð15Þ

where ΔLi is the luminance difference between
branches, ΔLi

JND is the luminance JND between branches

Table 1 Luminance difference distribution in the contour tree

Input: Contour tree
Output: Luminance distribution in the contour tree
Get luminance contrast ratio γ0 and initial root luminance L 0;
for each depth level i and i ≥ 1 do

Get new base luminance '

iL based on the luminance 

contrast ratio and luminance of the parent;
for each child of j do

Get initial luminance band '
ijL of the current branch;

Get luminance difference Δ L ijof the current branch;

if Δ ≥ Δ then

Define final luminance band '
ijL as the initial

luminance band;
Compute illumination coefficients from new

illumination;

else
Define final luminance band '

ijL by considering

the difference between the luminance difference
and its JND;

Compute illumination coefficients from new  
illumination;

end
end

Update contrast ratio γi based on residue flow approach;

end
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based on Equation 12, Li is the luminance applied in the
initialization phase based on JND. All these conditions
guarantee that each object has optimized luminance
JND and high luminance contrast ratio with its neigh-
boring structures in order to differentiate objects from
the illumination perspective effectively.

Illumination distribution among siblings The base il-
lumination from the parent branch on each depth
level is distributed further between siblings on that
level. This further illumination distribution maximizes
differences between sibling branches. Various attri-
butes of branches are used to maximize the sibling
branch differences: 1) The saddle value of each sibling
branch as it determines its exact location on the
depth level it resides; 2) Topological importance
values of volume, persistence, and hypervolume of
each branch. Similar with opacity transfer function
generations in [15], the luminance applied to each
branch is got with Equation 16:

L
0
ij ¼ L

0
i⋅f b pij; vij; hvij

� �
⋅f d sij

� �
; j ¼ 1;…; nsi

� � ð16Þ

where Lij
' represents the new luminance applied to

the jth sibling on the ith depth level. Li
' represents

the base luminance on the ith depth level computed
with Equation 14. vi j, pi j, and hvi j are volume, per-
sistence, and hypervolume respectively of the jth sib-
ling branch on the ith depth level. fb denotes the
function used to control illumination distribution
among siblings based on importance values pi j, vi j,
and hvi j. ni

s represents the number of siblings on the
ith depth level. fd represents the function to control
the illumination distribution among siblings according
to saddle value si j.
In this paper, fb is defined as the area of the import-

ance triangle decided by persistence, volume, and hyper-
volume as presented [17], in order to consider various
types of importance at the same time in the illumination
computation.
In order to define the function fd in Equation 16,

saddle values of sibling branches are considered. Since
each branch is defined as a concatenation of a list of
arcs in the general contour tree, the saddle value of a
branch reflects the distance between the current
branch and the root, which implies inner/outer struc-
tural relationships. In accordance with this observa-
tion, in order to emphasize inclusion relationship and
also emphasize branches with larger saddle values,
smaller luminance is applied to lower saddle value
branches and larger luminance is applied to larger
saddle value branches. Therefore, the function fd in
Equation 16 is defined by Equation 17:

f d sij
� � ¼ sij−smin

i

Δsi
ð17Þ

where

Δsi ¼ smax
i −smin

i ;

smax
i ¼ max si0; ; si1;…; ; si;nsi

� �
;

smin
i ¼ min si0; ; si1;…; ; si;nsi

� �
:

After getting Lij
' , ΔLij is calculated with Equation 18.

Then the condition of ΔLij ≥ ΔLi
JND needs to be checked

before updating the illumination parameters, where
ΔLi

JND is the luminance JND between current branch
and its parent. If the condition is not met, the final Lij

' is
got with Equation 19.

ΔLij ¼ L
0
ij−Li−1 ð18Þ

L
0
ij ¼ Lij þ ΔLij−ΔL

JND
ij

���
��� ð19Þ

Luminance contrast ratio update The luminance con-
trast ratio γi between structures is defined to emphasize
inclusion relationships. Structures on higher depth levels
(inner structures) are defined with higher contrast (lower
γi values) in order to emphasize inner structures. The
residue flow model proposed for the opacity transfer
function definition [15] is adapted to control the updat-
ing of luminance contrast ratio γi on different depth
levels during the luminance distribution. According to
the residue flow model in [15], the absolute head loss
value Δhi of contrast ratio between the two ends of the
current branch is modelled with Equation 20:

Δhi ¼ 1
K
⋅
Q⋅pi
nci

ð20Þ

where Δhi ϵ [0.0,1.0], pi denotes the persistence of
the branch i, ni

c denotes the number of children of the
branch i. Q is the fluid flow speed. K is a constant and it
is defined as the hydraulic conductivity, which is a func-
tion of both the particular fluid and the permeability of
the porous medium. The sand is used as the porous
medium in this study, and K is defined as 300 for the
sand when water flows through it [32].
In this paper, Δhi is used as a factor to modulate lumi-

nance contrast ratio γi absorbed by the current branch
and the residue flowing to the next level of depth of the
contour tree. The residue of γi is computed by
Equation 21:

γ i ¼ 1:0−Δhið Þ⋅γ i−1 ð21Þ
where i ≥ 1, Δhi ⋅ γi−1 is the contrast ratio residue cre-

ated on the ith depth level. As described in the previous
sections, branches on the lower depth level in the
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contour tree correspond to outer structures, and
branches on the higher depth level in the contour tree
correspond to inner structures. Therefore, the residue
flow of contrast ratio in the contour tree results in the
definition of smaller luminance contrast ratio (higher lu-
minance to child branches) to inner structures, which
emphasizes inner structures in volume rendering.

Evaluation method
Hypotheses
Our method was evaluated from three aspects: 1) depth
information; 2) shape information; 3) structure differ-
ence perception. Therefore, the following hypotheses
were posed:

� Topology-aware illumination would help users more
easily percept depth information of structures (H1);

� Topology-aware illumination would help users
better understand shape information of
structures (H2);

� Topology-aware illumination would show more
structural difference perception (H3).

Evaluation setup
We designed a user study to test hypotheses. Six illu-
mination methods of conventional illumination (CVL),
constant diffuse (CSL), importance illumination (IML),
distance illumination (DIL), saliency illumination (SAL),
perceptual illumination (PEL) were used to render
volumetric data. Participants were required to compare
effectiveness of various methods in three aspects: 1)
depth information; 2) shape information; 3) structural
difference perception. A total of 8 participants were re-
cruited in the pilot study. Ages of participants range
from early twenties to forties. Participants were post-
graduates and researchers from visualization, medical
image analysis as well as other computing related fields.
The participants were told that there were no risk
and discomfort in completing the survey. They were
also told that the results of the study may be pub-
lished at a conference or in a journal article. The par-
ticipants were told that they may stop the survey at
any time when they do not want to continue with
any reason. Any information or personal details gath-
ered in the course of the study were confidential and
completely anonymized.
Participants were firstly required to view rendering im-

ages from different illumination methods. Then they
were asked to answer questionnaires to rate each illu-
mination method using a 9-point Likert scale (9 = totally
agree, and 1 = totally disagree) on three aspects of each
rendering image: depth perception; shape perception;
structure difference perception.

Results
Experimental results
Experiments on various data sets were conducted in this
paper to demonstrate the effectiveness of the presented
approach in volume rendering. The experiment was
conducted on Ubuntu 14.04 on a MacbookPro machine
(Intel Core i5 2.53 GHz, 2G RAM, NVIDIA GeForce
GT 330 M graphics card).
In this paper, the initial transfer function of data sets is

defined based on the topology-controlled transfer func-
tion approach presented in [15]. The proposed approach
was firstly used to render the ‘fuel’ data set (see http://
www9.informatik.uni-erlangen.de/External/vollib/), a
volumetric data from a simulation of fuel injected into a
combustion chamber. In this paper, the proposed ap-
proaches (distance illumination, saliency illumination,
and perceptual illumination) were compared with other
approaches, e.g. illumination only with ambient and dif-
fuse illumination (called conventional illumination); illu-
mination with same settings of ambient, diffuse and
specular lighting for all structures (called constant illu-
mination), and topological importance based illumin-
ation which defines ambient coefficient as persistence or
volume and keeps other lighting coefficients as constant
[33]. From the comparison, we see that all renderings
(Fig. 3d–f ) from approaches presented in this paper
show internal structures more clearly (e.g. structures
pointed by A) than other approaches by emphasising in-
ternal structures from the illumination perspective. Fur-
thermore, renderings from saliency illumination and
perceptual illumination show more obvious differences
between structures from illumination perspective. Struc-
tures in Fig. 3f show larger illumination differences
among structures than renderings in other figures. This
is because that perceptual illumination considers the lu-
minance JND and optimises the illumination differences
between structures.
Our approach was also applied to render the ‘neghip’

data set (see http://www9.informatik.uni-erlangen.de/Ex-
ternal/vollib/), a volumetric data from a simulation of
the spatial probability distribution of the electrons in a
high potential protein molecule. Figure 4 shows the
comparison of renderings using various approaches.
Similar conclusions as in Fig. 3 were got in this compari-
son. For example, for structures in yellow circles, render-
ings from topological illumination proposed in this
paper show more clear internal structural information
than other approaches. More obviously, objects rendered
in Fig. 4f show higher perceptual contrast in illumina-
tions than other figures, which allows users more easily
detect structural differences and structural details. The
proposed approach was also applied to a more compli-
cated data set, an MR head data set with brain tumors
inside (data courtesy of B Terwey, Bremen). In the MR
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head data set, brain tumors are often difficult to visualize
because of inclusions of tumors inside the brain and
complicated brain structures. From the comparison in
Fig. 5, we see that topological illumination shows more
structural details such as skin surface and brain shapes
(Fig. 5b to Fig. 5d) despite conventional illumination also
depicting tumours clearly. It is found that perceptual il-
lumination as shown in Fig.5d creates higher and bal-
anced perceptual contrast between objects than other
illumination methods.
The proposed approach was applied to other medical

data sets, CT foot data set and CT knee data set (both
are from http://www9.informatik.uni-erlangen.de/Exter-
nal/vollib/) as illustrated in Figs. 6 and 7 respectively.
From these results, we see that topological illumination
allows emphasise structures based on topological fea-
tures. For example, compared with conventional illumin-
ation, importance illumination emphasises structures
which have high volume (thumb bones in Fig. 6b), and
high persistence (kneecap in Fig. 7b). Perceptual illumin-
ation enhances the perception differences between struc-
tures (see Figs. 6d and 7d).
We also applied our approach to a biological image

data set. Figure 8 shows the rendering results of bio-
logical cell data set (test data from Vaa3D [1]) with dif-
ferent illumination approaches. Similar conclusions as
medical image renderings are got for biological image
renderings. For example, compared with conventional il-
lumination in Fig. 8a, importance illumination in Fig. 8b
emphasises cells based on the cell volume (voxel count
of a cell), which allows user to easily detect volume dif-
ferences of cells via illumination variations. Figure 8c

Fig. 3 Volume rendering of fuel data set with various illumination approaches: a Conventional illumination, b Constant illumination,
c Importance illumination (persistence, w = 0.71), d Distance illumination (persistence, w = 0.71), e Saliency illumination (persistence,
w = 0.71), f Perceptual illumination

Fig. 4 Volume rendering of neghip data set with various illumination
approaches: a Conventional illumination, b Constant illumination, c
Importance illumination (persistence, w = 0.78), d Distance illumination
(persistence, w = 0.57), e Saliency illumination (persistence, w = 0.67),
f Perceptual illumination
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emphasises cells based on the topological depth, which
allows users to percept topological differences of cell
structures. Figure 8d enhances the perception differences
between cells so that users easily identify different cells.
These results show that the proposed approach helps
users perceive topological differences of biological data
from illumination perspective and thus improve the
overall understanding of the biological data set.
We tested the effectiveness of topological attenuation

in structural depiction in volume rendering. Figure 9
shows the topological attenuation of neghip data set.
The data is originally rendered with constant illumin-
ation approach. When topological attenuation is applied,
we can see from the figure that object lighting is
dimmed out with the decrease of lighting speed V from
Fig. 9a–c. However, different from the conventional
lighting attenuation approach which applies same at-
tenuation factor to objects based on distance only, topo-
logical attenuation also considers topological features
which can be seen from Fig. 9b. In Fig. 9b, objects
pointed by arrows are not dimmed out as other struc-
tures because of their high persistence.
The volume rendering pipeline is implemented with

the use of GPU (Graphics Processing Unit) fragment
programs in this paper. Our system performance allows

the real-time exploration of volumetric data. The size of
the data set and the branch number of the contour tree
determine the processing time of automatically generat-
ing illumination parameters. For a small data set, the
number of branch of the contour tree is usually within a
manageable size (e.g. less than 30 after the contour tree
simplification for the ‘fuel’ data set). We can interactively
generate illumination parameters for such kind of data
sets. We got the frame rate of 36.5fps for the “fuel” data
set (20 branches after simplification, and the original
branch size is 86).

Evaluation results
We performed Friedman test and post-hoc analysis
using Wilcoxon signed-rank tests to analyze the mean
differences in participant responses. Post-hoc analysis
was performed with a Bonferroni adjusted alpha level set
at α = .025(.05/2 = .025). This adjusted significance alpha
level of .025 was calculated by dividing the original alpha
level of .05 by 2 based on the fact that for all tasks we
have two conditions to test in general (with/without
topological information for illumination computation).
Figure 10 shows average subjective ratings of depth,
shape and structural difference for different illumination
methods in the rendering.

Fig. 5 Volume rendering of tumor head data set with various illumination approaches: a Conventional illumination, b Importance illumination
(volume, w = 0.28), c Distance illumination (volume, w = 0.5), d Perceptual illumination
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Fig. 7 Volume rendering of CT-Knee data set with various illumination approaches: a Conventional illumination, b Importance illumination (per-
sistence, w = 0.76), c Distance illumination (persistence, w = 0.76), d Perceptual illumination

Fig. 6 Volume rendering of foot data set with various illumination approaches: a Conventional illumination, b Importance illumination (volume,
w = 0.65), c Distance illumination (volume, w = 0.65), d Perceptual illumination
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For depth perception, a statistically significant differ-
ence was found with Friedman test among the six
illumination methods in depth perception, χ2(5) =
17.776, p = .003. The post-hoc Wilcoxon tests with a
Bonferroni correction found that IML (Z = 0.0, p < .025),
DIL (Z = 0.0, p < .025), SAL (Z = 0.0, p < .025), and PEL
(Z = 2.0, p < .025) showed more clear depth information
to participants than CVL. The results show that
topology-aware illumination approaches helped partici-
pants more easily percept depth information of
structures as we expected (H1). There were no other sig-
nificant differences found between illumination methods
on depth information.

For shape perception, a statistically significant differ-
ence was found among the six illumination methods,
χ2(5) = 15.849, p = .007. The post-hoc Wilcoxon tests
found that CSL (Z = 0.0, p < .025), IML (Z = 2.0, p
< .025), SAL (Z = 0.0, p < .025), and PEL (Z = 1.5, p
< .025) showed more clear shape information than CVL.
The results indicate that topology-aware illumination ap-
proaches except topological distance based illumination
helped participants better understand shape information
of structures as we hypothesized (H2). Constant illumin-
ation also showed better shape information to partici-
pants than conventional approach. It was also found that
PEL showed more clear shape information to partici-
pants than DIL illumination (Z = 0.0, p < .025). This result

suggests that perceptual illumination was more effective
in shape depiction than distance illumination.
For structural differences, there was a statistically sig-

nificant difference found among the six illumination
methods in structural difference perception, χ2(5) =
20.959, p < .001. The post-hoc Wilcoxon tests found that
DIL (Z = 0.0, p < .025) and PEL (Z = 0.0, p < .025) showed
more clear structural difference to participants than
CVL. The results show that topology-aware illumination
approach of distance illumination and perceptual illu-
mination helped participants get more clear structural
difference information as we expected (H3). It was also
found that SAL (Z = 0.0, p < .025) and PEL (Z = 0.0, p
< .025) showed more clear structural difference to partic-
ipants than CSL. This result confirms the effectiveness
of topology-aware illumination in depicting structural
differences. Participants also found that PEL showed
more clear structural difference than DIL (Z = 0.0, p < .025).
The result suggests that perceptual illumination was more
effective in depicting structural difference perception than
distance illumination.

Discussion
Previous illuminance design methods such as structure-
aware approach [4] do not consider topological relations
between structures at all and cannot depict variations of
different structures effectively. Such approaches also

Fig. 8 Volume rendering of Cell data set with various illumination approaches: a Conventional illumination, b Importance illumination (volume,
w = 0.74), c Distance illumination (volume, w = 0.74), d Perceptual illumination
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cannot depict importance and topological differences of
structures from the illumination perspective. Despite
topology-aware transfer function approaches being
developed [14, 15], they do not consider topology in
illumination design to differentiate objects from the illu-
mination perspective.
Compared with the previous work, we can see that

our topology-aware illumination approach can generate
illuminations and depict structural differences from the
illumination perspective effectively. Because topology-
aware illumination approach can define different illumi-
nations for structures based on topological features, it
shows more clear depth, shape, and structural difference
information. Compared with conventional illumination
approaches, the topology-aware illumination has follow-
ing advantages: 1) It generates different illumination pa-
rameters for different sub-regions automatically. Users
do not need to do trial-and-error interactions and only a
simple slide bar is used as an interaction interface for
specifying illumination speed or weights in the illumin-
ation models. Therefore, the exploration on a data can be
got from the illumination perspective by the controlling of
lighting speed or weights meaningfully instead of compli-
cated adjustment of computer graphics concept on

illumination. 2) The generated illuminations can depict
importance of structures and structural relationships from
the illumination perspective meaningfully and automatic-
ally based on topological features of volumetric data. 3) It
optimizes illumination perception differences between
structures based on the psychological theory, which allows
users perceive structural difference effectively from the il-
lumination perspective. 4) More interestingly, topology-
aware illumination attenuation can dim out structures dif-
ferently based on their topological importance in lighting
attenuation, where less important structures are dimmed
out while more important structures are still kept in light-
ing attenuation. 5) The proposed illumination approach
also provides initial meaningful estimation of illumination
parameters for their further fine tuning step. 6) Our ap-
proach does not require much user involvement, and it is
even easy to use and understand for users who may not
have much knowledge in illumination and visualization.
The effectiveness of our method is mainly affected by

the quality of the contour tree, which is originally related
to the quality of volumetric data set such as signal-to-
noise ratio (SNR). By preprocessing original volumetric
data to filtering noise, more precise contour tree can be
obtained and thus our approach becomes more effective
in illumination designs. The paper used the classical
Blinn-Phong model as an example to demonstrate the
advantages of our approach in illumination design. The
proposed approach can also be adapted to any other illu-
mination models.

Conclusions
This paper introduced a new paradigm for illumination de-
sign in volume rendering based on data topology. In the
proposed framework, Stokes’ law of sound attenuation was
adapted to model the lighting attenuation based on topo-
logical attributes. Topological distance and topological
saliency were also integrated into the illumination design
through a lighting transfer function mechanism to
emphasize structures. Furthermore, a two-phase topology-
aware illumination perception contrast model was pro-
posed to maximize illumination perception differences be-
tween structures based on the psychological concept of

Fig. 10 Average subjective ratings of depth, shape and structural
difference for different illumination methods in the rendering

Fig. 9 Topology-aware lighting attenuation of neghip data set: a V = 229, b V = 154, c V = 42
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Just-Noticeable-Difference. This two-phase topology-aware
illumination perception contrast model allowed more effi-
cient and meaningful automation of illumination genera-
tions, and the exploration on the data can be conducted
from the illumination perspective by the controlling of
weighting factors meaningfully instead of complicated ad-
justment of computer graphics concept on illumination.
Experiments showed that our approach was more effective
in depth and shape depiction, as well as providing higher
perceptual differences between structures.
In the future, we will investigate topology-aware illu-

mination in more general illumination models besides
the classical Blinn-Phong model for more complex illu-
mination designs. We also plan to investigate other per-
ceptual psychological models in illumination to enhance
perceptual differences of structures in volume rendering.
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