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Abstract—For an RF-powered cognitive radio network with 
ambient backscattering  capability,  while  the  primary  channel 
is busy, the RF-powered secondary user (RSU) can either 
backscatter the primary signal to transmit its own data or harvest 
energy from the primary signal (and store in its battery). The 
harvested energy then can be used to transmit data when the 
primary channel becomes idle. To maximize the throughput for 
the secondary system, it is critical for the RSU to decide when to 
backscatter and when to harvest energy. This optimal decision 
has to account for the dynamics of the primary channel, energy 
storage capability, and data to be sent. To tackle that problem, 
we propose a Markov decision process (MDP)-based framework 
to optimize RSU’s decisions based on its current states, e.g., 
energy, data as well as the primary channel state. As the state 
information may not be readily available at the RSU, we then 
design a low-complexity online reinforcement learning algorithm 
that guides the RSU to find the optimal solution without requiring 
prior- and complete-information from the environment. The 
extensive simulation results then clearly show that the proposed 
solution achieves higher throughputs, i.e., up to 50%, than that 
of conventional methods. 

Keywords- Ambient backscatter, RF energy harvesting, cog- 

nitive radios, MDP, reinforcement learning. 

 
I. INTRODUCTION 

Radio frequency (RF) powered cognitive radio networks 

(CRNs) have been seen as an emerging solution to address 

both the radio spectrum shortage and the energy limitation 

for low-power secondary systems (e.g., in industrial IoT 

applications). In an RF-powered CRN, while the primary 

transmitter, e.g., the base station, broadcasts signals to its 

receivers, the secondary transmitter (ST) can harvest energy 

from such signals through RF energy harvesting techniques. 

The harvested energy is then stored in the battery of the ST and 

used to transmit its own data to the secondary receiver (SR) 

when the primary channel becomes idle, i.e., the base station 

ceases broadcasting. In this way, the secondary system can 

operate with minimal human intervention and without causing 

any interference to the primary  system.  As  a  result,  there 

are paramount applications of RF-powered CRNs in practice 

such as low-energy sensor and IoT networks [1]. However, in 

an RF-powered CRN, the performance of secondary system 

heavily depends on the activities of the primary channel that 

controls both energy and radio frequency of STs. In particular, 

when the primary channel is usually busy, i.e., the base station 

broadcasts signals most of the time, the ST has very limited 

opportunities to transmit data, resulting in a low throughput. 

This problem can be tackled by recent advances in ambient 

backscattering. 

Ambient backscatter communication (ABC) allows wireless 

devices to communicate by modulating and reflecting the sur- 

rounding ambient RF signals [2]. The ABC technology bears 

 

close resemblance with radio frequency identification (RFID), 

but while RFID requires transmissions from a dedicated car- 

rier emitter, ABC can modulate surrounding ambient signals 

transmitted by existing wireless systems. Hence, ABC systems 

can share spectrum with exiting systems and achieve better 

spectral efficiency than that of RFID systems. Furthermore, 

ABC devices are relatively simple and consume much less 

power than active transmitters, and thus ABC allows ultra- 

low-power operation with low cost implementation [3]. As a 

result, ABC technology has been receiving significant attention 

recently, and it was listed as one of the 10 breakthrough 

technologies in 2016 by MIT Technology Review [4]. For RF- 

powered CRNs that employ ABC, while the primary channel 

is mostly busy, instead of spending whole time to harvest 

energy, the ST can use a fraction of time to transmit data by 

modulating and backscattering the received signals through 

ABC technique. Thus, ABC enables secondary systems to 

simultaneously optimize the spectrum usage and energy har- 

vesting to maximize their performance. 
There were some research works in the literature studying 

solutions to integrate ABC into RF-powered CRNs. In [2], 
the authors introduced a circuit diagram together with a 
prototype for an ambient backscattering device with RF energy 
harvesting capability, i.e., ST. This device includes three main 

components, i.e., an antenna, an energy harvesting circuit, and 
a controller. The prototype device can achieve information 

rates of 1 Kbps over the distances of 2.5 feet. The authors 
in [5] then extended [2] by introducing a novel coding scheme 
to improve the backscatter transmission rate as well as the 

communication range. In this technique, each data bit is rep- 
resented by one symbol, and each symbol in turn is represented 
by a predefined chip sequence. Through experiments, the 
authors showed that the backscatter transmission rate and the 

communication range can be extended up to 1 Mbps and 20 
meters, respectively. 

Some other solutions were also proposed to improve the 
performance for secondary systems. In [6], a hybrid backscat- 

ter communications for RF-powered CRNs was introduced in 

order to improve transmission range and rate for the secondary 
system. Under this model, the ST can flexibly select between 

an ambient RF source or a dedicated RF source to support 
its transmissions based on its location, i.e., indoor-zone or 

outdoor-zone. Then, an energy trade-off problem is formulated 

to maximize the throughput for the hybrid backscatter com- 
munications. In [7], the time trade-off between the harvest- 

then-transmit and backscatter processes for an RF-powered 

backscatter CRN was studied. The numerical results demon- 
strate that the integration of ambient backscatter technique into 

RF-powered CRNs always achieves the higher transmission 
rate than that of using either the ambient backscatter commu- 
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Fig. 1: System model. 

 
 

nication or the harvest-then-transmit scheme alone. 

For RF-powered CRN with ABC, the optimal decision of 

ST on when to backscatter, when to harvest, when to transmit 

has to account for the dynamics of primary channel state, 

energy/battery status, data to be transmitted. Unfortunately, 

these dynamics are either not readily available at a ST or 

probability, may not be available in advance. Therefore, in the 

following, we introduce an online learning algorithm that can 

help the ST make the optimal decisions without requiring the 

complete environment parameters. 

 
III. PROBLEM FORMULATION 

A. MDP Description 

We define the state space of the ST as follows: 
{ 

difficult to be predicted. In this paper, we develop a low- 

complexity online reinforcement learning algorithm to deal 
S =   (C, D, E); C ∈ {0, 1}, D ∈ {0, . . . , d, . . . , D}, 

} 
 

(1) 

with these dynamics of the environment and aim to maximize 

the ST’s throughput. Specifically, we first formulate the opti- 

mal decision problem for the ST as a Markov decision process. 

We then develop an online learning algorithm which enables 

the ST to find the optimal policy through “learning” from its 

interactions with the environment. Through simulation results, 

we demonstrate that our proposed learning algorithm achieves 

the best performance compared to existing methods and close 

to that of the optimal solution achieved when all environment 

information is known in advance. 

 
II. SYSTEM MODEL 

Consider a primary system and a secondary system coex- 

isting in an area as shown in Fig. 1. The secondary system 

consists of a secondary transmitter (ST) which wants to trans- 

mit data to its secondary receiver (SR). The ST is equipped 

E ∈ {0, . . . , e, . . . , E} , 

where c ∈ C represents the state of the primary channel, i.e., 
c = 1 when the primary channel is busy and c = 0 otherwise, 

d ∈ D and e ∈ E represent the number of data units in the data 
queue and the energy units in the energy storage of the ST, 
respectively. Then, we define the state of the ST as a 3-tuple 

s = (c, d, e) ∈ S, where c, d and e are the channel state, the 
data state, and the energy state, respectively. As mentioned, the 
ST can choose one of four actions, i.e., harvest energy, transmit 
data, backscatter data, or stay idle, to perform. Therefore, we 
define the action space of the ST as follows: 

A � {a : a ∈ {1, . . . , 4}}, (2) 

where 
 
1,   when the ST stays idle,  
2,   when the ST transmits data, 

with RF energy harvesting and ambient backscatter circuits. 
While the primary channel is busy, the ABC allows the ST 

to either harvest energy from the primary signals (to store in 

a = 
3,   when the ST harvests energy, 

 
4,   when the ST backscatters data. 

(3) 

its energy storage) or backscatter the signals to transmit data 

as shown in Fig. 1(a). In contrast, while the channel is idle, 

i.e., Fig. 1(b), the ST can actively transmit data to its SR by 

using the energy in its energy storage. Let E and D be the 

maximum energy storage capacity and maximum data queue 

Moreover, when the ST is in state s, its action space is denoted 

by As. Note that As consists of feasible actions that do not 

lead a transition to an unreachable state. Therefore, As can be 
defined as follows:    

1}, if c = 0 and d < dt 

size of the ST, respectively. In each time slot, a packet arriving 

at the data queue with probability α. The probability of the 

primary channel being idle is denoted by η. When the channel 

 { 
 

 

OR c = 0 and e < et 

OR c = 1, e = E and d < db, 

is busy and the ST performs backscattering, i.e., backscatter 

policy, the ST can transmit db data units successfully with 

probability β. However, if the ST chooses to harvest energy in 

the busy period, it can harvest eh units of energy successfully 

As = {1, 2},   if c = 0, d ≥ dt  and e ≥ et, 
  {3}, if c = 1, d < db  and e < E, 
  {4}, if c = 1, d ≥ db and e = E, 
 
{3, 4},   if c = 1, d ≥ db  and e < E. 

(4) 

with probability γ. When the channel becomes idle, the ST 

can use et units of energy to successfully transmit dt data 

units to its receiver with probability σ. This process is also 

known as harvest-then-transmit (HTT) mode [9]. Note that 

our proposed system model can be straightforwardly extended 

to multiple STs that operate on different primary channels 

to avoid collision. In the proposed system, two successive 

working periods of the PT, i.e., idle and busy, are taken into 

account. As mentioned, the ST can choose to harvest energy 

or backscatter data in busy periods, and actively transmit data 

The first condition refers to the case when the primary channel 

is idle and there is not enough data, e.g., no data, or insufficient 

energy for active transmission. This condition also applies to 

a special case when the energy storage is full, the primary 

channel is busy, and the number of data units in the no data 

for backscattering. Thus, the ST can only select to stay idle, 

i.e., a = 1. The second condition corresponds to the case 

in which the primary channel is idle and there are data and 

sufficient energy to perform active transmission. When the 

primary channel is busy, if there is not enough data, e.g., no 



 

data, for backscattering, and the energy storage is not full, 

the ST will choose to harvest energy, i.e., the third condition. 

Otherwise, if there is data to backscatter, the ST can choose 

to backscatter data or harvest energy if the energy storage is 

not full, i.e., the fourth and fifth conditions. 

When the ST successfully transmits or backscatters data 
to its receiver, it will receive an immediate reward, i.e., 

throughput T , denoted as follows: 

 σdt, (a = 2), 

where sk is  the state of the  ST  at  time  step  k.  EΘ[·]  is 
the expectation of the throughput. Then, we make following 
assumptions: 

Assumption 1. There exists a recurrent state s∗ which is 

visited by the online learning algorithm for each of the Markov 

chain, and this Markov chain needs to be aperiodic. 

Assumption 1 ensures that the considered system has a 

Markov property. Additionally, we have the following balance 

equations: 
T (s, a) = βdb,  (a = 4), 

 0, otherwise. 
(5) ∑ 

πΘ(s) = 1 and 
∑ 
πΘ(s)PΘ(s, s′) = πΘ(s′), ∀s′ ∈ S, 

When all environment parameters, e.g., channel idle prob- s∈S s∈S 
(11) 

ability and successful data transmission, are known, we can 
derive the transition probability matrix for the MDP and use 

conventional algorithms [8], e.g., value iteration algorithm, 

to obtain the optimal policy for the ST. However, in prac- 

tice, some environment parameters may not be available in 

advice. As a result, we are unable to derive the transition 

probability matrix for the MDP. In the following, we propose 

the reinforcement online learning algorithm to resolve this 

issue. The optimal policy obtained by the MDP using value 

iteration algorithm will be used as a benchmark to evaluate 

the performance of the proposed solution. 

where πΘ(s) is the steady-state probability of state s under 

the parameter vector Θ. With (10) and (11), we can express 

the parameterized average throughput as follows: 

ξ(Θ) = 
∑ 

πΘ(s)TΘ(s). (12) 

s∈S 

We aim to maximize ξ(Θ) given the parameter vector Θ. 

 

C. Policy Gradient Method 

We define the differential throughput d(s, Θ) at state s as 

follows: 
B. Parameterization for the MDP 

We consider a randomized parameterized policy [10] with 

softmax action selection rules [11] to find decisions for the ST. 

With the randomized parameterized policy, the ST will choose 

 
d(s, Θ) = EΘ 

[
T −1 

]
 

∑ 
(TΘ(sk ) − ξ(Θ)) |s0 = s 

k=0 

 
, (13) 

action a at state s with the normalized probability as follows: 

exp 
(
θs,a

)
 

where T = min{k > 0|sk  = s∗} is the first future time 
that the online learning algorithm visits the recurrent state s∗. 
Then, with the differential throughput d(s, Θ), the gradient of 

χΘ(s, a) = ∑ 
a′ ∈A exp 

(
θs,a′ 

) , (6) 
the average throughput ξ(Θ) can be easily derived as stated 

in Proposition 1. 

where Θ = 
[ 

· · · θs,a · · · 
]⊤ 

is the parameter vector of 
the learning algorithm. By interacting with the environment, 

the algorithm  will  update  this  parameter  vector iteratively. 

Furthermore, χΘ(s, a) must not be negative and meets the 

Proposition 1.  Under Assumption 1 and Assumption 2, we 

have 

∇ξ(Θ) = 
∑ 
πΘ(s)

(
∇TΘ(s) + 

∑ 
∇PΘ(s, s′)d(s′, Θ)

)
. 

following constraint: 
∑ 

χΘ(s, a) = 1. (7) 

s∈S s′ ∈S 
(14) 

a∈A 

The parameterized immediate throughput function of the ST 

is then as follows: 

TΘ(s) = 
∑ 

χΘ(s, a)T (s, a), (8) 

a∈A 

where T (s, a) denotes the immediate throughput. Similarly, 
the parameterized transition probability function can also be 
derived as follows: 

PΘ(s, s′) = 
∑ 

χΘ(s, a)Ps,s′ (a), ∀s, s′ ∈ S, (9) 

a∈A 

where Ps,s′ (a) is the transition probability from state s to state 

s′ when action a is taken. After that, the average throughput 

of the ST can be parameterized as follows: 

The proof of Proposition 1 can be found in [10]. In addition, 
we make an assumption as follows: 

Assumption 2. For every  state  s, s′  ∈  S,  the  immedi- 
ate throughput function TΘ(s) and the transition probability 
function PΘ(s, s′) satisfy the following conditions: (1) twice 
differentiable and (2) the first and second derivatives are 

bounded. 

Assumption 2 ensures that the average throughput is well 

defined for every Θ and does not depend on the initial state. 

 

D. Idealized Gradient Algorithm 

As stated in [12], the idealized gradient algorithm is formu- 

lated through Proposition 1 as follows: 

Θk+1 = Θk + ρk ∇ξ(Θk ), (15) 

ξ(Θ) =  lim 

t 

EΘ

[ ∑ 
TΘ(sk )

]
, (10) where ρk is a step size satisfied Assumption 3. 

t→∞ t 
k=0 

1 



Assumption 3. The step size ρk is nonnegative, deterministic, 

and satisfies 

the  ST  chooses  action  a at  state  s based  on  policy  χΘ. 

Then, we introduce Algorithm 1 that updates the parameter 
∞ 
∑ 

ρk = ∞, and 
k=1 

∞ 
∑

(ρk )
2 < ∞. (16) 

k=1 

vector  Θ  at  each  time  it  visits  the  recurrent  state  s∗.  In 
 

 

Algorithm 1 Algorithm to update parameter vector Θ at each 

time it visits the recurrent state s∗
 

Specifically, the step size has to approach to zero when 
the time step approaches to infinity. With the policy gradient 
method, the algorithm will begin with an initial parameter 

vector  Θ0    ∈  R|S|,  and  the  parameter  vector  Θ  will  be 
adjusted  at  each  time  step  by  using  (15).  With  Assump- 
tion 2 and Assumption 3, as stated in [12], it is proved that 

limk→∞ ∇ξ(Θk ) = 0, and thus ξ(Θk ) converges. 

 
E. Learning Algorithm 

 

1:  Inputs: ν, ρm, and Θ0. 
2:  Initialize:  initiate  parameter  vector  Θ0   and  randomly 

select a policy for the ST. 
3:  for k=1 to T do 
4: Update current state s 

5: if sk ≡ s∗ then 

Θm+1 = Θm + ρmFm(Θm, ξ�m), (21) 

km+1 −1 

By calculating the gradient of the function ξ(Θk ) with ξ�m+1 = ξ�m + νρm 
( ) 
T (sk , ak ) − ξ�m  , (22) 

respect to Θ at each time step k, the average throughput ξ(Θk ) 
can be maximized based on the idealized gradient algorithm. 

Nevertheless, the gradient of the average throughput ξ(Θk ) 

 
 

where 

′ ′ 

k′ =km 

 

 
km+1 −1 

may not be exactly calculated if the size of the state space S is 
∑  

q (s  , a 
) 
∇χΘm (sk′ , ak′ ) 

very large. Therefore, the proposed online learning algorithm 

adopts an approach that can estimate the gradient ξ(Θk ) and 

update the parameter vector Θ at each time step as follows. 

Fm(Θm, ξ�m) =  

k′ =km 

�Θm     k′
 k′ 

Θm (sk′ , ak′ 

, 
) 

(23) 

Under the constraint (7), with 
∑

a∈A χΘ(s, a)  =  1, we qΘm (sk′ , ak′ ) = km+1 −1 ∑ 
( 
T (sk , ak ) − ξ�m 

)
. (24) 

have 
∑

a∈A ∇χΘ(s, a) = 0. Hence, from (8), ∇TΘ(s) can 
be expressed as: 

∇TΘ(s) = 
∑ 

∇χΘ(s, a)T (s, a) 

� 

 
6: m = m + 1 
7: end if 

 

k=k′ 

a∈A 

= 
∑ 

∇χΘ(s, a)(T (s, a) − ξ(Θ)). 

a∈A 

In addition, for all s ∈ S, we have: 

∇PΘ(s, s′)d(a′, Θ) = 

s′ ∈S 

∇χΘ(s, a)Pa(s, s′)d(s′, Θ). 
s′ ∈S a∈A 

(17) 

 

 

 

 

 
(18) 

8: Update ρm 

9:  end for 

10:  Outputs: The optimal value of Θ 
 

 

 
Algorithm 1, the step size ρm satisfies Assumption 3 and ν is 
a positive constant. The gradient of the randomized parame- 

terized policy function in (6) is derived as ∇χΘm (sk′ , ak′ ). 

Additionally, Fm(Θm, ξ�m) is the estimated gradient of the 
average throughput calculated by the cumulative sum of the 

Then, under  Proposition  1, the gradient  of  ξ(Θ) can  be 

expressed as follows: 

∇ξ(Θ) = 
∑ 
πΘ(s)

(
∇TΘ(s) + 

∑ 
∇PΘ(s, s′)d(s′, Θ)

)
 

total estimated gradient of the average throughput between the 
m-th and (m + 1)-th visits of the algorithm to the recurrent 

state s∗. Through Algorithm 1, the parameter vector Θ and 

the estimated average throughput ξ� are adjusted iteratively. 

s∈S s′ ∈S 
Then, the convergence result of Algorithm 1 is derived as in 
Proposition 2. 

= 
∑ 

πΘ(s)
( ∑ 

∇χΘ(s, a)
(
T (s, a) − ξ(Θ)

)
 

s∈S a∈A Proposition 2.  Under Assumption 1-3, let (Θ0, Θ1, . . . , Θ∞) be a sequence of the parameter vectors generated by Algo- 

+ 
∑ ∑ 

∇χΘ(s, a)Pa(s, s′)d(s′, Θ)
)
 

s′ ∈S a∈A 
rithm 1. Then, ξ(Θm ) converges and 

= 
∑ ∑ 

πΘ(s)∇χΘ(s, a)qΘ(s, a), 

s∈S a∈A 

 

(19) 

 

with probability one. 

lim 
m→∞ 

∇ξ(Θm) = 0, (25) 

where 
) The   proof   of   Proposition   2   can   be   found   in   [10] 

qΘ(s, a) = 
(
T (s, a) − ξ(Θ) 

[ 
T −1 

+ 
∑ 

Pa(s, s′)d(s′, Θ) 
s′ ∈S 

] 

and [12]. Specifically, based on the stochastic approximation 

method [13], it is proved that ξ(Θ) and ξ�(Θ) converge to a 
common limit. Then, the process of updating the parameter 

= EΘ 

∑ (
T (sk , ak ) − ξ(Θ)

)
|s0 = s, a0 = a . 

k=0 

vector Θ can be expressed as a gradient method with dimin- 

ishing errors, thereby we can prove that ∇ξ(Θm) converges 
(20) 

Here T = min{k > 0|sk = s∗} is the first future time that 
to 0, i.e., ∇Θξ(Θ∞) = 0. 

With   Algorithm   1,   we   need   to   store   all   values   of the learning algorithm visits the recurrent state s∗. In addition, ∇χΘm (sk,ak )  and qΘ k k
 

χΘm (sk,ak ) � m (s , a ) between the m-th and (m + 1)- 

qΘ(s, a) can be expressed as the differential throughput if th visits in order to update the values of the parameter vector 

∑ 

∑ ∑ 

∑ 

χ 



onverges to 0.68 after 105  iterations. 
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, k = km, 

zk + ∇χΘm (sk ,ak ) 

   k 

, if s 

Θ. This may lead to  a  slow  processing  especially  when 

the size of the state space S is large. To deal with this 
shortcoming, the Algorithm 1 is modified to be able to update 
parameter vectors iteratively with simple calculations. First, 

we reformulate Fm(Θm, ξ�m) as follows: 

data with probability 0.9. When the channel is idle and if 

the ST wants to transmit data actively, the ST requires one 

unit of energy to transmit two units of data. The successful 

data transmission probability when the channel is idle is also 

assumed to be 0.9. The maximum data size and the energy 

storage capacity are set to be 10 units. Unless otherwise stated, 
Fm(Θm, ξ�m) = 

km+1 −1 
∑ � (sk′ , ak′ ) 

∇
 (sk′ , ak′ ) the idle channel probability and the packet arrival probability 

are 0.5. For the learning algorithm, i.e., Algorithm 2, we use 
 

km+1 −1 

k′ =km qΘm 

 
km+1 −1 

χΘm (sk′ , ak′ ) 
the following parameters for the performance evaluation. At 

the beginning, the ST will start with a randomized policy, 

= 
∑ 

k′ =km 

km+1 −1 

∇χΘm (sk′ , ak′ ) 
χΘm (sk′ , ak′ ) 

∑ 

 
k=k′ 

(
T (sk , ak ) − ξ�m

)
 (26) i.e., stay idle or transmit data if the primary channel is idle, 

and harvest energy or backscatter data otherwise. We set the 

initial  value  of  ρ =  0.00001  and  it  will  be  updated  after 

= 
∑ 

k′ =km 

(
T (sk , ak ) − ξ�m

)
zk+1, every 18,000 iterations as follows: ρk+1 = 0.9ρk . We also set 

ν = 0.01. To evaluate the proposed solution, we compare its 

where 

 
zk+1 = 

 
{  

∇χΘm (sk,ak ) if
 

χΘm (sk,ak ) 

χΘm (sk,ak ) 
,  k = km + 1, . . . , km+1 − 1. 

(27) 

performance with three other schemes, i.e., optimal policy [8], 

HTT policy [9], and backscatter policy [2]. The optimal 

policy is obtained through using the value iteration algorithm 
when all environment information is available  in  advance. 

The optimal policy will be used as a benchmark to evaluate 

the performance of the proposed learning algorithm when the 
Then,  the  algorithm  now  can  be  expressed  as  in  Algo- 

rithm 2, where ν is a positive constant and ρk is the step size of 

the algorithm. Instead of calculating the value of 
∇χΘk 

(sk,ak )
 

χΘk (sk,ak ) 

 
 

Algorithm 2 Algorithm to update Θ at every time step 
 

 

1:  Inputs: ν, ρk , and Θ0. 
2:  Initialize:  initiate  parameter  vector  Θ0   and  randomly 

select a initial policy for the ST. 
3:  for k=1 to T do 

4: Update current state sk 

5: 

environment information is not available in advance. 

 
B. Numerical Results 

1) Convergence of the learning algorithm: We first show 

the learning process and the convergence of the proposed 

algorithm. As shown in Fig. 2, the performance of the ST 

is fluctuated in the first 4,000 iterations as the ST is still 

learning to adjust the parameter Θ. After that, the learning 

process begins to stabilize, and then the average throughput 

c 

 

zk+1 =  
∇χΘk (sk,ak ) 

χΘk (sk,ak ) k 
χΘk (sk,ak ) 

= s∗,  
(28) 

z  + 
∇ 

, 
χΘk (sk,ak ) 

otherwise, 

Θk+1 = Θk + ρk (T (sk , ak ) − ξ�k )zk+1, (29) 

ξ�k+1 = ξ�k + νρk (T (sk , ak ) − ξ�k ). (30) 

6: Update ρk 

7:  end for 

8:  Outputs: The optimal value of Θ 
 

 

directly, we can use some mathematical manipulation to 

transform it into an equivalent form by 1 − χΘ(s, a). Thus, 
at each computing step, the ST just needs to perform basic 
calculations without any complex functions, thereby the online 
learning algorithm can be efficiently implemented on power- 
constrained devices. 

 
IV. PERFORMANCE EVALUATION 

A. Experiment Setup 

We perform the simulations using MATLAB to evaluate 

the performance of the proposed solution under different 

parameter settings. In particular, when the primary channel is 

busy, we assume that if the secondary transmitter (ST) harvests 

energy, it can successfully harvest one unit of energy with 

probability 0.9. Otherwise, if the ST performs backscattering 

to  transmit  data,  it  can  successfully  transmit  one  unit  of 

 

 

 

 

 

 

 

Fig. 2: The convergence of the learning algorithm. 
 

2) Network performance: Next,  we  perform simulations 

to evaluate the performance of the proposed solution, i.e., 

Algorithm 2, and compare with the  three  other  policies, 

i.e., the optimal, HTT, and backscatter policies, in terms of 

the average throughput, delay, and blocking probability. In 

Figs. 3(a) and 3(b), we show the average throughput of the 

ST obtained by different policies when the idle channel and 

packet arrival probabilities are varied. Obviously, when the 

channel idle probability increases, the average throughput of 

the ST decreases accordingly. However, the learning algorithm 

always achieves the throughput close to that of the optimal 

policy. Note that, when the idle channel probability is low, 

i.e., less than 0.5, the average throughput obtained by HTT 

policy increases. This is from the fact that the ST has higher 

opportunities to transmit data as the primary channel is likely 

to be idle. Nonetheless, when the idle channel probability is 
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probability increases, the average number  of  data  units  in 

the data  queue  and  the  blocking  probability  also  increase. 

This is due to the fact that the ST has less opportunities to 

backscatter data and does not have sufficient energy to transmit 

data to its receiver as the primary channel is likely to be idle. 

However, the proposed learning algorithm always achieves the 

performance close to that of the optimal policy. 
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V. SUMMARY 

In this paper, we have considered the RF-powered backscat- 

ter cognitive radio network in which the secondary transmitter 

is equipped with wireless energy harvesting and backscattering 

capabilities. In this network, the secondary transmitter can 
0.7 
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HTT policy 
Backscatter policy harvest energy or backscatter data to its receiver when the 

channel is busy. To maximize the network throughput, we pro- 

pose an online learning algorithm that enables the secondary 

transmitter to adjust its decision to obtain the optimal policy by 

interacting with the environment. Through numerical results, 

we have demonstrated that the proposed solution can achieve 
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Packet arrival probability 

(b) Packet arrival probability is varied 

Fig. 3: The average throughput of the ST. 
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Optimal policy 

much higher throughout than the conventional methods and 
close  to  that  of  the  optimal  policy  without  requiring  the 

complete information from the environment in advance. 
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high, i.e., higher than 0.6, the throughput obtained by HTT 

policy decreases as the ST has little time to harvest energy 

for data transmission process. Similarly, in Fig. 3(b), the 

throughputs of all the policies increase when the packet arrival 

probability increases.  When  the  packet  arrival  probability 

is higher than 0.4, the optimal policy achieves the highest 

throughput followed by the learning algorithm. 

We then investigate the blocking probability and delay of 

all policies as shown in Fig. 4. Clearly, when the idle channel 
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