
1

Convergence Acceleration for Multiobjective

Sparse Reconstruction via Knowledge Transfer

1st Bai Yan Institute of Laser Engineering

Beijing University of Technology

Beijing, China

yanbai@emails.bjut.edu.cn

2nd Qi Zhao College of Economics and Management

Beijing University of Technology

Beijing, China

qzhao@emails.bjut.edu.cn

3rd Andrew J. Zhang Global Big Data Technologies Centre

University of Technology Sydney

Sydney, Australia

Andrew.Zhang@uts.edu.au

4th Yonghui Li School of Electrical and Information Engineering

The University of Sydney

Sydney, Australia

yonghui.li@sydney.edu.au

5th Zhihai Wang Key Laboratory of Optoelectronics Technology, Ministry of

Education

Beijing University of Technology

Beijing, China

wangzhihai@bjut.edu.cn

August 13, 2018 DRAFT



2

Abstract

Multiobjective sparse reconstruction (MOSR) methods can potentially obtain superior reconstruction

performance. However, they suffer from high computational cost, especially in high-dimensional recon-

struction. Furthermore, they are generally implemented independently without updating and exploiting

prior knowledge iteratively, leading to unnecessary computational consumption due to the re-exploration

of similar search spaces. To address these problems, we propose a sparse-constraint knowledge transfer

operator to accelerate the convergence of MOSR solvers by exploiting the knowledge from past problem-

solving experiences. Firstly, we introduce the deep nonlinear feature coding method to extract the feature

mapping for the search between the current problem and a previously solved MOSR problem. Through

this mapping, we learn a set of knowledge-induced solutions which contain the search experience for

the past problem. Thereafter, we develop and apply a sparse-constraint strategy to refine these learned

solutions to guarantee their sparse characteristics. Finally, we inject the refined solutions into the iteration

of the current problem to facilitate the convergence. To validate the efficiency of the proposed operator,

comprehensive studies on extensive simulated signal reconstruction are conducted.

Index Terms

Sparse reconstruction, multiobjective evolutionary algorithm, learning, knowledge transfer

I. INTRODUCTION

In the compressed sensing (CS) theory [1][2], a sparse reconstruction problem is often con-

sidered:

min
x
‖x‖0, s.t. b = Ax + e, (1)

where x ∈ <n is a k−sparse signal (i.e., there are k nonzero values (k < n) in the signal),

A ∈ <m×n(m ≤ n) is the measurement matrix, b ∈ <m×1 is the measurement vector, and

e ∈ <m×1 denotes the noise vector.

The problem in (1) can be rewritten as the following unconstrained optimization problem:

arg min
x

λ‖x‖p +
1

2
‖b−Ax‖22, p ∈ [0, 1] (2)

where λ is a pre-chosen positive regularization parameter being introduced to balance the two

conflicting objective terms (the regularization term and measurement error). Unfortunately, there

The work of Bai Yan is supported by the China Scholarship Council under Grant 201706540025.(Corresponding Author: Bai
Yan)
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is no optimal rule for determining λ. Some heuristics methods are used, e.g., the Homotopy

continuation methods [3][4], and the cross validation method [5].

To solve the optimization problem together with selecting an optimal λ, the multiobjective

evolutionary algorithms (MOEAs) [6][7][8] are applied. MOEAs can simultaneously optimize

all the objectives and obtain a number of nondominated solutions (termed as Pareto front, PF).

In this regards, (2) is transformed into a MOSR problem as

f(x) = min
x

(‖x‖0, ‖Ax− b‖22). (3)

The first solver to the MOSR problem is the soft-thresholding evolutionary multiobjective (StEMO)

algorithm [9]. StEMO is based on the NSGA-II framework [7] and it uses the IST method [10]

for local search. It was observed that the knee region can provide the best trade-off solution.

To enhance the reconstruction precision, the LBEA is proposed in [11], which employed the

improved linear Bregman-based local search operator in the differential evolution paradigm

to accelerate the convergence. A two-phase evolutionary approach for sparse reconstruction

is proposed in [12]. In phase 1, the statistical features of the nondominated solutions from

MOEA/D [8] were extracted to generate new solutions. In phase 2, a forward-based selection

method was designed for better locating the nonzero entries. An improved MOEA/D equipped

with sparse preference-based local search, denoted as SPLS, was proposed in [13]. The knee

region was exploited with preference. In [14], we proposed an adaptive decomposition-based

evolutionary approach (ADEA). With the guidance of reference vectors, more search effort on

the approximating knee region was executed by adaptively adding the reference vectors.

Although these MOSR solvers can achieve better reconstruction performance than conventional

algorithms, they suffer from high computational cost, especially in high-dimensional reconstruc-

tion scenarios. When the signal is less sparse or there are fewer measurements, more iterations

are needed and the computational cost is further increased.

In addition, many optimization solvers, including MOSR, are implemented independently with-

out exploiting the previous problem-solving knowledge. This causes unnecessary computational

complexity due to the re-exploration of similar search spaces [15]. In fact, for practical artificial

systems, the problems to be solved are rarely isolated, but may be repetitive or share domain-

specific similarities. Some studies on evolutionary optimizers [16], [17], [18] have demonstrated

the accelerated effect of reusing the prior information. This finding motivates us to exploit the
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solution search knowledge from past solved problems for the MOSR problem, where similarities

to the evolutionary optimizers exist in the problem form and the solution search process.

In this paper, we propose a sparse-constraint knowledge transfer operator to accelerate the

convergence of MOSR solvers by exploiting the knowledge from a previous problem-solving

process. Firstly, we introduce the deep nonlinear feature coding (DNFC) [19] to extract the

feature mapping for the searching process between the current and a previously solved MOSR

problems. Through the mapping, we learn a set of knowledge-induced solutions which provide

the search experience for the past solved problem. We then propose a sparse-constraint strategy

to refine these learned solutions to guarantee their sparsity characteristics. Finally, we inject

the refined solutions into the iteration process for solving the current problem to facilitate the

convergence.

The rest of this paper is organized as follows. Section II gives a brief introduction to the

background techniques. Section III details the proposed sparse-constraint knowledge transfer

operator. In Section IV, the performance of the proposed operator is examined using two baseline

MOSR algorithms StEMO and ADEA. Finally, conclusions are described in Section VI.

II. PRELIMINARIES

This section provides a brief introduction to the maximum mean discrepancy (MMD) [20]

and marginalized denoising autoencoder (mDA) [21], which serve as basic techniques for the

proposed knowledge transfer operator.

A. Maximum Mean Discrepancy

The MMD [20] is a distance estimation method, which measures the discrepancy between two

distributions by comparing the difference of the mean values. Specifically, let Xs = [x1,x2, . . . ,xns ]

and Yt = [y1,y2, . . . ,ynt ] denote the samples of two distributions on a domain χ, and Ω is a

function: χ→ <, then the MMD can be formulated as

‖ 1

ns

ns∑
i=1

Ω(xi)−
1

nt

nt∑
i=1

Ω(yi)‖χ. (4)

Further, the study [22] performed the MMD method in a Reproducing Kernel Hilbert Space

(RKHS) to capture the nonlinear divergence between Xs and Yt. The function Ω is replaced by
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a kernel-induced feature map Φ : χ→ H with K(xi,xj) = Φ(xi)
TΦ(xj) as the kernel of H, (4)

can be written as

‖ 1

ns

ns∑
i=1

Φ(xi)−
1

nt

nt∑
i=1

Φ(yi)‖H. (5)

B. Marginalized Denoising Autoencoder

The mDA [21] aims at learning a linear mapping W to reconstruct the original data from

its corrupted versions. Assume X = [X,X, . . .X] is the union of r-times repeated X =

[x1,x2, . . . ,xnX
];, and X̃ = [X̃1, X̃2, . . . , X̃r] is the combination of different r-times corrupted

versions of X by random feature removal (i.e., each feature of X is corrupted to 0 with probability

p), then the objective function of mDA can be modeled as

minL(W) =
1

2rnX
tr[(X−WX̃)T (X−WX̃)] (6)

where tr(·) is a function to compute the trace of a matrix.

III. MOSR VIA TRANSFER OPERATOR

In this section, we propose a novel sparse-constraint knowledge transfer operator to speed

up the convergence of MOSR solvers. The motivation is that, although SR problems vary

from each other, they are not isolated and may be repetitive or have some domain-specific

similarities. Therefore, we design this operator to reuse the structural knowledge from previous

search experiences, accelerating the convergence.

A. Framework

The workflow of the proposed operator in MOSR solvers is shown in Fig. 1, with the

corresponding pseudo-code provided in Algorithm 1. For convenience, we denote the current

MOSR problem as the target problem and name the previously solved problem which we want

to transfer knowledge from as the source problem. Pt and PSt are the solution sets to the

target and source problems at generation t, respectively, and PStmax is the set of the optimized

solutions to the source problem. As shown in Figure 1, in each iteration of the target problem, the

recombination (i.e., crossover and mutation), local search, and selection steps of MOSR solvers

are firstly executed. Subsequently, the proposed sparse-constraint knowledge transfer operator

is implemented. This operator is depicted in the dotted box of Fig. 1 and detailed in the next

subsection.
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Problem at generation t: Pt
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PSt  

Feature Mapping: W

Knowledge-induced solutions: Zt

Optimized solutions of the 

previously solved problem: 

PStmax 

Sparse constraint: Tt

Transfer 

Knowledge?

Yes

Selection

No

Fig. 1. Workflow of MOSR via knowledge transfer

Algorithm 1: Pseudo-code of MOSR via knowledge transfer
Input: A, b, PS, N
Output: x

1 P0 ← Initialization;
2 while “the stopping criterion is not met” do
3 Qt =Recombination(Pt);
4 Lt =Local Search(Pt ∪Qt);
5 Pt =Selection(Pt ∪Qt ∪ Lt);
6 if “knowledge transfer” then
7 Pt=Sparse-Constraint Knowledge Transfer(Pt,PSt,PStmax);
8 end
9 t = t+ 1;

10 end
11 x←Final Solution Identification(Pt);

B. Sparse-Constraint Knowledge Transfer Operator

In this subsection, we describe the four steps of the sparse-constraint knowledge transfer

operator in detail. The pseudo-code is given in Algorithm 2.

1) Common feature extraction: Common feature extraction aims at finding a “connective

bridge” W for the searching process between the source and target problems. DNFC [19] is

an effective method for domain adaptation, which can minimize the distribution discrepancy

between the source and target domains and provide a closed-form solution. We employ the

single-layer form of DNFC, named NFC, for acquiring the feature mapping matrix W.

The NFC incorporates the MMD (refer to II-A) and nonlinear coding by kernelization into
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Algorithm 2: Sparse-constraint knowledge transfer operator
Input: A, b, Pt,PSt, PStmax , θ
Output: Pt+1

1 /*Common feature extraction*/
2 W = E[R1](E[R2] + θE[R3])−1;
3 /*Acquiremen of knowledge-induced population*/
4 K = Φ(X)TΦ(PStmax);
5 Z = WK;
6 /*Sparse constraint*/
7 for i = 1 : N do
8 supp = {z|(Pt

i)z = 0};

9 [Tt]i,z =

{
[Zt]i,z, z /∈ supp,
0, z ∈ supp.

10 end
11 /*Selection*/
12 Pt+1 =Selection(Pt ∪Tt);

the mDA (refer to II-B), in which the MMD enables the extracted features to have a small

distribution discrepancy while the kernelization ensures the nonlinearity relationship between

the domains to be well exploited. Let X = PSt ∪Pt and its r-times copies X = [X,X, . . .X].

As a function of the feature mapping matrix W, the objective function is formulated as

Γ(W) =tr[(X−WΦ̃(X))T (X−WΦ̃(X))]

+ ‖ 1

ns

ns∑
i=1

Φ(x̃ri )−
1

nt

nt∑
i=ns+1

Φ(x̃ri )‖2

= tr[(X−WkK̃)T (X−WkK̃)]︸ ︷︷ ︸
mDA

+

θ tr(WkK̃G̃K̃TWT
k )︸ ︷︷ ︸

MMD

(7)

where W = WkΦ(X)T , Φ(X) is the mapped X in the RKHS; K = Φ(X)TΦ(X) is the

corresponding kernel matrix; K̃ is the corrupted kernel matrix with a corruption probability

p; G = [Gi,j](ns+nt)×(ns+nt) with Gi,j = 1/n2
s if Xi,j ∈ PSt, Gi,j = 1/n2

t if Xi,j ∈ Pt,

Gi,j = −1/(nsnt) otherwise; θ is the balancing parameter. Applying the weak law of large

numbers and computing the expectations when r → ∞, a closed-form solution for Wk that
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minimizes (7) can be obtained as

Wk = E[R1](E[R2] + θE[R3])−1 (8)

with
E[R1] = (1− p)XKT

E[R2]i,j =

(1− p)2KKT , i 6= j

(1− p)KKT , i = j

E[R3]i,j =

(1− p)2KGKT , i 6= j

(1− p)2KGKT + p(1− p)KFKT , i = j,

(9)

where F is a diagonal matrix having the same diagonal elements with G.

2) Acquirement of knowledge-induced solutions: With Wk, the search experience from the

optimized solutions to the source problem PStmax can be transferred into the current iterations

for resolving the target problem to improve the solution quality. As Wk is a connective mapping

between PSt and Pt, we can obtain the knowledge-induced solution set Zt as

Zt = WΦ(PStmax)

= WkΦ(X)TΦ(PStmax)

= WkK(X,PStmax). (10)

3) Sparse constraint: To guarantee the sparsity characteristics of the acquired knowledge-

induced solutions, we propose a sparse constraint strategy by finding the positions of zero

elements in Pt and setting the elements at the same position in Zt to be zero. An example

is depicted in Fig. 2. Specifically, we firstly find the locations of all zero elements in Pt
i:

supp = {z|[Pt]i,z = 0}, where [·]i,z represents the element in the i−th row, z−th column.

Then, the sparsified knowledge-induced solution set Tt can be obtained as

[Tt]i,z =

 [Zt]i,z, z /∈ supp,

0, z ∈ supp.

 , i = {1, 2, . . . N}. (11)

Tt can not only possess the valuable knowledge extracted from the search experience for the

past solved problem, but also inherit the sparse structure of Pt.
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Fig. 2. Illustration of sparse constraint. Each lattice represents an entry of the estimated signal, where the white ones denote
zero values, and the uncolored are the nonzero entries.

4) Selection: The selection operator of the MOSR solver is implemented in Pt∪Tt to select

N elitism solutions for the next generation. If the knowledge transfer is beneficial, some of the

sparsified learning-induced solutions survive in the selection procedure; otherwise, solutions in

Tt will not be sent to the next generation, which avoids negative transfer.

IV. EXPERIMENTS AND DISCUSSIONS

A. Experimental Settings

1) Test problems: We artificially generate a series of simulated signals as test problems as

follows. Firstly, a k-sparse signal x is produced, in which the nonzero elements are sampled from

a Gaussian distribution N (0, 1). Then, a Gaussian matrix A is yielded and the measurement

vector b is obtained by b = Ax. Lastly, the measurement b is corrupted by additive white

Gaussian noise with elements from the normal distribution N(0, 0.01). Each test problem involves

three key parameters: (n,m, k). To better explore the effects of knowledge transfer, six complex

test problems are randomly generated, with different parameters specified in Table I.

2) Settings of the sparse-constraint transfer learning operator: In this operator, the corruption

probability p is set between 0.5 and 0.9 with an interval of 0.1 by doing the cross-validation

on the population of a past problem in the first generation. The balancing parameter θ and the

kernel function are suggested to be 103 and ‘RBF’ respectively according to [19]. The knowledge

transfer is executed every five generations.
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TABLE I
A LIST OF TEST PROBLEMS

Problem (n, m, k)
P1 (1000, 200, 60)
P2 (1000, 300, 60)
P3 (1000, 300, 100)
P4 (1200, 250, 60)
P5 (1200, 350, 60)
P6 (1200, 350, 120)

3) MOSR solvers: Here, StEMO and a variant of ADEA (i.e., the ADEA without the reference

vector adaptation, denoted as DEA) are employed as baseline solvers. We denote ∆ as a MOSR

solver, then its three versions are compared in this paper: the first version is the original

solver ∆; the second and third versions are both equipped with the sparse-constraint knowledge

transfer operator but receive the past experience from the source problems “P1-P3” and “P4-P6”

respectively. We use different settings in the source problems because “P1-P3” and “P4-P6”

have different dimensions and are heterogeneous. For convenience, we denote the second and

third version as ∆-tr1 and ∆-tr2, respectively. For these solvers, their basic parameters are set

as suggested in their original versions [9][14]. The population size of StEMO and ADEA is set

to 50.

4) Terminate criterion: For a fair comparison, all methods stop running when the maximum

function evaluations reach 5000 times. Each algorithm runs 15 times in each test case.

5) Evaluation criterion: All the versions of MOSR solvers are evaluated by hypervolume

(HV) [23], which is the only parameter to measure the quality of a solution set. The larger

HV values, the better the reconstruction quality achieved. For all scenarios, the reference sets

for HV computation are all set to (1000, 1.2), and the obtained HV results are normalized. In

addition, the average reconstruction error (RE) and the RE variance under each test case are

also compared, where RE = ‖x − xG‖2/‖xG‖2, x and xG are the estimated and ground-truth

signals. Smaller RE can lead to better reconstruction quality.

B. Experimental Results and Discussions

To evaluate the convergence performance of the proposed knowledge transfer operator, the

median HV values obtained by different versions of DEA and StEMO, across 15 independent

runs with 5000 function evaluations are depicted in Fig. 3 and Fig. 4. In these two figures, the
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Fig. 3. Mean HV median values obtained by DEA for various source problems: “none”, “P1-P3” and “P4-P6”. (a)∼(f) are the
target problems to be solved: (a) P1. (b) P2. (c) P3. (d) P4. (e) P5. (f) P6.

sub-figures (a)∼(f) correspond to the six target problems P1∼P6 respectively; the red, blue and

black curve in each sub-figure indicates the original MOSR solver, the solvers with knowledge

transfer from “P1-P3” and “P4-P6” respectively.

As can be seen from Fig. 3, DEA-tr1, and DEA-tr2 achieve higher accuracy or faster conver-

gence than its original version in most problems. For P1 and P4, DEA-tr1 and DEA-tr2 obtain

much larger HV values than DEA when the function evaluations arrive at 5000. For P3, P5

and P6, compared with DEA, the convergence of DEA-tr1 and DEA-tr2 is significantly faster,

more than 500 function evaluations ahead. Except that DEA-tr1 converges slightly slower than

DEA when solving P2, DEA-tr2 spends only 1500 function evaluations to generate the same

HV values with those by DEA which takes about 2500 function evaluations.

Fig. 4 shows similar observations when StEMO is employed as a baseline solver. Except

for P1, StEMO-tr1 and StEMO-tr2 converge much faster than StEMO, with a save of at least

500 function evaluations. When solving P1, three versions of StEMO have almost the same

convergence speed, however, StEMO-tr1 and stEMO-tr2 provides larger HV values.
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The corresponding average REs and the variances of all solver versions for P1∼p6 are given

in Table II and Table III respectively. In these tables, the symbols “≈”, “+” and “−” represent

that the average RE of the corresponding solver is similar, smaller and larger than that of its

baseline solver respectively. As can be observed from Table II, DEA-tr1 and DEA-tr2 have much

better reconstruction quality when solving more complex problems (P1, P3, P4, and P6). For the

remaining problems, compared with the baseline solver DEA, the RE results of DEA-tr1 and

DEA-tr2 are statistically similar or slightly larger. These results are consistent with the median

HV results in Fig. 3.

Similar results can be seen in Table III which presents the comparison results for the StEMO

algorithms. Except for in P5, StEMO-tr1 and StEMO-tr2 achieve better reconstruction than the

original StEMO solver, thanks to the knowledge transfer. The inferior result of StEMO-tr2 on

P5 is probably caused nearby suboptimal solutions in identifying the knee points.

V. CONCLUSION

We presented a scheme for accelerating the convergence of MOSR solvers by introducing a

sparse-constraint knowledge transfer operator that exploits the search experience from a previ-

ously solved problem. We employ the NFC technique to extract the feature mapping between the

source and target problems, and then apply it to generate a set of knowledge-induced solutions

for the target problem. A sparse constraint strategy is then proposed for sparsifying the obtained

knowledge-induced solutions to reserve the sparse characteristics. Using StEMO and ADEA as

the baseline MOSR solvers for several experimental problems, we demonstrate that the proposed

operator can significantly improve the convergence performance of MOSR solvers by transferring

knowledge across either homogeneous or heterogeneous problems.

TABLE II
COMPARISONS OF AVERAGE RES AND VARIANCE OBTAINED BY ADEA FOR VARIOUS SOURCE PROBLEMS WITHIN 12000

FUNCTION EVALUATIONS

Problems DEA DEA-tr1 DEA-tr2
P1 0.3421 (±1.76E-2) 0.2249 (±3.46E-3) + 0.2359 (±2.00E-3) +
P2 0.1307 (±1.43E-5) 0.1302 (±1.56E-5) ≈ 0.1418 (±1.63E-5) −
P3 0.5261 (±7.67E-4) 0.4248 (±7.83E-4) + 0.4319 (±9.03E-4) +
P4 0.2725 (±7.77E-2) 0.2287 (±3.82E-3) + 0.2265 (±2.97E-3) +
P5 0.2027 (±1.87E-4) 0.2016 (±2.00E-4) ≈ 0.2124 (±1.85E-4) −
P6 0.3031 (±5.07E-3) 0.2889 (±8.98E-4) + 0.2968 (±8.23E-4) +
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Fig. 4. Mean HV median values obtained by StEMO for various source problems: “none”, “P1-P3” and “P4-P6”. (a)∼(f) are
the target problems to be solved: (a) P1. (b) P2. (c) P3. (d) P4. (e) P5. (f) P6.

TABLE III
COMPARISONS OF AVERAGE RES AND VARIANCE OBTAINED BY STEMO FOR VARIOUS SOURCE PROBLEMS WITHIN 12000

FUNCTION EVALUATIONS

Problems StEMO StEMO-tr1 StEMO-tr2
P1 0.7201 (±1.73E-2) 0.5665 (±1.01E-2) + 0.5923 (±9.76E-3) +
P2 0.4754 (±9.07E-3) 0.4304 (±3.90E-4) + 0.4699 (±3.01E-4) ≈
P3 0.6632 (±9.82E-3) 0.6201 (±1.30E-2) + 0.6329 (±9.93E-3) +
P4 0.6995 (±6.10E-2) 0.5794 (±9.82E-3) + 0.6280 (±8.82E-3) +
P5 0.5791 (±2.85E-4) 0.5227 (±1.19E-4) + 0.5921 (±1.97E-3) −
P6 0.5997 (±6.11E-3) 0.5706 (±5.23E-3) + 0.5992 (±7.84E-3) ≈
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