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Abstract—We develop a novel time series feature extraction
technique to address the encrypted application classification
problem. The proposed method consists of two main steps. First,
we propose a feature engineering technique to extract significant
attributes of the encrypted network traffic behavior through
analyzing the time series of receiving packets. In the second step,
a deep learning technique is developed to exploit the advantage
of time series data samples in providing the strong represen-
tation of the encrypted network applications. To evaluate the
efficiency of the proposed solution on the encrypted application
traffic classification problem, we carry out intensive experiments
on a raw network traffic dataset, namely VPN-nonVPN, with
three conventional classifier metrics including Precision, Recall,
and F1 score. The experimental results demonstrate that our
proposed approach can significantly improve the performance in
identifying encrypted application traffic in terms of accuracy and
computation efficiency.
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I. INTRODUCTION

Traffic classification is crucial to network resource manage-

ment and security, e.g., policing, firewall, filtering, anomaly,

and intrusion detection [1], [2]. To protect users’ privacy (e.g.,

Viber, Whatsapp), most of applications come with an option to

encrypt users’ traffic. Moreover, malicious users also want to

hide their behaviors through encrypted or covert tunnels [3].

As such traffic identification of encrypted applications plays a

more and more pivotal role in cyber security.

Dealing with with encrypted traffic also brings many chal-

lenges for existing network traffic classifiers. Port-based tech-

niques were one of the most popular methods used in the last

decade to classify network traffic. However, they don’t work

well on many systems nowadays due to the development of

dynamic and non-standard port applications. Instead of relying

on port numbers, the payload-based and flow-based techniques

that employ machine learning algorithms for network traffic

identification can be adopted. However, encryption algorithms

try to embroil data structure of packets, leading to reducing the

effects of payload-based methods [4]. Alternatively, the flow-

based methods usually exploit statistical features of network

flows [5], [6], [7], resulting in increasing the computation

resource and decreasing accuracy comparing with payload-

based methods. Therefore, conventional payload-based and

flow-based techniques are not effective in both computation

efficiency and representing encrypted packets for classification

purpose.

Although many machine learning-based classification meth-

ods have been introduced to overcome the current limitations

of conventional methods, their effectiveness strongly depends

on the accuracy and effectiveness of the feature extraction pro-

cess. However, as aforementioned, traffic of most applications

has recently been encrypted [12], making the feature extraction

from the raw traffic extremely challenging.

In this paper, we propose a novel deep learning-based

classification approach using an effective feature engineering

technique to represent encrypted network traffic. First, we rely

on the time dependency of packets (i.e., time series samples)

to better represent the behavior of traffic. We then leverage the

advantage of Long Short-Term Memory (LSTM) network [4]

[8] to extract the time dependency from the encrypted traffic.

To verify the efficiency of the proposed solution, we deploy

experiments on the real packet dataset, i.e., VPN-nonVPN

dataset [13], with 12 kinds of applications. The experimental

results show the efficiency of the our proposed approach in

terms of accuracy, reliability, and robustness.

The main contributions of the paper are as follows:

• We propose a feature engineering technique that com-

bines the payload-based method and flow-based to ef-

ficiently represent the behavior of encrypted network

traffic.

• We develop a deep learning approach using LSTM to re-

tain time dependency of receiving network traffic through

time series analysis for data of network application traffic.

• We perform experiments to demonstrate the impact of

the feature engineering technique to determine the best

feature set that achieves the high accuracy with low

computation requirement for identifying encrypted appli-

cation traffic.

The rest of paper is organized as follows. Related works

in the network traffic classification with unencrypted and en-

crypted traffic are discussed in Section II. Section III presents

the fundamental background of the LSTM model. Our feature

engineering technique is then described in Section IV. The

testing dataset and experimental settings are in Section refexp.

Section VI presents experiment results. Conclusion and future

works are discussed in Section VII.

II. RELATED WORK

Flow-based, packet-based, and flow-packet combination are

three major techniques to analyze network traffic in the

literature.



1) Flow-based method: A flow is a tuple of packets which

have same source Internet Protocol (IP) address, destination

IP address, source transport layer port, destination transport

layer port, and transport protocol. Previous works [5], [6],

[7] showed the effectiveness of the flow-based method for

intrusion detection systems in classifying malicious traffic

from normal traffic. Accordingly, this method is efficient in

analyzing the behaviors of the set of packets. Gil et al. [14]

introduced time-based attributes of packets for traffic analysis.

However, these attributes need high volume of storage to store

packets over a period of time [7]. As a result, the collection

of many packets into a flow before extracting features is time-

consuming.

2) Payload-based method: Payload-based method has a

high processing speed because it processes one packet at a

time. However, this method is ineffective in presenting user

behaviors which are crucial in classifying network traffic.

Analyzing encrypted packet payload without decrypting has

received more attentions recently [15], [16]. Sherry et al. [15]

only considered the HTTP protocol with TLS encryption

which is one of many encryption protocols on the Internet

applications. S. Leroux et al. [16] presented a network traffic

analysis method based on packet size and interval time. How-

ever, it only works efficiently for some specific applications

which have extremely different packet size and transmission

time, e.g., HTTP, VoIP, Video streaming, and P2P. Deep

learning was also introduced for feature extraction of raw

packets [4]. However, the method in [4] extracts entire raw

packets to put into deep learning networks. This method can

work for unencrypted traffic, but it is inefficient with encrypted

traffic (detailed discussion in Section III).

3) Payload-flow based combination method: The payload-

flow based combination method which consists of both packet

and flow features is widely used in many well-known bench-

mark dataset, e.g., UNSW-NB15 [9] and NSL-KDD [10].

This method extracts features of packets combining with

features of flow, leading to be able to present characteristics of

traffic behaviors rapidly. Thus, this method is appropriate for

encrypted network traffic because they can extract unencrypted

packet headers along with encrypted payload. Furthermore,

this method can use the flow-based technique to represent

network traffic behaviors accurately. As a result, the packet-

flow based combination method is widely implemented in

intrusion detection systems to identify network malicious

traffic [11].

There are also some research works using the deep learning

approach such as Stack Auto Encoder (SAE), CNN, LSTM

network [4] [8] for classifying network traffic. However, these

works only focus on the structure of deep network model to

extract a large number of payload bytes from raw packets

with large size of the flow. Consequently, the deep network

requires a extremely large number of hidden layers with many

neurons to enhance its accuracy. The work of Zhang et al. [2]

showed the effectiveness of the time series analysis of network

traffic for the network traffic classification problem. They

extracted the hand-craft statistical features of packets and flow

to represent traffic application, leading to heavy dependence

of accuracy on human knowledge and high computation re-

Fig. 1: The description of LSTM node.

source [1]. In this paper, we only extract packet features which

strongly represent encrypted packets according to applications

and arrange receiving packet samples in a time-series order.

Furthermore, we take advantage from LSTM network in

order to extract the time dependence of time-series packets

automatically. This will not only retain the characteristic of

traffic efficiently, but also perform accurately and rapidly in

classifying encrypted network traffic applications.

III. LONG SHORT TERM MEMORY

In this section, we describe a specific type of Recurrent

Neuron Networks (RNN) [17], i.e., Long Short Term Memory

(LSTM). LSTM is designed to avoid long-term dependency

problem which cannot be resolved in RNN. This network

structure was originally introduced by Hochreiter et al. [18],

and has been refined as a powerful technique to handle the

problem of time series prediction [19]. The difference of

LSTM comparing with RNN resides in their nodes or cells.

The basic structure of cell is presented in Fig. 1. One of

the advantages of the LSTM is its ability to remove or add

information to the cell state by a gate structure. There are three

gates in each cell, i.e., input gate, forget gate and output gate,

as shown in Fig. 1. Based on the strength of the information

which is received by each node, each node will decide to

block or pass the information. The calculations of three gates

are briefly shown in equations (1)-(6).

ft = σ(Wf .[ht−1, xt] + bf ). (1)

it = σ(Wi.[ht−1, xt] + bi). (2)

Ĉt = tanh(WC .[ht−1, xt] + bC). (3)

Ct = ftCt−1 + itĈt. (4)

ot = σ(Wo.[ht−1, xt] + bo). (5)

ht = ot tanh(Ct). (6)

Firstly, the forget gate is used to decide what information

from the previous cell would be passed to this cell. This gate

uses a sigmoid function with input of ht−1 presenting the

output of the previous cell and xt presenting the input of the

current cell and output ft as in (1). The cell will forget this



Fig. 2: The network architecture of our model.

information if ft is zero and remember otherwise. Secondly,

the input gate decides which values will be updated in this

cell. As presented in the Fig. 1, the sigmoid layer will decide

values which will be updated, i.e., it calculated in (2), and the

tanh layer creates a vector of new candidate values, i.e., Ĉt

calculated in (3). The state of the cell is computed based on

output of the forget gate and the input gate which is described

in (4). Finally, the cell has to decide the output value by the

output gate. The inputs ht−1 and xt pass though sigmoid layer

to decide which parts of cell state being output as ot presented

in (5). The Output gate is the combination of ot and the tanh

layer of cell state Ct as shown in (6). If the time sequence

length is m, the final output will be hm which is the value of

ht when t = m.

One hidden layer has many LSTM cells as described above

and one deep learning model is usually the combination of

many hidden layers. By computing the partial derivatives of

outputs, weights, and input values of hidden layers, the system

can move backward to trace the error between real output

values and predicted output values, and uses Gradient Descent

method to update the weights concurrent in order to reduce

the predicted errors. Therefore, the LSTM cell is able to use

back propagation through the time. Furthermore, the LSTM

cell considers one sample based on two characteristics, i.e., the

value and the position in time series of the sample. This means

that two input samples at different times may have the same

values; however, the output will likely differ. Accordingly, the

LSTM network can understand the context of samples better.

The network structure of our work is presented in Fig. 2

which includes three hidden layers: LSTM (128 neurons),

two Fully Connected (FC) layers with 128 and 12 neurons,

respectively. The softmax classifier layer with 12 neurons

(according to 12 network applications in the dataset) is used

as the last layer to classify input data. As shown in Fig. 2, the

input data sample is the time sequence data, i.e., the network

flow, which has size of m packets.

Fig. 3: The packet structure.

IV. FEATURE ENGINEERING METHOD

In this section, we first analyze characteristics of an en-

crypted network packet, then propose the feature set that can

represent encrypted network packets accurately.

Packet is data unit of the network layer in the Transmission

Control Protocol/ Internet Protocol (TCP/IP) model. Most of

previous works use entire payload of packets as features such

as 1500 bytes [4] and 1000 bytes [8]. Fig. 3 shows that the

packet includes 20 bytes of IP header, 20 bytes of transport

layer header, and all the rest of bytes for application header

and application data. In ubiquitous encrypted applications,

the application layer data is encrypted using symmetric en-

cryption algorithms to ensure the speed of the encryption

and decryption process such as AES256 and RC4 [20]. In

other words, the encryption keys are pseudo-random numbers

which are changed in different sessions [20]. Therefore, the

values of encrypted application layer data are completely

different between sessions, although they belong to one type

of application. As a result, the application layer data is unable

to represent the application type. However, the header of

application layer describes the encryption algorithm names and

protocols which are significant for identifying network traffic.

Fig. 4 shows features which we extract from IP packets. In

this figure, features from 1 to 3 describe the identification of a

flow including source transport layer port, destination transport

layer port, and protocol. The packet samples are ordered in a

time series, so we don’t need IP address in collecting the flow.

In this work, we use these information to recognize the flow

of continuous packets. The fourth feature presents the size

of application data which strongly represents the difference

between network traffic applications. Features from 5 to 44
are exactly the byte values of the IP header and transport

header which are not encrypted in encrypted IP packets. For

transport layer header, there are two popular protocols, i.e.,

User Datagram Protocol (UDP) and Transmission Control

Protocol (TCP). The size of UDP header is 8 bytes, while

the size of TCP header is usually 20 bytes. Therefore, we pad

zero bytes at the end of UDP header to achieve the header

size of 20 bytes. The rest of features are the first n bytes of

the application which present application layer data. In the

experiment, we conduct the feature sets of data with various

values of n, i.e., 10, 30, 50, 100, 200, 500, 1000, and 1500.

Packets with application layer data smaller than n are padded

by zero bytes to ensure the feature length.

V. EXPERIMENTAL SETTINGS AND EVALUATION METRICS

This section presents the dataset and evaluation metrics

which we use in the experiments.



Fig. 4: The description of feature extraction.

TABLE I: Number of class samples for training and testing

set

Class Training set Testing set

Chat 948 270

Email 328 76

File transfer 739 195

P2P 1946 482

Streaming 2304 563

VoIP 495 112

VPN-Chat 1807 476

VPN-Email 372 91

VPN-File transfer 1306 304

VPN-P2P 191 50

VPN-Streaming 657 155

VPN-VoIP 299 74

Sequence total 11392 2848

A. Dataset

In order to test the effectiveness of the proposed method, we

use well-known encrypted network traffic datasets, i.e., VPN-

nonVPN [13], which was created by the Canadian Institute for

Cybersecurity. To generate the dataset, they created accounts

for two users, i.e., Bob and Alice, who execute network

transmissions to generate traffic for applications. The captured

pcap files are labeled by applications which they engaged to.

There are 12 distinct labels shown in Table I. To compare

with other works on VPN-nonVPN dataset, we divide the

dataset into training set (80%) and testing set (20%), yielding

to the number of each class sample displayed in Table I. For

each training epoch, 10% number of samples are chosen for

validating the best model.

B. Evaluation Metrics

We use three popular evaluation metrics in the classification

problem to assess the impact of our proposed method. The

reported evaluation metrics include Precision score, Recall

score, and F1-score [21]. These metrics are calculated for each

class i in the dataset by considering the one with all classifiers.

Equations (7) and (8) present precision and recall score for one

class. The final values of metrics are the weighted averages

of all classes based on the sample size of each class in the

testing set.

Precision =
TP

TP + FP
. (7)

Recall =
TP

TP + FN
. (8)
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Fig. 5: Impact of feature size on accuracy and processing time.

The precision and recall score are calculated as in Equa-

tions (7) and (8), where TP and FP are the number of correct

and incorrect predicted samples for a class i respectively, and

FN is the number of incorrect predicted samples of the rest

of classes. The advantage of these metrics is that they are

very intuitive and easy to implement. However, they make no

distinction between classes, that is sometime insufficient to

measure a classifier, especially for imbalanced datasets.

The F1-score overcomes the disadvantage of the precision

and recall score. F1 score is Harmonic mean [21] of Precision

and Recall, where Harmonic mean is an appropriate way to

average ratios. Therefore, it is not effected by the difference

of the size of classes. Precisely, F1 score is computed in

Equation (9). The F1-score is often considered as a reliable

metric to evaluate the performance of classification algorithms

in many kinds of dataset. Thus, we will use this metric for

measuring our model and compare with other works in the next

section. Precision and Recall will be presented as references.

F1 = 2×
Precision×Recall

Precision+Recall
. (9)

VI. RESULTS AND DISCUSSION

In this section, we conduct two kinds of experiments to

measure the impacts of our feature engineering technique and

the accuracy of our proposed model.

A. Impacts of Feature Engineering Technique

In these experiments, we analyze the impacts of the feature

engineering technique to the accuracy of the deep learning

model. Fig. 5 presents the effects of feature size on classifica-

tion accuracy and processing time. In this figure, the training

time measures the processing time to execute 50 epochs in

seconds and the testing time represents the processing time

to predict all samples in the testing dataset. As shown in

Fig. 5, the training time and predicting time increase along



Fig. 6: Impact of flow size on accuracy.

with the expansion of the feature size. This is reasonable for

executing a deep learning model because larger feature size

always requires higher computation resource and more time

consuming. In addition, Fig. 5 shows that the feature size 55
which contains 50 bytes of application layer data is the most

effective to present encrypted network applications. As men-

tioned in Section IV, each network transaction is encrypted

with a different key; therefore, using the large number of

encrypted payload reduces the ability to represent network

applications. Hence, we consider simulations on the small

feature sizes. The experimental results show that the feature

size of 55 gives the highest accuracy with an appropriate

processing time.

We then extract packets with 55 features, and arrange the

time series packets into a flow. Fig. 6 presents the impact of

the time sequence length, i.e., the number of packets in a flow.

This figure shows that the time sequence length 5 enhances

the highest F1-score of the classifier as 98.17% in our network

model. If we increase the time sequence length, we will have

to enlarge the number of hidden layers in the deep network

model to attain a high accuracy of classifiers as in the work [8].

Generally, an appropriate feature set can help the training

process converge faster. Fig. 7 presents the convergence ability

of our model with the input size of the feature set as n×5×55,

where n is the time sequence length in the dataset. As shown in

this figure, our network model converges quickly at 50 epochs.

This conjectures that our feature set is appropriate to represent

encrypted network applications for improving the performance

of the application classification problem. Additionally, in the

real network monitoring, if we choose the large number

of packets presenting for a sequence, the model will only

predict applications after passing many packets, leading to

huge computation. Therefore, choosing sequence size of 5 is

one of reasons that helps to rapid our model.

B. Accuracy of the Model

This section presents the effectiveness of our model on

the dataset by comparing with other works in the same

domain. Table II shows the Precision, Recall, and F1-score

calculated on each application class. As shown in this Table,

both unencrypted applications and encrypted applications are

identified accurately with the average F1-score up to 0.98. This
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Fig. 7: Loss value and Accuracy in training process.

TABLE II: Accuracy on each class

Class Precision Recall F1 score Sample size

Chat 0.94 0.99 0.96 270
Email 0.99 1.00 0.99 76

File transfer 0.99 0.88 0.93 195
P2P 1.00 0.99 0.99 482

Streaming 0.99 1.00 0.99 563
VoIP 0.86 0.90 0.88 112

VPN-Chat 0.99 1.00 0.99 476
VPN-Email 1.00 0.98 0.99 91

VPN-File transfer 0.98 0.99 0.99 304
VPN-P2P 0.98 0.92 0.95 50

VPN-Streaming 1.00 0.99 1.00 155
VPN-VoIP 1.00 1.00 1.00 74

Average 0.98 0.98 0.98 2848

demonstrates that our deep network model and feature engi-

neering technique are very efficiency in identifying encrypted

network applications.

Finally, we compare our proposed solution with some

previous works in the same domain which extract the payload

of packets as features. We then use deep learning model

to classify network applications. We experiment the model

proposed by Martin et al. [8] on VPN-nonVPN dataset to

compare performance reliability. In Table III, the network

architecture shows the number of hidden layer and the the

number of neurons in each hidden layers of models. For

example, the model [8] uses the deep network with 5 hidden

layers, i.e., two convolutional layers, one LSTM layer, and

two FC layers, with the number of filters (for CNN layer) or

neurons (for LSTM and FC layers) at each layer as 32, 100,

100, 100, and 108 respectively. Furthermore, M. Lotfollahi

et al. [4] designed two deep network models, i.e., SAE and

CNN1D with the accuracy as 0.97 on VPN-nonVPN dataset.

As shown in this Table, our feature engineering technique

combining with LSTM model achieves the highest accuracy

of 0.98 with less complicated deep learning architecture which

has only three layers, i.e., LSTM (128), FC (128), and FC (64).

This verifies that our model is the most effective model for

the encrypted network traffic classification problem in terms



TABLE III: Comparision of deep learning methods based on

packet payload features

Network
Feature

size

Time
sequence

length

Network

Architecture

F1

score

CNN+LSTM [8] 1000 20

CONV.(32),
CONV.(100),
LSTM(100),

FC (100), FC(108)

0.96

CNN-1D [4] 1500 1

CONV.(200),
CONV.(100),

FC(600), FC(400),
FC(300), FC(200),
FC(100), FC(50)

0.97

SAE [4] 1500 1

FC(400), FC(300),
FC(200), FC(100),

FC(50)
0.97

Our work 55 5
LSTM(128),

FC(128),FC(64)
0.98

of computation resource and accuracy.

VII. SUMMARY

In this paper, we propose a novel time series analysis for

network traffic classification in order to effectively represent

encrypted network applications. In particular, we first exploit

significant features of network packets, then represent the flow

of packets as the time series data. After that, we reconfigure

data samples from raw packets to time sequence samples

which can represent the behavior of network traffic. Further-

more, we take the advantage of LSTM network to design

the deep network model which can learn feature effectively

from time series data samples. The experimental results clearly

show that using time series analysis of encrypted network

traffic to represent encrypted network application combining

with LSTM network can help the classifier achieve better

performance for the encrypted network traffic classification.

Our work can establish fundamental principle for utilizing

time series features of encrypted network traffic and the deep

learning approach to represent network traffic. This is the most

important step in analyzing network traffic in order to provide

valuable performance for various research works on network

traffic analysis such as intrusion detection, anomaly detection,

traffic classification.
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