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A successful approach to understand field theories is to resolve the physics into different length or energy
scales using the renormalization group framework. We propose a quantum simulation of quantum field the-
ory which encodes field degrees of freedom in a wavelet basis—a multi-scale description of the theory. Since
wavelets are compact wavefunctions, this encoding allows for quantum simulations to create particle excitations
with compact support and provides a natural way to associate observables in the theory to finite resolution detec-
tors. We show that the wavelet basis is well suited to compute subsystem entanglement entropy by dividing the
field into contributions from short-range wavelet degrees of freedom and long-range scale degrees of freedom,
of which the latter act as renormalized modes which capture the essential physics at a renormalization fixed

point.

I. INTRODUCTION

Wavelets are a versatile basis to represent functions which
are neither localised in position or momentum. They are best
known for their use in signal processing such as in the Joint
Photographic Experts Group (JPEG) compression where they
can represent and compress data at multiple spatial scales [1]
with low loss of fidelity. They are also being adopted to speed
up calculations for a plethora of problems in science includ-
ing quantum molecular dynamics [2], density functional the-
ory [3], and Monte Carlo simulations on lattice [4], which are
of enormous importance for quantum chemistry, solid state,
and statistical physics. Further there are potential applications
to high energy physics where a wavelet basis been proposed
as a way to regularize quantum field theories [5].

At the same time that these advances have been made in
classical computations, algorithms have been developed to at-
tack difficult problems in quantum mechanics by using quan-
tum simulators [6]. However, most quantum algorithms for
simulation of dynamics in real space use some version of
bases which are localised in position and/or momentum and
mapped into each other by Fourier transforms. While the
quantum Fourier transform is efficient, more efficient evolu-
tions may be possible for quantum states which are not local-
ized in either basis.

In Ref. [7], the authors provide a quantum algorithm to sim-
ulate scalar bosonic field theories which achieves accurate es-
timation of scattering matrix probabilities in a time exponen-
tially faster than known classical algorithms. Here we present
a wavelet based quantum simulation. A key feature of this
basis choice is that we need not discretize space, rather we
choose a representative scale to capture features of the wave
function and can add smaller scale features in a controlled
manner. There are several advantages to using wavelets in the
context of quantum simulation algorithms for quantum field
theory. First, wavelets have a built in scaling structure which
could be used to compute expectation values of operators such
as energy density and two point correlations functions at dif-
ferent length scales. This information could then be used to
compute fixed points of renormalisation flows [8]. Second,

the wavelet basis has a well defined procedure to include lo-
cal gauge invariance via covariant derivatives at every length
scale [9, 10]. Third, in the spirit of quantum information, a
wavelet basis is a natural one to to describe quantum fields by
the scale of a measurement. This can obviate issues with di-
vergences of Greens functions that arise in calculations using
point like operators [ 1].

The wavelet basis consists of “scale functions” at a given
length scale and “wavelet functions” at finer length scales.
The scale functions are scale-invariant by construction and
thus it is not surprising that they turn out to span the sub-
space that captures the essential physics at the renormal-
ization fixed point. Resolving the description of a system
according to length scale has also led to a successful nu-
merical approach—the Multi-scale Renormalization Ansatz
(MERA) [ 2]—primarily for classical simulation of both dis-
crete quantum many-body systems and also field theories [ 3]
(in the latter case, the success of the ansatz has been demon-
strated for free field theories).

We first briefly introduce in Sec. II the essential features
of wavelets focusing on a particular family, the Daubechies
wavelets, which are related to each other by dyadic scaling
and discrete translations. In Sec. III we represent the Hamil-
tonian for a scalar bosonic field theory in d = 1 spatial di-
mension in a wavelet basis with straightforward extension to
higher d. We show how to encode the ground state of the
free field theory in a register of qubits or bosonic modes and
how to create single particle excitations and turn on quartic
interactions. The complexity of this simulation is similar to
the algorithm of [7] that uses the discretized position basis as
discussed in Sec. IV. In Sec. V we demonstrate how encod-
ing the free field ground state in the wavelet basis captures
the essential physics of field theories from an entanglement
perspective. The logarithmic scaling of ground state entangle-
ment in the massless case is entirely captured by the coarse
scale degrees of freedom, indicating that these are indeed a
representation of the renormalized degrees of freedom of the-
ory. Our results are summarized in the conclusions.
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FIG. 1: The father scaling function s(x) and mother wavelet w(x)
with support on [0, 5] for the Daubechies & = 3 wavelet family. The
functions have continuous first derivatives.

II. BASIC PROPERTIES OF DAUBECHIES WAVELETS

Wavelets constitute an orthonomal basis for the Hilbert
space L?(R) of square integrable functions on the line and we
briefly review some of their properties here. For a compre-
hensive survey see Ref. [1]. Generically, wavelets are defined
in terms of a mother wavelet function w(x) and a father scal-
ing function s(x) by taking linear combinations of shifts and
rescalings thereof. For the remainder we focus on one family
known as Daubechies % -wavelets where the role of X € Z™
will be described below. First we introduce two unitary oper-
ators on L*>(R): T for discrete translation and 9 for scaling
defined by the action on a function f € L*(R):

Df(x) = V2f(2x); Tf(x)=f(x—1). (1)

The father scaling function s(x) is a solution to the linear
renormalisation group equation

s(x)=D

2K—1
) hn’T"s(x)] , )
n=0

reading, first block average then rescale. The 2K real co-
efficients {h,} are computed analytically for X < 4 and are
solved for numerically otherwise. Given the solution to s(x),
scale 27% scaling functions are defined by applying 7 unit
translations followed by k scaling transformations on the fa-
ther:

sk (x) = DFT"s(x). 3)

The scaling functions are normalised so that

/dx sk(x) =1. “)

The mother wavelet w(x) and the father s(x) have the property
that they are neither localised in position or momentum. The
wavelets take the following form:

2%K—1 2%K—1

wx)= Y &DT"s(x)= Y gusp(x), (5)
n=0 n=0

where the set of coefficients {g,} are obtained from {%,} by
reversing the order and alternating signs: g, = (—1)"hox—1-n.
Scale 27 wavelets are obtained by translating and scaling the
mother:

wh(x) = DA w(x). (6)

The index X specifies the number of vanishing moments of
the wavelets, i.e.

/dxw(x)xp:O p=0,..%.

The vanishing of the zeroth moment is synonymous with the
admissibility condition which guarantees that the wavelet ba-
sis is square integrable [1]. Choosing larger % means more
features can be captured at a given scale, however at the ex-
pense of additional computational cost since more translations
are needed during block averaging. Daubechies wavelets are
optimal in the sense that they have the smallest size support
for a given number of vanishing moments [ !]. The basis func-
tions sk (x) and w¥ (x) have support on [27%n,2 % (n+2% —1)]
and satisfy the following orthonormality relations:

= 8m,nv
/dx sKwkH(x)y=0 (1>0), (7)
/w%m%@:%@w

By the last relation, the wavelets constitute normalised wave
functions. The scaling functions at scale 2% are complete in
that

=

Y ﬁsﬁ(x) =1. ®)

n=—oo

A final important property of the Daubechies X -wavelets is
that they are X — 2 times differentiable.

Linear superpositions of functions {sk(x)}e__ . (with
square summable coefficients) span a subspace #; of L*(R)
which is the scale 27 subspace and which is a proper sub-
space of a smaller scale space H; C Hiim (m > 0). Linear
combinations of the scale 2% wavelet functions {wk (x)}o__ .
span the orthocomplement W} of H, in Hyy1: Hyry = H O
W,. We can use a set of scaling functions {s*(x)}>___ to
represent features down to scale 2% and a set of wavelets
{wk(x)}z___. to represent features down to scale 2~ (1) that
cannot be represented at scale 2%, The whole space has the
following decomposition satisfied for any finite k:

L*(R) :%éwz, ©)

I=k

meaning that for a fixed scale 27 the set
{snl) b ) 1 i

span a basis for L?(R).



III. A WAVELET REPRESENTATION OF QUANTUM
FIELDS

A. Free field ground state represented in the wavelet basis

The class of theories we address are the scalar (massive
or massless) bosonic ®* theory in d € N spatial dimensions.
These are given by the Hamiltonian:

=09 +/0 (10)
where the free field contribution is
. 1 . o
0) = /ddx E(Hz(x,r) + (V& (x,1)) + m§d? (x,1)), (11)

and the interaction term is

N Ao o
- /ddx 4—?q>4(x,t). (12)
The canonical momentum is
. od(x,1
figer) = 2250, (13)

which together with the field are normalised to satisfy the
equal time commutation relation [®(x, 1), T1(y,1)] = i8¢ (x — )
(h = 1). Here the phase velocity of waves in this theory is set
so that the speed of light is 1, the bare mass is myg, and the
strength of the interactions is dictated by Ag.

To apply wavelets to the field theory we follow the pre-
scription given in Ref. [10]. Because the Hamiltonian involves
terms with no higher than first derivatives, it suffices to choose
the Daubechies X = 3 wavelet family which have continuous
first derivatives for the scale and wavelet functions. This will
guarantee that we have analytic forms for the coupling matrix
elements in the wavelet basis while also providing for a mini-
mal size support for the functions, a feature which reduces the
number of non-zero coupling terms that appear in the Hamil-
tonian. We present the d = 1 case as it makes the notation
considerably simpler and captures the salient features of the
algorithm. The wavelet representation can easily be extended
to higher dimensions (see Appendix B) using a cartesian prod-
uct of wavelets and scale functions. First we decompose the
field and its conjugate in the wavelet basis as:

q) Zcps]lmm (n,t)s mm Z Z é[w]l(n,t)wf,(x),
nez NEL I=lnin

H Z H[§ mm n t mm _|_ Z i W]l x)’
neZ nEZl=lyin

(14)

where the coarsest scale in the theory corresponds to 2~ /min,
Henceforth, we drop the dependence of the fields and their
conjugates on time. The discrete field operators are projec-
tions of the field operators onto the scaling and wavelet func-
tions (here [ > [ ,,):

Plslln /dxq) st (x), &M (n) = /dx B (x, 1wl (x),
H[§ mm /dxn mm ﬁ[w]l(n) = /dx ﬁ(x)w,ll()(),
(15)

and they satisfy the following equal time commutation rela-
tions (assuming here that [, < r,s):

[V imin (1), lslimn (p)] = 0, [F1Em (1), FLoin (1)) = 0,
[DlsSimin (), USmin ()] = 3§,
(B (), & (m)] =0, (A (), TV (m)] = 0,
(DM (), 1T (m)] = i858 m,
(@1 (), &M (m)] =0, [V (), I (m)] = 0
(S (), 15 (m)] = 0, A (), B (m)] = 0.

(16)

The discrete annihilation operators,
wavelet fields respectively, are

for the scaling and

Y(Lin)

o 1 - R e
() = (mcp[ o () i e <n>) ,

- HwIr .
7 (\/ Y(r)®™" (n) + e (n) |,
(17)
and the inverse relations are
& [Slhnin (1) — 1 Slint -
s](] .
[8)lmin (n) _ Y (2[mm) (&Zm‘"T(n) alm“‘ (n)) ,
i) U (i) 4 b (18)
B (1) = e (B0 45 )
. (w] N
H[W}r(n) =i Y z(r) (b’T(n) br(n)).

Each annihilates the free field vacuum and together with
the set of adjoint creation operators they satisfy the bosonic
commutation relations:

[‘Allmi" (n)vdlmi"T(m)] =S, (19)
[l;l(n)al;ﬁ(m” = 8m,naj,la

with all others commutators vanishing. The Hilbert space
for the free field theory is spanned by linear combina-
tions of products of the creation operators from the set
atmin® (m), b (m) applied to |G).

The coefficients y depend on the scale 2~/ and the mass
my as follows:

’Y[S] (l i ) 1 i \/1 mm [Q] (lmin>
- 2\’[ ]( mm) ’ o0)
() = 1E V1—4vM(rmM(r)

2vv] (r) ’



where |G) is the free field vacuum state,

VEl(1,,) = (G (0)BH= (0)] ),
V() = (G187 (0)77(0)[6),

ML) = (G O ©)G),
() = (G O (0)[G),

and the + sign is chosen according to the case that makes the
expression positive. In order to obtain these factors we need to
explicitly compute the expectation value of quadratic products
of the discrete field operators in the ground state which are as
follows:

g M ip-(x-)
V lmin s
() = 20(p)
n[s mln ( ) mm( ) (p) eip‘(x_y)v
2
vivl M P y)
20(p)
vl pwemw,
(22)
where o(p) = \/lm , is the single particle energy. All the

terms in Eq. 22 can be computed numerically for a given input
mass m.

Following Ref. [
nian into three pieces

] we decompose the free field Hamilto-

I:I(O) = ﬂSS +I:Iww +I:Isw~ (23)

We fix a scale 2 so that the Hilbert space is decomposed
as in Eq. 9. Then the constituent terms of the Hamiltonian are

1 N e
Hg = 5( Z : H[b]]m“‘ (I’Z)H[ |Lmin (l’l) .

nez
g Y, 2 S ()bl )
nez
+ Z :ci;[S]lmm(m)DI;M&[S]lmm(n) : )7
mne” ’
N 1 N N
Hyw == I ()T ()
2(n§21§:.n (24)
+md Y Y M ()M () ;
NEZI>lin
+ Y Y oM mpLi &Mim):),
mneLl, j>lnin
LYY ol

m MEL > min

where : O : indicates normal ordering of the operator O is
taken. The operator Hy describes physics at a scale 2~ /min
involving interactions between scale field degrees of freedom,

4

H,,, describes physics at a finer scales 2~/ for (I>1,,) involv-
ing interactions between wavelet degrees of freedom, and Hyy
describes coupling between scale fields at resolution 2~ /min
and finer wavelet degrees of freedom. While there are an in-
finite number of finer scale degrees of freedom we truncate
to /... consistent with momentum cutoffs in physical theories.
Specifically, the maximum momentum for a single particle ex-
citation is pmax =~ 2lmax a5 described in Sec. 111 C. The coupling
coefficients are

Dl = [ dv Vsl (- Vsl v

Dir’z{n = /dx VWﬁn(x) 'VW{;(X)’ (25)
i 2 a9,

Many of these coefficients are computed in [10] for the
Daubuchies X = 3 wavelets. The choice of K = 3 ensures
a continuous first derivative of the scaling functions which
allows for computing these overlaps exactly. Because the
functions have compact support, the coefficients vanish unless
|n—m| < 4.

Let the physical one dimensional volume be La where
L € N and a is the unit of length at the base scale. The
size of L will be determined by the long wavelength physics
that one wishes to capture. At smaller scales, 2~ the unit
of length is a2/, We will work in normalised length units
such that a = 1, and we choose our base scale so that /;,, = 0
such that the support of the scaling function s{(x) = s(x) is
the interval [0,5]. A plot of these functions is shown in Fig.
IIT A. Now let us introduce notation for basis vectors in the
wavelet basis. Basis vectors \r>w% denote amplitude r in the

wavelet mode wi, such that &M (m)|r) wh = r|r) vj,» and sim-
ilarly ®F0(m)|r) o =r|r)y. We adopt a 51mp11ﬁed notation
for states in the tensor product space of the

V = [2hwt! (26)

modes utilizing the vector r = (ry,...ry_1)7 with

Ir) = \r0>sg®“'®|rL—1>sgfl®\FL>wg®'“®|r2L Do ®
‘F2L>W(l)®"'®|r4L71>wéL71®‘r4L> SR [IV),
27

The ground state of the free field theory A ©) js then ap-
proximated by

G) zf]\[’l/dro.../drv,l e 3Ky (28

where the normalisation is A/~ = det(K'/?)!/*/nV/*. Here
the coupling matrix is

[KSS} [KSW(O)]
(Ko (0)]7

K ()T Ko (0,1 )] - (K (o )]

(29)

Lzlmdx 1
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FIG. 2: One dimensional Daubechies X = 3 scale functions and
wavelets plotted as a function of x at three scales for a system of size

=10. (a) Scale functions {s9(x ) = O, (b) Wavelets {w9(x) ’;;é;
(©) {wl(x) iigl; and (d) {w2(x)}4 w—o - Here and in the main text we
assume hard wall boundaries.
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FIG. 3: Visualization of the 1280 x 1280 coupling matrix K in the
wavelet basis for a one dimensional free scalar field. The system size
is L = 10 and the maximum scale is /,,, = 6 so that the total num-
ber of modes is V = 1280. The diagonal stripe indicates couplings
within a given scale while the off diagonal stripes represent couplings
between scales.

The scale-scale mode couplings are encoded in Ky, the scale-
wavelet couplings in Kj,, and the wavelet-wavelet couplings
in K,,,,. These matrices are:
[Kvs]a,b = m(z)sa,b +D27b (O S a,b < L)
[Kow(D]ap =D  (0<a<L0<b<L2,0<I<lL,)
. Lj
[wa(la.])]a,b = m(z)sa,bsj,l +Da7,1b

0<a<L20<b<L2/,0<j<I<I,)
(30)

The values of these coupling overlap integrals for K = 3 are

obtained from the following relations. First we use the scaling
function components defined in Eq. 2

ho = 325 (14 VI0+V/5+2/10)
= (54 V10+3V/5+2V10)
h = 125(10-2v10+2v/5+2V/10)
hy = 7(10—2@— 5+2v/10) Gl
hy = 7(5+m—3m)
hs = 7(1 +10—/542/10)
The coefficients g, = (—1)"hs_,. The coefficients D?n,n =
ng with
D{y =5.2576013450,
D8 | = —3.3828986455
D, = 0.87333354692, (32)
Df 3 =—0.11139112377
D{ 4 = —5.3243362257 x 102,
and DY, , =0 for |m—n| > 4. Because the derivatives of trans-

lations of the father functions form a partition of unity [10]
Znaxsf;‘“" (x)=1
n
the coefficients satisfy the following constraint
Z anlqn =
n
The other coefficients are

DY, = 22050 a|[H (1)) D()GT (1) |b)
DL = 20| G(1, IHL ) D, )G (1, ))Ib)

where the scale dependent matrices are 9
H) = x2S ) (n]
HLJ) = Tl byl o
e A N L -
DJ) = Loy P07 D )
G = X S g mynl

Gl = T

An example of a K matrix is plotted in Fig. 3. Because the
wavelets have compact support, the coupling matrix is sparse
having ~ 10V log(V) non zero elements, with the factor of 10
arising from the fact that Daubechies X wavelets have overlap
with 2(2% — 1) translates within any given scale.

gn72m|m> <n|

B. Constructing the ground state of the free field theory

We would like to encode the vacuum state |G) in Eq. 28
into a qubit register. As described in Appendix A, let the val-

ues 7; be discretized via an m bit string x; = x;0X;1...Xj m—1



according to 7j(x;) = 8p(—1)%0 YXZ1 2% with 8¢ the field
amplitude resolution. As described in [7] (see Sec. 1V), the

field resolution scales like 8¢ = O(/ 7z ), Where E is a bound

on the expectation value of the energy during the simulation
and € quantifies the distance between the truncated many body
state and the true ground state of the theory.

The ground state is then represented as a state of m x V
qubits:

|G) ~ A\! y o 3 DK e({x )

V—-1m—1

{xjre{0.1}} 5005 (35)

10,0 -- -xo.,m—1>sg i JCV—l,m—l>W1Ln;}fm_1
To construct this ground state using quantum gates one can use
the Kitaev-Webb circuit [14]. The cost of that construction is
dominated by the O(V>37®) time complexity of the classical
computation of a matrix decomposition of K.
The field operators expressed in the qubit basis are

() = 800 o X 2°(|1) (1)
SMi(n) = 8007y, o vt 2 (1)1 iy

The momentum operators are not diagonal in the qubit basis
so we need to first transform the state to a basis which is diag-
onal via the m — 1 qubit quantum Fourier transform (QFT) #
(which acts on all but the sign bit)

80(n) = 8a07 o F X 2" (1) (1)ns] F
in) = 8007, oF X0 27 (1112140, -
(37
For completeness, in Appendix C we also describe how to
construct the ground state using an encoding with a bosonic
network. Because the state is Gaussian, the preparation pro-
ceedure requires only Gaussian operations on single modes or
pairs of modes.

(36)

C. Particle creation in the free field theory

Let us consider the steps in a quantum algorithm to create a
particle excitation above the vacuum ground state of the free
field theory. A simple choice here is to choose the particle’s

wave function to be the wavelet y(x) = w/,(x). That is we
want to construct the state
b’ (n)|G). (38)
The momentum operator in the wavelet basis is [10]
p o= (o T ) P, DT () :
F X ) () - TV () Pritud (n) - (39)
+ i T )P, O ) )
where
Pt = [ dxslin(x)0yslmn (x)
l.j
Pm,n =

[ dxw}, ()9 (x) (40)
Po = [ dx(w), (x)0xsn (x) + sy (x) 0w, (x))

m,n

Note that translational shifts in the wave function do not
change the momentum. Furthermore, from the scaling prop-

erties of the scaling functions and wavelets, P,’jw =P =
1,1 1.1 0,0
2P, and Priy = — P = 2'Fy),) .
Py Py

0,m 0,m

m

0 0 0

1] 0.745203 | —1.32599
2 [—0.145203| 0.146573
3
4

0.014612 |—0.014612
0.000342 |—0.000342

TABLE I: Values of overlap integrals used to determine the momen-
tum of excited state wave packets for Daubechies X = 3 wavelets.

Note P(())m = —Pg _ and P(()).fz = —P&Sm, and for |m| > 4 the values
are Zzero. '

For the excited state in Eq. 38, the expectation value of the
momentum (assuming r > k) is:

f i
(G|b"(n) b (n)|G) = _Ezrpg;g =0. (41)

Finite momentum excited states can be created from a super-
position of wavelets. Consider the state

|E) = (OCR,VLBVJr (n)+ Br,méfr (m))|G), (42)
with 7 > k and |0 |> + |Brm|* = 1. We find
(E|PIE) =2"PY;)_, S [0tnB])-

For a given scale, the maximum magnitude momentum eigen-
state is obtained for n —m = —1, &, = 1/v/2, Brw = Fi/V2
in which case (E|p|E) = 2" 'P)*| = 40.663 x 2’. Hence
the maximum momentum of a sing]e particle state is

Pmax = 0.663 x 2lmx. (43)

Define a generalised single particle excitation f|G) where
1 =%,,00,b"(n) and ¥, |0t.s|> = 1. We follow the ap-
proach in Ref. [7] and introduce an ancillary qubit a interact-
ing with the register qubits via

Ay =T (11)(0))a+ 7@ (|0)(1])a (44)

If we can simulate the evolution by I:I\V, then
e Hm/21G)|0), = —iff|G)|1), and we have the excited
state up to a phase with no entanglement left between the an-
cilla and the register. The Hamiltonian written out explicitly



in the qubit representation is

Z l( o]

m—1

(0T ol Z,l 2'(In

m—1

DLZ’—&-n,V}

+ 30t ——
7 (r) ’ v=1

m—1
+ (Sl 11050 X 21 1)

-l

)

m—1
Sio? L 2 (117 ) 00

(45)

The evolution generated by these non commuting terms can
then be simulated efficiently by Trotter decomposition [18].
Note that the overhead cost to implement the QFT is O(m?).

An method to prepare single particle excitation in a bosonic
network encoding is given in Appendix C.

D. Interacting field theory

The Hamiltonian including interactions in the wavelet basis
is
H=H(a)+H(b)+Hab)+HD, (46)

where the interaction term is:

I:I(I) Zz/dxfzwl zz /2( ) 533713( ) 52,/4( )
! ZSG{WS}ans
- lailin (nl)ci)[zz]jz (nz)(j,[z_g]h (n3)(i)[z4]j4 (na)
47)
where
Dnin . B
i = 40 () j= I andz=s )
wi(x) j>lg,andz=w

Because, the scale functions and wavelets have compact sup-
port, the number of non zero summands in the interaction
scales like O(V1og(V)).

IV. RESOURCE SCALING OF THE QUANTUM WAVELET
SIMULATION

The overall efficiency of the bosonic field theory simulator
in the wavelet basis can be obtained by comparing it with the
discretized position basis algorithm which was carefully anal-
ysed in Ref. [7]. In the latter algorithm the real valued field,
which is a function of the continuous position degree of free-
dom, is discretised by treating the volume as finite and com-
posed of N € N points equally spaced by physical length @’ in
each dimension. The longest wavelength physics that can be

Siorno¥ (X 2 () (1Desns] T ) @1

captured is Na' and the highest momentum that can be repre-
sented is 1/a’. Furthermore, the amplitude for the field at each
of the V' = N discrete points in space is discretised to values
in the set 8¢[—2°71,...,2°71] where b = log(®,../ds)[23].
The efficiency of the algorithm is quantified in terms of two
important quantities: the total energy bound E such that the
evolved state satisfies (y(z)|H|y(t)) < E for all times in the
simulation, and the error € which is defined in terms of fidelity
of the truncated and discretized many body state with the true
state: |(¥|Peur)| > 1 —€. A cutoff in the maximum field am-

plitude ®,,,, = O(,/ %) ensures the above fidelity. By the
K

Fourier relation between conjugate variables, the momentum

cutoff is IT,,, = 8;1 , and upper bounding the expectation val-

ues of T1(x) and IT?(x) in terms of energy, it suffices to choose

IT,.. = O(4/ V/E ). The number of qubits needed for the simu-
lation is then n =V'b = O(V’ log(%)). In the massive case,

two point correlators decay exponentially with separation, and
V' need only scale logarithmically with €.

The asymptotic scaling for the number of quantum gates
needed to simulate particle scattering is found by suming the
gates for the following steps: free field ground state prepara-
tion, excited state preparation by adiabatic turn on of particle
creation interaction, adiabatic turn on of interaction terms in
the Hamiltonian, and finally measurement of scattering prob-
abilities. It is shown that the total number of gates is a small
polynomial in 1/€ in the weak coupling regime, and in the
strong coupling regime there is an additional overhead of a
polynomial in the momentum p of the colliding particles, the
number of outgoing particles, and the distance from the phase
transition such that the overall scaling for a simulation of du-
ration 7 is O(p@t1+ol) (ry’)+e()),

In the wavelet basis, for the one dimensional case d = 1,
the number of modes is V = L2m*1 (Eq. 26) and for ar-
bitrary dimension, V = (L2m=+1)? The longest wavelength
physics that can be captured is La and the highest momentum
scale, from Eq. 43, is 2'mxq. In order to compare the resource
scaling with the case of discrete basis we need to equate the
longest wavelength and highest momentum scales in the two
descriptions, namely,

Nd' = La,
1 2Imux (49)
d  a’
which implies
N =12l =y =20V (50)

In dimensions d = 1,2 or 3 the number of modes used in
both simulations are very similar. The same arguments that
led to the scaling of the maximum field amplitude ®,,, apply,
namely we are truncating a field on V modes by cutoffs in the
field amplitude at ®,,,. Hence the scalings of ®,,,,I1,. and
the total number of qubits b is the same as in the discretised
position basis where V' is replaced by V.

The number of quantum gates to perform a quantum sim-
ulation incurs only a penalty of replacing V with Vlog(V)



in the scaling formulae relative to the discretized basis en-
coding. The reason is that in the wavelet basis the terms in
the free field and interacting Hamiltonians couple across all
scales as opposed to the discretized position basis where only
nearest neighbour modes are coupled. Because the wavelets
have compact support, the number of summands in A scales
like O(V1og(V)). The first step of constructing the ground
state of the free field Hamiltonian has time cost O(V2-37°),
the same form as in the discretised bases, which is obtained
from the worse case scaling assuming a dense correlation ma-
trix. During particle creation and simulated evolution steps,
the aforementioned additional terms in the Hamiltonian using
the wavelet basis means scaling with respect to V in the discre-
tised basis should be replaced by V1og(V). Finally measure-
ment has the same scaling in either basis. A notable advantage
of using the wavelet basis is that particle creation and mea-
surement can be done at a variety of different length/energy
scales without further transformations on the system.

V. ENTANGLEMENT ENTROPY

In order to illustrate of the utility of the wavelet represen-
tation we turn to the calculation of entropic quantities. The
entanglement entropy for the free scalar bosonic field theory
has been calculated for d > 1 [19]. In addition the interacting
case has be treated perturbatively for &* theory ind = 3. [19],
with the main result being that the bare mass my is replaced by
the renormalised mass m, at the renormalisation scale of zero
momentum. We focus on the d = 1 case here. For a system of
size L and subregion A of length /7, the entanglement entropy

S(pa) = —tr[plog(pa)] (51)

of the free scalar bosonic theory was calculated by Calabrese
and Cardy [20]. In the massive case we have

Sa = —i5log(mda®)
= ¢log(&/a)

where & = m, ! is the correlation length. For the massless
case, which corresponds to the 1+1 dimensional bosonic con-
formal field theory (CFT) with central charge ¢ = 1,

(52)

Ta

~ 1log (L sin(m¢ /L)) +Cper  periodic boundaries

Sp ~
tlog (21“ sin(wl/ L)) +Copen  Open boundaries

Ta
(53)
where Cper, Copen are constant correction terms.

A. Calculating entanglement entropy in the wavelet basis

Recall that the covariance matrix I' of a Gaussian state is
defined as

Uji = Rulp(®; = #5)) (B — @), (54)

where (f;) is the expectation value of j-th element of the vec-

tor t = (41, ...,9v, D1, ...,ﬁv)T of quadrature operators on the

) MASSIVE
2 =2 |1
1.0f ]
0.8F -1 ]
S(pa)o.6f ]
g lmax =0 ]
04 7 only scaling modes ’
0.2F ]
0.0 o ]
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£
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3t ]
S(pa) 2 1
1t Lo = 1]
[ only scaling modes —> lmax =2
ok ‘ L ]
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£

FIG. 4: Plots of subsystem entropy for a d = 1 free scalar field the-
ory represented in the wavelet basis. The subsystem A corresponds
to a contiguous block of size ¢. Entropies were computed for ground
states of Hamiltonians with [, = 0,1,2, as well as for the fully
renormalized Hamiltonian keeping only the scaling modes. (a) Mas-
sive case (mg = 1) (b) Massless case (mp = 0) plotted on a log scale.
For small ¢ < L, the entropy is linear in log(¢) and the central charge
can be extracted from the portionality constant.

N modes. The information contained in the covariance ma-
trix completely determines the entanglement properties of a
Gaussian state. Explicit calculations for Gaussian states are
performed making use of the symplectic spectrum of I'. Let
us introduce the symplectic form €,

a A 0 1
Q) = —iffi, 1] = < 1 (;/> ) (55)
-1y

which is a skew-symmetric matrix that incapsulates the canon-
ical commutation relations of the quadrature operators. For a
Gaussian state p with covariance matrix I', the positive ele-
ments of the V pairs of eigenvalues {+0;} of the matrix prod-
uct i['Q are called symplectic eigenvalues. The entropy for
Gaussian subsystem p4 corresponding to N4 modes is

S(pa) = X0+ loga(o +) — (04 — loga (o )],
{oh}
| (56)
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FIG. 5: Two point field-field vacuum correlations for the massless
free field. The plots are in two bases: the wavelet basis keeping
only the L = 500 scaling modes in the description, and the discrete
position basis (see Appendix A) consisting of N = 500 modes. Also
shown is the exact correlation function for a free scalar boson CFT
C(n) = fﬁln(nz) + const, plotted for two choices of the constant
z=0.92 and 7/ = 0.78 that best fit the computed correlations in the
two bases.

calculated using the reduced symplectic spectrum
{c},... ,Gy,} obtained deleting the rows and columns
corresponding to the complementary modes from the
covariance matrix.

The same prescription also applies to computing entangle-
ment entropy in the wavelet basis where the covariance matrix
is constructed using the coupling matrix in Eq.29:

1 Kfl/Z 0
r_2< 0 K1/2>' o7

We computed how the subregion entanglement entropy scales
with the physical size ¢ of the subregion for both the mas-
sive and the massless cases. Fig. V shows this scaling for a
system with total size L = 500 and for [, = 0, 1,2 which cor-
responds to keeping smaller and smaller scale features in the
description. For [, = 0 the entanglement entropy of the sub-
system receives contributions from scaling modes at the base
scale / = 0 and wavelet modes only at length scales [ = 0,
which have support in the interval of physical size ¢. For
l.« = 1,2 the entanglement entropy also receives contributions
from the wavelet modes at / = 1 and [ = 1,2 respectively. In-
deed, we reproduce the expected scaling of entanglement en-
tropy in both the massive and massless cases, Eq. 52 and Eq.
53 respectively. We also plot the entanglement entropy ob-
tained from the (renormalized) description of the ground state
by only keeping the scaling modes (i.e. only keeping the Kj;
block in the coupling matrix, Eq.29). In the massive case, be-
cause correlations fall off exponentially, one can take L to be
O(1) and still capture the essential physics.

In the massless case, we can estimate the central charge
from the slope of the linear part of the plot in the regime ¢ < L.
We find ¢ ~ 1.004 which agrees with the central charge ¢ = 1

of the scalar bosonic CFT. Interestingly, an accurate value is
obtained by only keeping the scaling modes. We also plot
in Fig. V A the two point field-field correlations, once again
only keeping the scaling field modes in the description, which
agree with the exact field-field correlation scaling for a free
scalar boson CFT,

1 2

Cn) = 4Ttln(n ) + const. (58)
As shown in Fig. V A the correlations in the scale mode
degrees of freedom C(n) = (BBlmin(L/2), SlBlmin(n)) (n =
1,2,...L/2 —1) are in fact a better fit to the CFT prediction
than the correlations in a discretised position basis. These
results suggest that the scaling modes accurately capture the
large scale properties of the system, and indeed are the basis
for the description of the system at the renormalization fixed
point.

VI. CONCLUSIONS

We have shown that scalar bosonic quantum field theories
can be simulated efficiently on a quantum computer using a
wavelet basis. Without compromising overall efficiency, our
algorithm reorganizes the quantum state and its evolution into
sectors at different length scales. We anticipate this could be
useful to study renormalization flow and is a natural setting
for characterizing fields in terms of finite bandwidth detectors.
We computed the entanglement entropy in a d = 1 free field
theory and found that the wavelet basis conveniently divides
the state into long range entangled and short range entangled
degrees of freedom at the massless critical point. The corre-
lations and entanglement of the bosonic CFT are simply com-
puted from the largest scale degrees of freedom indicating that
the coarse scale Hamiltonian is the renormalised Hamiltonian
for the system at criticality.

For future work we note that an efficient quantum algo-
rithm is known [15—17] for performing Daubechies K -wavelet
transforms on an m qubit register in O(m?) gates [24]. This al-
gorithm translates between the discretized position space rep-
resentation of a single particle and the wavelet representation.
It would be of interest to adapt this to quantum simulations of
multiparticle strongly correlated systems.

Finally, we remark that there could be interesting con-
nections between the multi-scale representation of quantum
many-body states using the MERA and the wavelet basis de-
scribed here. In the wavelet basis, the wavelet modes capture
the short-range entangement at any given length scale, while
in the MERA the same role is played by local disentangling
and coarse-graining transformations.
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Appendix A: Preparing the ground state using a discretised
position basis

In this appendix we review how the state representing the
quantum field is encoded in Ref. [7]. The Hamiltonian A0
can be obtained as the continuum limit of a discrete system
with V' bosons with canonical position and momenta vari-
ables {g;} and {p,} respectively, which satisfy [§;, px] =0, .
Consider the following Hamiltonian for bosons on the sites of
a cubic lattice of size V' = L% with a uniform lattice spacing a

V' a2

R A
a0 _ ;} % + 5;a,3n+1<<):>(ém —3.)%  (AD

where the sum over (m,n) is over nearest neighbour pairs at
positions X, and x,,. The continuum limit is obtained by tak-
ing

[ V/ —» 0
e Positions x,, =a'm, me7Z¢
® G — D(xy)

1
.Zméﬁfddx

~

i (ém - qn) - a,(vq)(x))@n,n)

° K — a/d—zk7 u= a/d,[l, Y
e Rescaling: &(x) — &k /2d(x),
which leads to the Hamiltonian density

~ 1 N

HO) = 5(pf<—1ﬁ(x,t)2 + (VO(x,1))* + Ak~ d(x,1)?).
_ (A2)
Setting k™! — 1 and Ak™! = Au~! = m3 we obtain the

Hamiltonian density for the free field interaction in Eq. 11.
The descretized version of the Hamiltonian (Eq. Al) is
compactly written:

. 1
A0 = EfTAf, (A3)

where f is the 2V’ dimensional vector of position and mo-
menta operators, = (§1,...4y’, p1,... py’)’, and

A (K 0
0 1y

Kij=(4d +m%)5i,j —28 (i € neighborhoody).

(A4)

where
(AS)

The covariance matrix associated with a state p is defined
Ljx = Rtr[p(F; — (&) (fx — ()]}, where (f;) is the expecta-
tion value of j-th element of T and where K is defined in Eq.
AS5. The ground state (vacuum) of this system can then be
expressed as a Gaussian in the position basis:

@)= [ dar. [ dgu e K g gy,
- - (A6)
where A(~! = det(K'/2)!/4/nV'/4 is the normalisation and
q= (qlv"'aqv’)T'
The values of g; are discretized via a b bit string x; =
Xj0Xj1---Xjp—1 according to qj(xj) = 5@(—1)X-/>0 Zf;ll 2%jr,
The ground state can be represented as a state of b x V' qubits:

~ A L o= Sal D K ()
e D A

|x070. . .)C()J(,]) N |xv/,1_’0.. .xV/,I’k,1>

(AT)



Appendix B: Wavelets for higher dimensions d > 1

The wavelet representation for scalar field theories can
be straightforwardly generalised to higher dimensions as de-
scribed in Ref. [10]. For completeness, we include the argu-
ment. In d = 3, for example, n = (ny,ny,n;) € Z> and the
scale functions sj™ (x) = sk (x)slin (x2) slmn (x3), where x is
now a position vector in R and n = (nx, ny, nz) € Z3 becomes
a displacement vector. The generalised wavelets wy',(x) are
defined by seven different forms (distinguished by the index
o):

n717k3 g m = max(k,k3)

( ) (
Wy oy = si{‘;‘" (x1)w ) m=max(k,ky)
( ) m=max(k,k;)
x3)  m=max(k,kp,k3)
) m=max(k,k;,ky)
) m=max(k,k;,k3)
) m=max(ky,k,k3)
(B1)

The mode operators ® and IT are now indexed as:

ci)[s]lmm ( )
() min (n,1)

ci)[s]zmm( n,t), M (n,1) = &M (n,a 1),

n,t) — T (n, 0, 1),
(B2)

_>
_>

where the discrete field operators satisfy the following equal
time commutation relations (assuming here that k£ < r, s):

(Dl (1), st ()] = 0, [T (), [T (m)] = 0
[Imin (), T ()] = i,

(DM (n, ), & (m, B)] = 0

11 (n, ), ST (m, B)] = 0

[ (m, o), I (m, B)] = i85, 855n.m
DM (m, 00), & (m)] =0, IV (n, c0), [T (m)] = 0
(DM (n,00), STV (m)] =0, [F1™7 (n, @), & (m)] = 0

Appendix C: Adaptation of the simulation to bosonic encoding

Rather than discretising the amplitude of the register
modes using qubits we could instead opt to directly use

11

V distinguishable bosonic modes with position basis states
{19)60>---1gv-1)g,_, }- In this case the mode operators in Eq.
27 are just the position operators {§;} acting on the modes
according to §;|q)g; = qlq)4;-

The ground state is a multimode Gaussian state, which we
rewrite for clarity:

G) =" [ dao-.. [dav-r e K Uq0)q, - lav-1)ay

(ChH
where ¢ = (qo,...qv_1)" and the coupling matrix K is given
in Eq. 29. The ground state |G) is obtained by a unitary trans-
formation on the V mode vacuum state, described by the fol-
lowing symplectic transformation on the initially decoupled

position and momentum mode operators:
=Y. (C2)

The transformation acts to transform the vacuum correlation
function as

1 1
rvaczilw—m: 5YYT, (C3)

where " is given in Eq. 57. Hence the symplectic transforma-
tion is:

y =K Y4akV/4 (C4)

There is a canonical decomposition for Y written as one round
of beam splitters and phase shifters, followed by parallel sin-
gle mode squeezing, followed by a second round of beam
splitters and phase shifters [21]. This decomposition is effi-
cient, costing O(V?) elementary operations.

Particle excitations above the ground state can also be cre-
ated using the bosonic encoding. Here the Hamiltonian used
to create excitations is a simple quadratic interaction

Ay =fe+ fe, (C5)

where ¢',¢ are creation and annihilation operators that act
on an ancillary bosonic mode. We prepare the ancillary
mode in the Fock state [n = 1) and evolve by Hy, such that
e~ Hv/2|GYn = 1) = —if|G)|n = 0) and we have the ex-
cited state up to a phase with no entanglement left between
the ancilla and the register. Note the Fock state [n = 1) is a
non-Gaussian state, however it can be prepared efficiently by
a variety of techniques (see [22] and references therein).
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