
 

 

Towards visual feedback loops for robot-controlled 

additive manufacturing 

Abstract. Robotic additive manufacturing methods have enabled the design and 

fabrication of novel forms and material systems that represent an important step 

forward for architectural fabrication. However, a common problem in additive 

manufacturing is to predict and incorporate the dynamic behavior of the materi-

al that is the result of the complex confluence of forces and material properties 

that occur during fabrication. While there have been some approaches towards 

verification systems, to date most robotic additive manufacturing processes lack 

verification to ensure deposition accuracy. Inaccuracies, or in some instances 

critical errors, can occur due to robot dynamics, material self-deflection, mate-

rial coiling, or timing shifts in the case of multi-material prints. This paper ad-

dresses that gap by presenting an approach that uses vision-based sensing sys-

tems to assist robotic additive manufacturing processes. Using online image 

analysis techniques, occupancy maps can be created and updated during the 

fabrication process to document the actual position of the previously deposited 

material. This development is an intermediary step towards closed-loop robotic 

control systems that combine workspace sensing capabilities with decision-

making algorithms to adjust toolpaths to correct for errors or inaccuracies if 

necessary. The occupancy grid map provides a complete representation of the 

print that can be analyzed to determine various key aspects, such as, print quali-

ty, extrusion diameter, adhesion between printed parts, and intersections within 

the meshes. This valuable quantitative information regarding system robustness 

can be used to influence the system’s future actions. This approach will help 

ensure consistent print quality and sound tectonics in robotic additive manufac-

turing processes, improving on current techniques and extending the possibili-

ties of robotic fabrication in architecture. 
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1 Introduction 

With the advent of new, robotically enabled fabrication methods comes the ability to 

design new materials and geometries with new functionalities. Additive manufactur-

ing methods have been rapidly developed for several new materials from the starting 

point of thermoplastics to silicones (Rodrigue et al. 2015), concrete (Lloret et al. 

2015), and hydrogels (Barry et al. 2009), and many more. Approaches to robotic 3D 

printing have also started to go beyond in-plane, 2D layer-based methods towards 

freeform 3D material depositions (Hack and Lauer 2014; Laarman et al. 2014; Soler 

et al. 2017). These advancements bring about the ability to design not only novel 

forms, but also new performative material systems that produce variations according 

to local stresses or to respond to environmental conditions. These new material sys-

tems are possible in mono-material additive manufacturing and their potentials are 

greatly expanded with a move towards multi-material 3D printing. However, to fully 

leverage these functional capacities, a greater control of the material deposition is 

required. 

Additive manufacturing processes comprise a complex ecology of interactions be-

tween a diverse set of parameters, including, but are not limited to the rheological 

characteristics of the material, the rate of material flow from the extrusion nozzle, the 

rate of cooling or curing of the material, and the structural capacities of the pre-cooled 

or -cured material as additional material is deposited. The complexity and non-linear 

interactions of these parameters make it difficult to predict and ensure the accurate 

deposition of material during the 3D printing process without extensive and computa-

tionally intensive simulations of the entire process prior to commencing the print. 

In order to accommodate some of these parameters and overcome the challenges 

several researchers have taken an open-loop approach of explicit tool-pathing and 

control of the robotic processes. Hack et al. (2013) implemented a series of explicit 

robot motions including amplifying the z-direction movements, short stops for cool-

ing, and air pressure changes to increase the level of control and predictability over 

the material behavior. McGee et al. (2017) implemented an explicit “pressing” motion 

path with additional tolerances embedded within it to ensure fully-fused joints be-

tween all 3D printed connections in a tensile mesh. 

 Approaches to robotic systems can be divided into two categories; open-loop sys-
tems and closed-loop systems (Vidal-Calleja et al. 2010). To a large extent, open-loop 

systems are the predominantly used approach in the field of architecture and design. 

As an alternative to the previously described open-loop approaches, there exists an 

opportunity to equip the robotic system itself with sensing capabilities and decision-

making agency (Paul et al. 2009) to ascertain the accuracy of previously deposited 

material and adjust future toolpaths (Paul et al. 2015). Research suggests that closed-

loop systems, are critical to the success of robotic fabrication processes in which the 

material does not behave predictably or in situations where conditions can change or 

lead to inaccuracies (Giftthaler et al. 2017). In robotic additive manufacturing pro-

cesses, surveying the position of the previously deposited material, would give the 

system agency to take corrective action to these inaccuracies by recalibrating robot 
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trajectories and accurately executing tectonic motion paths like the pressing motion 

developed previously. 
 Vision-based feedback systems are generally classified depending on the number 

of cameras, the position of the camera with respect to the robot or the design of the 

error minimization function used to control the robot (Hutchinson et al. 1996). When 

considering the position of the camera, two main configurations exist; end-effector 

mounted (eye-in-hand) or fixed in the workspace (bird’s eye). Feedback approaches 
are further classified into position based, image based, hybrid based and motion-based 

feedback systems. In a position-based feedback system, the online analysis of the 

scene is performed in what is referred to as the task space, whereby image infor-

mation is used to reconstruct or map the scene via the a priori calibrated camera mod-

el (Zhang 1999). This provides geometric information of the scene in the industrial 

robot’s base coordinates. 
To leverage geometric information of the scene, metric maps are utilized to build 

accurate representations of the environment. An algorithm proposed by Elfes (1989) 

and Moravec (1988) known as Occupancy Grid (OG) mapping, utilizes grids to model 

the environment’s free and occupied space. In 3D grid map representations, tech-

niques such as voxel hashing and octrees discretize space into voxels. Each voxel 

possesses a position in space and a probability of occupancy; occupied, free-space or 
unknown (Paul et al. 2015). It is common to combine probabilistic approaches in 

conjunction with mapping methods as sensors are subject to measurement noise. Al-

gorithms such as extended Kalman filters, Bayesian filters, and particle filters have 

been widely explored to provide improved state estimates (Thrun et al. 2005). 

This paper proposes a framework for online visual-feedback in robotic additive 

manufacturing processes (shown in Fig. 2) via image analysis and probabilistic OG-

maps (Elfes 1989). The framework sequentially takes an image as its input, segments 

the current area, utilizes the a priori calibrated camera model to build a map in task 

space and probabilistically fuses the information into an overall OG map of the print-

ed areas.  

2 Methodology 

The research described here seeks to verify the accuracy of previously deposited ma-

terial during additive manufacturing processes. The design process generates a set of 

task space waypoints for the Tool Center Point (TCP) to track. The robot is controlled 

so that it tracks the trajectory while images are acquired via a calibrated camera. As 

shown in Fig. 4, gathered images are processed such that the deposited material is 

segmented from the background. The classified images are transformed into task 

space, and sequentially fused into a probabilistic OG map. 
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Fig. 1. UR10 robot with wrist-mounted filament extruder system, Point Grey Blackfly RGB 

camera and heat bed (in blue) while printing part B30. 

 

 

Fig. 2. Overview of the proposed robot control and mapping framework for closed-loop addi-

tive manufacturing processes. 

2.1 Robot Eye-to-Extruder Calibration 

The eye-in-hand configuration proposed in this work possesses a camera located on 

the filament extruder system as shown in Fig. 1. As the TCP moves through a given 

trajectory, the images gathered from the camera are unable to be related unless the 

transformation between the camera and robot base is known. 

Accurate geometric information of the environment obtained from the camera re-

quires two types of calibration, intrinsic and extrinsic. Intrinsic calibration determines 

the intrinsic matrix that represents the projective transformation from the 3D camera 

coordinate system into a 2D image coordinate system. This calibration utilizes the 

perspective projection camera model and procedure proposed by Zhang (1999) and 
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implemented by Bouguet (2000). Extrinsic calibration is used to determine the cam-

era’s pose (i.e. rotation and translation) in a defined coordinate system, or robot base, 

𝑇0
𝑐. 

Hand-eye calibration is the process that ascertains the camera coordinate system 

relative to the reference frame of the robot’s TCP. Well-known approaches can be 

based on determining the rotation and translation consecutively (Daniilidis 1999), 

simultaneously (Strobl and Hirzinger 2006), or considering time-offsets (Furrer et al. 

2018). 

The hand-eye calibration implemented in this work requires a set of known points, 

𝑃 ∈ R𝟛, defined in robot base coordinates and corresponding points defined in camera 

coordinates. Determining the rotation and translation can be formulated as an optimi-

zation problem. As shown in Fig. 3, a calibration target with known dimensions is 

needed to obtain the 3D points in camera coordinates from the points in the 2D image. 

To recover the points defined in camera coordinates requires 𝑃 to be visible from 

known camera location. 

Given the homogeneous transformation describing the base location, 𝑇0
𝑏 of the 6 

degree-of-freedom robot with joint angles as a vector, 𝐪 = [𝑞1, … 𝑞6]𝑇, the last link 

location can be computed using forward kinematics, 𝑇𝑏
𝑓(𝐪). Consequently, the addi-

tion of an end-effector, i.e. the extruder system, requires a known transformation of 

the TCP relative to the last link, 𝑇
𝑓

𝑛. Thus, it is possible to determine the location of 

the TCP relative to the base location of the robot using, 0𝑇𝑛(𝐪) = 0 𝑇𝑏
𝑏

𝑇𝑓(𝐪)𝑓𝑇𝑛. 

Moving the TCP to 𝑃, yields a series of known transformations in robot base coordi-

nates.  

The translation is the difference between the two sets of points and incorporates the 

optimal rotation obtained via singular-value decomposition. Given 𝑇0
𝑛(𝐪)  and the 

calculated transformation 𝑇0
𝑐, the camera relative to the TCP, 𝑇𝑛

𝑐, can be obtained. 

 

 

Fig. 3. Eye-in-hand calibration to determine the extrinsic calibration of a camera so the pixels 

in the camera coordinate frame can be transformed to world or robot base coordinate frame.  
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2.2 Deposited Material Segmentation via Image Processing 

 

To segment the image into deposited material and background, the image undergoes a 

series of image processing steps. Initially, the image undergoes a color space 

conversion. Since the RGB color space suffers from variations in light intensity, the 

HSV color space is used as data represented in HSV is less susceptible to these 

changes. A threshold is applied to the image, then normalized to effectively occupy its 

range of pixel intensity values. Median filtering is applied to the image to remove 

noise from normalization. The image is then converted to a binary representation and 

undergoes median filtering again to remove noise that may have been a product of 

conversion.  

The output of the process is a segmented image that categorizes the original values 

from the data into deposited material or background, ultimately represented as a 

binary matrix. This output is then fused into one probability map for further analysis 

asdiscussed in the next section. 

 

  

Fig. 4. Image processing procedure, takes in color images, processes them and then outputs the 

classified deposited material and background. 

2.3 Deposited Material Segmentation via Image Processing 

Mapping in robotics is the process of building a representation of the environment, 

commonly based on sensors. Given the intrinsic calibration and transformation, 0Tc 

(Sect. 2.1), images can be sequentially fused over time to infer whether a location in 

task space is occupied by deposited material. A Deposited Material Occupancy Map 

(DMOM) is used to represent the printed space.  

The images obtained for fusion are a mapping of 3D points to a 2D surface, form-

ing a 2D representation of the environment. Since this process involves the loss of 

depth information, depth to the printing surface can be obtained as the camera pose is 

known. Extending this approach to 3D map representations like octrees can be 

achieved using the method described by Paul et al. (2015).  

The Occupancy Grid (OG) mapping method addresses the problem of generating a 

consistent map from noisy or incomplete sensor data and possesses potential use for 

data fusion (Stepan et al. 2005). As the eye-in-hand configuration limits the field of 

view of the camera, the probabilistic nature of OG mapping allows the images cap-

tured to be fused. Each grid cell in the OG map, DMOM in this case, is individually 

treated as having a mutually-exclusive probability of existence of deposited material. 

Since there is overlap in the data observed by the camera, the certainty of deposited 

material occupying a grid cell is dependent on whether deposited material is observed 
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at a location, and the frequency it appears at that location. The probability is updated 

using a Bayes update (Thrun et al. 2005), where higher trust is given to more recent 

measurements. The probability that a grid cell is occupied is independent of the loca-

tion of the image pixel and distance from the camera. Due to this independence, it is 

assumed that at each point that is classified, regardless if it contains deposited materi-

al or not, is equally trustworthy. 

3 Experiment setup 

The approach is tested in a pilot study towards the production of a site specific, par-

tially dynamic tensile surface installation covering over 25m2 as shown in Fig. 5. The 

installation was designed and simulated using the Kangaroo Physics plug-in for 

Grasshopper, developed by Piker (2013). The overall form of the installation is divid-

ed into 59 panels to facilitate the printing of each panel within the reach of the robot. 

 

Fig. 5. Detail of robotic 3D printed functionally graded net installed on site 

The topology of the tensile mesh is functionally graded to respond to the simulated 

differences in tension forces across the surface. By employing a bespoke computa-

tional method, the resulting graded mesh is flattened to embed the 3D geometry with-

in the 2D pattern for printing McGee et al. (2017).  

3.1 Physical Hardware Setup 

To facilitate the manufacturing of the tensile meshes, a custom work cell was con-

structed. The setup consists of a Universal Robot (UR10) robot mounted to a frame 

housing a custom heat bed measuring 1:2m2. The extruder end-effector consists of a 

stepper motor that feeds filament to the nozzle, where it is melted by two heat car-

tridges embedded in the nozzle, with a thermocouple for temperature regulation. 

A downward-facing global shutter Point Grey Blackfly RGB camera is mounted to 

the extruder. The resolution of the camera is 648 × 488 pixels, which results in an 
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area of 138 × 104 mm when the print nozzle is in contact with the heat bed. The offset 

position of the camera relative to the TCP,  𝑇𝑛
𝑐 was estimated as [−43, −72, 187] 

mm. 

3.2 Software 

The toolpaths are developed from the form-found digital mesh output from the Kan-

garoo physics system. These meshes are translated into the final, continuous line tool-

paths through a series of scripts which eliminate odd-valence vertices by replacing 

each edge in the mesh with a vertex, making connections between the mesh faces that 

share the original edge, a process which always results in an even-valence at the new 

vertices. The toolpaths are also constructed to ensure that the order of lines produces 

full cross over joints at each intersection for improved structural performance, rather 

than joints where the two polyline segments attempt to meet at a point which are fail-

ure prone. 

The UR10 toolpath for each panel is initially solved through Robots Grasshopper 

plug-in. A list of target joint angles and their corresponding TCP locations are pro-

duced from the plug-in and passed to ROS to communicate with the robot. Addition-

ally, the commands are distributed through ROS to overcome the limited number of 

points that can be sent through the Grasshopper plug-in. ROS enables the state of the 

hardware to be queried at 125 Hz providing a means to have positional feedback, 

whilst the images are acquired at 7 Hz and processed in MATLAB 

 

3.3 Measurement Test using Generated Map 

To test the validity of the map, quality experiments have been conducted including: 

intersection detection, filament thickness, and alignment assurance.  

The detection of intersections between lines is necessary so that the additional 

“pressing” process can occur to create structurally sound joints at each crossing. To 

perform intersection detection, a point in the image is found and denoted as the start 

of the line. From this point, a series of smaller image segments are generated in order 

to locate the lines in 3D space. The result is a vector between a start and end point that 

can be iteratively checked to determine if there are intersections with any of the pre-

vious lines found before. 

The thickness of the extruded filament affects the strength of the overall print, and 

should remain consistent throughout the print. However, unintended variances can 

occur due to issues with extruder speed or filament feed, heating element inconsisten-

cy, or imperfections in the original filament. The map can hence be analyzed to check 

that the extruded filament line width is within expected tolerances. 

During the printing process, it is possible that the extruded filament fails to fully 

adhere to the heat bed surface, resulting in misaligned or otherwise incorrect geome-

tries. To detect if there are any misalignment issues and to incorporate quality control, 

the map can be compared against the expected location of the print in the map. If 
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there are large variances, particularly global orientation differences, then it is likely 

there is an alignment issue and the print should be aborted and the user notified. 

4 Results 

Several experiments have been conducted to collect data during the printing process. 

The intersection points are taken from the geometry generation process and form the 

baseline ground truth from which the observed intersection points can be compared. 

Varying illumination sources on the printed filament and background presented chal-

lenging conditions for developing a robust method of detection. Two image segmen-

tation results are shown in Fig. 6. The lighting in the room was a mixture of natural 

and artificial light that was not specifically controlled.  

The proposed approach demonstrates the segmentation of RGB images into binary 

representations of deposited material and printing surface. However, it has been 

shown that the process is unable to distinguish between the current print and residual 

filament from previous prints due to similarities in color properties. Noise from vary-

ing illumination sources challenges the robustness of the image processing procedure. 

Thus, probabilistic fusion during map generation allows each pixel to possess a better 

estimate of the state (as areas of the print are observed multiple times). 

      

 

Fig. 6. Given two input images of deposited materials: cream-colored and red with varying 

lighting conditions on the background, the image processing results are shown. 

A series of images shown in Fig. 7 demonstrate the progression of the print based 

upon the observed data fused by using the Bayes update. Each grid cell in the DMOM 

represents 0.2132 mm2, with each possessing an intensity ranging from a maximum 

value of 1 (white) and a minimum value of 0 (black), and the initial state and final 

state of unseen grid cells possess a value of 0.5 (gray). The DMOM after 35 min of 

printing and 1575 processed images is shown in Fig. 7. As more images are fused, the 

certainty about the existence of printed material at that location is increased, converg-

ing upon known to be empty (i.e. a value of 0), or known to be occupied (i.e. a value 

of 1). 

The printed piece shown in Fig. 8 contains a total of 466 intersections, with 

15.88% of the intersections considered as unseen due to the trajectory, 5.15% of the 

intersections considered as unseen due to misalignment and 7.73% of the intersections 

considered as seen, although incorrectly mapped. Since the eye-in-hand configuration 

relies on the given trajectory to observe the print, Fig. 8 illustrates an incomplete 

DMOM shown with missing, incorrect and misaligned intersection points, due to 

incorrect mapping and unobserved locations. 
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The average thickness of the print is determined using the probabilistic OG map. A 

set of print thicknesses were obtained by randomly sampling 30 locations of the print, 

then measuring the thickness. The average thickness is 9.03 grid cells with a standard 

deviation of 1.20 grid cells, translating to 1.93 mm and 0.26 mm respectively.  

Applying a binary classification test, the statistical measures of performance: accu-

racy, sensitivity, and specificity are obtained by comparing the classified pixels to the 

ground truth. A true (or false) positive occurs when a grid cell is correctly (or incor-

rectly) identified as containing; a true (or false) negative occurs when a grid cell is 

correctly (or incorrectly) identified as not containing deposited material. The accuracy 

of the print is 91.8%, indicating a high percentage of correctly classified grid cells. 

The sensitivity (40.2%) indicates a relatively weak ability to correctly identify grid 

cells that contain deposited material, and the specificity is 95.8% which indicates a 

strong ability to identify grid cells that are free of deposited material. 

 

Fig. 7. Part A28. Results of a series of extrusion classifications as they are fused together into 

the task space DMOM. (Left) Detail of DMOM resolution. (Right, Top row from left) After 

225 images and 5 min of printing; After 450 images and 10 min of printing; After 900 images 

and 20 min printing; (Right, Bottom row from left) After 1350 images and 30 min printing; 

Final DMOM; the actual complete print. 

 

  



11 

 

Fig. 8. (Left) Simulation of the robot with the final DMOM; (Right) Actual photo of final print 

overlaid with top-down view of the DMOM. Red markers indicate unseen intersections due to 

camera field of view and trajectory, blue markers indicate unseen intersections due to misa-

lignment, green markers indicate detected intersections at incorrect locations due to misalign-

ment. 

5 Discussions and Conclusions 

This paper has presented an approach to online feedback using a map-building tech-

nique that utilizes data from the robot and camera. The system probabilistically fuses 

the obtained data to construct an overall map of the print during the additive manufac-

turing process, enabling quality assurance processes to be applied. Throughout the 

research, the team has gained several insights towards this process. First, vibration of 

the extruder and camera system were noted during the extrusion process due to robot 

dynamics. This produces slight inaccuracies and misalignments with the camera’s 

captured images but has no noticeable effect on the print quality. Future work is to 

close the control feedback loop by triggering pre-programmed localized actions, such 

as the pressing motion necessary for the tensile mesh extrusion when the system pre-

dicts an upcoming intersection. 
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