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Abstract

We analyse various perturbations and projections of Kalman-Bucy semigroups and Riccati
equations. For example, covariance inflation-type perturbations and localisation methods (pro-
jections) are common in the ensemble Kalman filtering literature. In the limit of these ensemble
methods, the regularised sample covariance tends toward a solution of a perturbed/projected
Riccati equation. With this motivation, results are given characterising the error between the
nominal and regularised Riccati flows and Kalman-Bucy filtering distributions. New projection-
type models are also discussed; e.g. Bose-Mesner projections. These regularisation models
are also of interest on their own, and in, e.g., differential games, control of stochastic/jump
processes, and robust control.

1 Introduction

The purpose of this work is to analyse a number of perturbations and projections of Kalman-Bucy
[47, 16] semigroups and of the associated (matrix differential) Riccati flow.

The prime motivating application for this work is the ensemble Kalman filter (EnKF) [31] and
the various ‘regularisation’ methods used to ensure well-posedness of the sample covariance (e.g.
sufficient rank) and to ‘move’ the sample covariance closer (in some sense) to the Riccati flow of
the true Kalman filter [47, 16]. For example, two common forms of regularisation are covariance
inflation-type methods (perturbations) and so-called covariance localisation methods (projections).
Covariance inflation is a simple idea that involves adding some positive-definite matrix to the sam-
ple covariance in order to increase its rank [7]; i.e. more specifically to account for an under-
representation of the true variance due to a potentially inferior sample size. Separately, the idea of
covariance localization involves multiplying (element-wise) the EnKF sample covariance matrix via
Schur (or Hadamard) products with certain sparse ‘masking’ matrices with the intent of reducing
spurious long-range correlations and increasing the sample covariance rank [44, 60]. See [40] for
an empirical examination of both types of regularisation. In these two cases, choosing the right
inflation or localization is non-trivial and numerous ideas exist; e.g. [34, 35, 4, 54, 5, 67, 6]. Other
related, and/or more subtle, regularisation methods exist and we will cover more general models in
more detail in later sections; see also [41, 3, 70, 45, 66, 43] for related EnKF methodology.

Note that the total literature on EnKF methodology is too broad to cover adequately here.
Results on EnKF convergence are recent (relative to this work) and concern, e.g., weak convergence
with sample size [52, 58, 50], and stability [55, 71, 72, 28, 29], etc. The articles [72, 57] concern
stability and robustness of the EnKF in the presence of specific inflation and localisation methods.
The article [17] studies the behaviour of a stochastic matrix Riccati equation that captures the flow
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of the sample covariance in a naive EnKF implementation; i.e. its moment behaviour (non-asymptotic
bias and variance), convergence and central-limit-type behaviour, etc.

From a purely mathematical vantage, regularisation amounts to studying various projections and
perturbations of the ‘standard’ Riccati flow (viz [47, 16]). The analytical behaviour of general pro-
jections and perturbations are a major focus of this study. We consider a broad class of perturbation
model. We consider a particular projection model, and a certain class of localizable/diagonalizable
systems adapted to these projections; the details are specified later. New ideas concerning projec-
tions relevant to the EnKF are also introduced within this class. Given this analysis, we then study
the (nonlinear) Kalman-Bucy diffusion [16] and provide a number of contraction-type convergence
results between the corresponding perturbed/projected diffusion and the optimal Kalman-Bucy dif-
fusion. We study convergence in the mean-square sense and also in terms of the law of the diffusion.

While methods in data assimilation and ensemble Kalman filtering are the main drivers of this
work, the types of perturbations considered herein are more widely relevant: For example, our
analysis captures well those perturbations of the ‘standard’ Riccati flow that arise in, e.g., linear
quadratic differential games [13, 59, 26], in the control of linear stochastic jump systems [27, 2], in
certain robust and H8 control settings [33, 12], etc; see also the early work of Wonham [75] in linear-
quadratic stochastic control. We also highlight the text [1, e.g. Chap. 6] and the references therein.
Separately, a specific projected Riccati flow is studied in [21]. Other relevant and related literature
considering similar-type projections in estimation theory is given in [65, 56]. Going forward, we
primarily rely on EnKF motivators, but we emphasise here that the mathematical development is
more broadly applicable.

Further introduction, discussion, and background is given in later subsections with a more
technical focus. The organisation of this article is as follows:
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1.1 Kalman-Bucy diffusions

The notation used throughout this article is introduced later in Section 1.3. However, the set-up in
this section is relatively standard. Consider a time homogeneous linear-Gaussian filtering model of
the following form "

dXt “ AXt dt ` R1{2 dWt

dYt “ C Xt dt ` Σ1{2 dVt
(1.1)

where pWt, Vtq is an pr ` r1q-dimensional standard Brownian motion, X0 is a r-valued Gaussian
random vector (independent of pWt, Vtq) with mean EpX0q and covariance matrix P0, the symmetric
matrices R1{2 and Σ1{2 are invertible, A is a square pr ˆ rq-matrix, C is an pr1 ˆ rq-matrix, and
Y0 “ 0. We let Ft “ σ pYs, s ď tq be the filtration generated by the observation process.

It is well-known [16] that the conditional distribution ηt of the signal state Xt given Ft is a
r-dimensional Gaussian distribution with a mean and covariance matrix given by

pXt :“ EpXt | Ftq and Pt :“ E
`
pXt ´ EpXt | Ftqq pXt ´ EpXt | Ftqq1˘

given by the Kalman-Bucy and the Riccati equations

d pXt “ A pXt dt` Pt C
1Σ´1

´
dYt ´C pXtdt

¯
with BtPt “ RiccpPtq. (1.2)

In the above display, Ricc stands for the Riccati drift function from S
`
r into Sr defined for any

Q P S
`
r by

RiccpQq “ AQ`QA1 ´QSQ`R with S :“ C 1Σ´1C. (1.3)

We now consider the conditional nonlinear McKean-Vlasov type diffusion process

dXt “ A X t dt ` R1{2 dW t ` PηtC
1Σ´1

”
dYt ´

´
CXtdt` Σ1{2 dV t

¯ı
(1.4)

where pW t, V t,X0q are independent copies of pWt, Vt,X0q (thus independent of the signal and the
observation path). The notation Pηt stands for the covariance matrix

Pηt “ ηt
“
pe ´ ηtpeqqpe ´ ηtpeqq1

‰
with ηt :“ LawpX t | Ftq and epxq :“ x. (1.5)

We shall call this probabilistic model (1.4) the Kalman-Bucy (nonlinear) diffusion process.
The ensemble Kalman-Bucy filter (EnKF) coincides with the mean-field particle approximation of

the nonlinear diffusion process (1.4). To be more precise we let pW i
t, V

i
t, ξ

i
0
q1ďiďN be N independent

copies of pW t, V t,X0q. In this notation, a naive EnKF is given by the Mckean-Vlasov type interacting
diffusion process

#
dξit “ A ξitdt`R1{2dW

i
t ` ptC

1Σ´1

”
dYt ´

´
Cξitdt ` Σ1{2 dV

i
t

¯ı

i “ 1, . . . , N
(1.6)

with the rescaled particle covariance pt :“
`
1 ´N´1

˘´1
PηNt

and where the covariance matrix PηNt

is defined similarly to (1.5) but in terms of the empirical measures ηNt :“ N´1
ř

1ďiďN δξit
.

We define the following semigroup notation.

Definition 1.1. We let θs,tpxq be the stochastic flow associated with the underlying signal process
(1.1). We let φs,tpQq be the semigroup associated with the matrix Riccati equation in (1.2) with (1.3).
And we let ψs,tpx,Qq and ψs,tpx,Qq be the vector stochastic flows associated with the Kalman-Bucy
filter and the nonlinear diffusion defined in (1.2) and (1.4), with s ď t and px,Qq P R

r ˆ S
`
r .
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We also make the following standing assumption: Throughout this work we take the standard
controllability and observability conditions as holding; see Section 1.5.1 for a statement of these
conditions, and [47, 8, 16] for a broader discussion and details on controllability and observability
in control and filtering theory.

A key feature of any EnKF method, is the sample-based estimation of the solution to the Riccati
equation using a collection of interacting Kalman-Bucy filters. Contrary to conventional covariance
estimates based on independent random samples, the EnKF is based on interacting samples. These
samples are sequentially updated by a noisy observation process through a gain matrix that itself
depends on the sample covariance. The corresponding process is highly nonlinear (even when the
true signal and observation model is linear). In high dimensions, the interacting particle estima-
tion of the Riccati solution experiences the same difficulties as any conventional sample covariance
estimator. For example:

• The sample covariance pt is the sample mean of N ´ 1 independent unit-rank matrices and
has null eigenvalues when N ´ 1 ă r. Thus, in some principal directions, the EnKF is driven
solely by the signal diffusion. With unstable signals, the EnKF will exhibit divergence as it is
not corrected by the innovation process. In this setting, one cannot design a stable particle
sampler of the nonlinear diffusion (1.4) without some kind of regularization.

• The estimation of sparse high-dimensional covariance matrices using a small number of inde-
pendent samples cannot readily be achieved without incorporating some information on the
sparsity structure of the desired limit. Several regularization techniques have been developed
in the statistics literature; see e.g. [39, 51, 25, 23, 14, 32, 49, 15, 53, 48, 24, 9]. One key
common feature is to eliminate (typically long-range) noisy-type empirical correlations when
its known that the limiting correlation is null or very small.

1.2 Perturbations and projections

From a pure mathematical position, our model of perturbation or projection is motivated by method-
ology that replaces the sample covariance pt in (1.6) by some matrix πpptq, where π : S`

r ÞÑ S
`
r is

some judiciously chosen mapping. These methods coincide with the mean field particle approxima-
tion of the nonlinear diffusion X

π
t defined by (1.4) with Pηt replaced by πpPηπt

q, i.e.,

dX
π
t “ A X

π
t dt ` R1{2 dW t ` πpPηπt

q C 1Σ´1

”
dYt ´

´
CX

π
t dt ` Σ1{2 dV t

¯ı
(1.7)

where ηπt “ LawpXπ
t | Ftq. The initial state X

π
0 is a Gaussian random variable with some covariance

matrix Pηπ
0
. We expect the empirical average of the EnKF system associated with (1.7) to converge

to the Kalman-Bucy filter defined by (1.2) except with Pt replaced by the matrix πpPtq. From the
statistical viewpoint, the Kalman-Bucy filter pXπ :“ EpXπ

t
|Ftq defined by (1.7) captures the limiting

bias of the EnKF empirical mean, introduced by some perturbation and/or projection operator π. The
nonlinear diffusion (1.7) is well posed, and the flow of covariance matrices P π

t “ Pηπt
satisfies

BtP π
t “ RiccπpP π

t q
:“ rA´ πpP π

t qSsP π
t ` P π

t rA ´ πpP π
t qSs1 `R ` πpP π

t qSπpP π
t q (1.8)

when π is chosen so that (1.8) has a unique positive definite solution; a proof of this assertion
is provided in the Appendix. This equation captures the covariance flow of the limiting per-
turbed/projected Kalman-Bucy filter pXπ :“ E

`
X

π
t |Ft

˘
associated with (1.7). Consequently, (1.8)

captures the bias in the limiting EnKF sample covariance as N Ñ 8. This perturbed or projected
Riccati equation (1.8) is the main object of study in this work.
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Since we focus on the limiting object (1.8), our analysis applies equally if one replaces (1.6), or
more precisely the regularised limiting object (1.7), with a regularised version of the ‘deterministic’

EnKF introduced in [68]. The deterministic EnKF in [68] swaps dV
i

t
in (1.6) with some deterministic

adjustment factor. Other regularised EnKF variations may also be considered, without affecting the
regularised limiting object of interest, i.e. (1.8); e.g. any EnKF ‘flavour’ leaving ηπ“id

t unchanged.
Of course, when we study (1.8) alone, our analysis is not even confined to EnKF-generated pertur-
bation/projection motivators, as noted in the introduction and mentioned again later.

We define the following semigroup notation.

Definition 1.2. Given some mapping π from S
`
r into itself, we let φπs,tpQq, resp. ψπ

s,tpx,Qq and

ψ
π

s,tpx,Qq be the semigroup, respectively the stochastic flows associated with the Riccati equation
(1.8), respectively the Kalman-Bucy filter and the Kalman-Bucy diffusion associated with the non-
linear model (1.7), with s ď t and px,Qq P R

r ˆ S
`
r .

In the further development we shall distinguish and analyze the two different cases:

1q π “ id ` ∆ with ∆ « 0 or 2q π ˝ π “ π (1.9)

where id stands for the identity mapping.
The first class of model can be thought of as a local perturbation mapping. These mappings

are associated to some parameter that describe the level of perturbation. This model includes
the variance inflation techniques discussed in Section 4.1 and Stein-Shrinkage models presented in
Section 4.4, among others.

The second class of model corresponds to projection-type mappings such as masked projections
(or localization methods) discussed in Section 4.2 and projection mappings on Bose-Mesner algebras
discussed in Section 4.3.

Later in Section 4.5 we consider mean-repulsion type perturbations, and we highlight how the
main results presented in this work can be applied more broadly than implied by (1.9) alone.

We also show later that the first class of model can actually capture most projections considered
herein, or more general classes of test-type driving estimators; see the discussion in Section 4.

1.2.1 Discussion: Perturbation-type regularization

Consider the first class of perturbation model in (1.9). Under this model, several variance inflation
methods have been proposed in the data assimilation literature as a simple means to address some
of these numerical issues [7, 40, 4, 54, 5]. By far the simplest technique is to add an artificial
diagonal (positive-definite) matrix to the sample covariance matrix pt in (1.6). Another strategy is
to consider a general class of Stein-Shrinkage-type perturbations models. These two strategies are
discussed in Section 4.1 and Section 4.4.

As an example, in view of (1.7), (1.8), a simple variance inflation method πpQq :“ Q ` ∆pQq,
yields the following Riccati evolution

BtP π
t “ RiccπpP π

t q
:“ rA´ πpP π

t qSsP π
t ` P π

t rA ´ πpP π
t qSs1 `R ` πpP π

t qSπpP π
t q

“ RiccpP π
t q ` ∆pQqS∆pQq (1.10)

Obviously, such artificial inflations introduce an extra bias in the particle estimates delivered by the
EnKF (beyond the bias caused by a finite sample size and (nonlinear) interacting particles). In this
example, a non-vanishing inflation term would generally be the sole cause of bias in the limiting
EnKF empirical mean and covariance as N Ñ 8.
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Later, we consider more general perturbation mappings that may arise in scenarios outside
(ensemble) Kalman filtering such as in differential games, or in the control of linear stochastic jump
systems, etc. These applications were briefly referenced in the introduction. These models will
capture the preceding perturbation map (1.10) as a special case.

Analysis of any bias-variance relationship trade-off requires one to quantify somewhat these two
terms. This work focuses on the bias, in particular as it follows from the mapping π. For example,
with the EnKF, the L2-error estimate at the origin with respect to the Frobenius norm is

E
“
}πpp0q ´ P0}2F

‰
“ }πpP0q ´ P0}2F ` E

“
}πpp0q ´ πpP0q}2F

‰

whenever Epp0q “ P0 and Erπpp0qs “ πpP0q. Unfortunately, this unbiasedness property is not
preserved in time t ą 0, due to the mean-field interactions; i.e. the EnKF estimate pt of Pt is biased
in any case (e.g. even with π “ id) due to the particle approximation/interaction. We don’t study
the bias arising from the mean field approximation here, and our analysis is mostly deterministic
and focused on the relevant regularisation mappings. See [17] for a detailed study of the bias (and
variance, etc) of a stochastic matrix Riccati diffusion that captures the flow of the (finite N) sample
covariance in a naive (non-regularised π “ id) EnKF implementation.

The general class of all perturbation-type mappings considered in this work is discussed in
Section 2.2 and Section 3.1 (see also Sections 4.1 and 4.4).

1.2.2 Discussion: Projection-type regularization

Consider now the second class of projection models in (1.9). Under the EnKF framework, these
projections are often defined in terms of the Hadamard product (a.k.a. Schur product) of the sample
covariance matrix with some mask [34, 44]. Here we may approximate such masks with a matrix L
of t0, 1u-valued entries. The null entries capture the desired sparsity of the estimate. In the signal
processing and data assimilation literature, these projections are often referred to as localization
techniques. The study of t0, 1u-valued mask matrices L allows us to make rigorous convergence
statements, and these results may act as a proxy for qualitatively understanding the behaviour in
more general cases such as those considered in [34, 44]. In the statistics literature, a random matrix
given by the Hadamard product Ldp0 associated with some sample covariance p0 is called a masked
(or banded) sample covariance estimator of some limiting matrix P0, see [14, 32, 53, 24].

These projection techniques require the solution of the true unperturbed Riccati equation (the
desired limit of the sample covariance) to lie within some class of (at least “approximately”) “band-
able” covariance matrices. To avoid the introduction of a huge bias [60], some prior knowledge of the
sparsity/correlation structure of the solution to the Riccati equation is typically needed. However,
the sparsity structure of a prescribed filtering problem is generally difficult to extract from the signal
and sensor models etc. In some cases, the sparsity structure of the matrices Pt can be estimated
online from the particle model; e.g. see the Isomap algorithm described in [69, 74].

As with the first class of perturbation models, the choice of mapping π under the second class
of projection model introduces a deterministic bias. For example, in the filtering problem discussed
in Section 4.2, P0 is a block-diagonal covariance matrix associated with n-independent filtering
problems. In this case, we have πpP0q “ L d P0 “ P0 for some judicious block-diagonal matrix L

with t0, 1u-valued entries. With this choice, it also follows that L d Pt “ Pt. However, as noted
before, the EnKF derived (finite) sample covariance matrices are always (randomly) biased due to
the (random) particle approximations/interactions, so that L d pt ­“ pt for any t ą 0. Hence the
effect of this projection in practice is to ‘enforce’ some structure on the sample covariance at each
time. In the limit N Ñ 8 one hopes to recover the property Ld pt Ñ Ld Pt “ Pt.
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In the general case, the fluctuations of L d p0 around its limiting average value Ld P0 depend
only on the non-zero entries. More precisely, for any symmetric mask-matrix L with t0, 1u-entries
and at most l-zeros in each row we have the Levina-Vershynin’s inequality,

E r}Ld pp0 ´ P0q}2s ď c log3 p2rq
„

l
N

`
b

l
N


}P0}2

for some finite universal constant c ă 8; see [53, 24]. Of course, as before, this relationship is
not so nicely preserved in time t ą 0 when comparing pt and Pt, due to the random particle
approximation/interaction which introduces its own bias and fluctuations. Again we point to [17]
for a discussion on these random (particle) induced fluctuations.

Another example class of projections discussed in detail in Section 4.3 are orthogonal projections
on Bose-Mesner-type cellular algebras w.r.t. the Frobenius norm [18]. These more sophisticated
projections are more interesting than those examples in Section 4.2 and can be used to project
sample covariance matrices based on the topological/graph structure of the matrices pA,R, Sq.

The general class of all projection-type mappings considered in this work is discussed in Sec-
tion 2.3 and Section 3.2; see also Section 4.2 and 4.3 for those examples discussed above.

1.3 Some basic notation

This section details some basic notation and terms used throughout the article.
Let }.}

2
be the Euclidean norm on R

r, r ě 1. We denote by Mr the set of prˆrq-square matrices
with real entries, Sr Ă Mr the set of pr ˆ rq real symmetric matrices, and by S

`
r Ă Sr the subset

of symmetric positive (semi)-definite matrices. With a slight abuse of notation, we denote by Id

the pr ˆ rq standard identity matrix (with the size obvious from the context). Given some subsets
I,J Ă t1, . . . , ru we set AI,J “ pAi,jqpi,jqPpIˆJ q and AI “ AI,I.

Denote by λipAq, with 1 ď i ď r, the non-increasing sequence of eigenvalues of a pr ˆ rq-
matrix A and let SpecpAq be the set of all eigenvalues. We often denote by λminpAq “ λrpAq and
λmaxpAq “ λ1pAq the minimal and the maximal eigenvalue. We set Asym :“ pA ` A1q{2 for any
pr ˆ rq-square matrix A. We define the logarithmic norm µpAq of an pr1 ˆ r1q-square matrix A by

µpAq :“ inf tα : @x, xx,Axy ď α }x}2
2
u

“ λmax pAsymq
“ inf tα : @t ě 0, } exp pAtq}2 ď exp pαtqu.

(1.11)

The above equivalent formulations show that

µpAq ě ςpAq :“ max tRepλq : λ P SpecpAqu

where Repλq stands for the real part of the eigenvalues λ. The parameter ςpAq is often called the
spectral abscissa of A. Also notice that Asym is negative semi-definite as soon as µpAq ă 0. The
Frobenius matrix norm of a given pr1 ˆ r2q matrix A is defined by

}A}2F “ trpA1Aq with the trace operator trp.q.

If A is a matrix prˆ rq, we have }A}2F “ ř
1ďi,jďrApi, jq2. For any prˆ rq-matrix A, we recall norm

equivalence formulae
}A}22 “ λmaxpA1Aq ď trpA1Aq “ }A}2F ď r }A}22.

For any matrices A and B we also have the estimate

λminpAA1q1{2 }B}F ď }AB}F ď λmaxpAA1q1{2 }B}F .
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We also quote a Lipschitz property of the square root function on (symmetric) definite positive
matrices. For any Q1, Q2 P S

`
r

}Q1{2
1

´Q
1{2
2

} ď
”
λ
1{2
minpQ1q ` λ

1{2
minpQ2q

ı´1

}Q1 ´Q2} (1.12)

for any unitary invariant matrix norm (such as the L2-norm or the Frobenius norm). See for instance
Theorem 6.2 on page 135 in [42], as well as Proposition 3.2 on page 591 in [73].

The Hadamard-Schur product of two pr ˆ r1q-matrices A and B of the same size is defined by
the matrix AdB with entries pAdBqi1,i2 “ Ai1,i2Bi1,i2 for any 1 ď i1 ď r and 1 ď i2 ď r1. With a
slight abuse of notation, we denote by J the pr ˆ r1q Hadamard-Schur identity matrix with all unit
entries. By Theorem 17 in [46], we recall that for any symmetric positive semi-definite matrices
pA,B,P,Qq we have

P ě Q ě 0 and A ě B ě 0 ùñ P dA ě QdB. (1.13)

Now, given some random variable Z with some probability measure or distribution η and some
measurable function f on some product space R

r, we let

ηpfq “ EpfpZqq “
ż
fpxq ηpdxq

be the integral of f w.r.t. η or the expectation of fpZq. As a rule any multivariate variable, say
Z, is represented by a column vector and we use the transposition operator Z 1 to denote the row
vector (similarly for matrices; already seen above).

We also need to consider the n-th Wasserstein distance between two probability measures ν1
and ν2 on R

r defined by

Wnpν1, ν2q “ inf
!
E p}Z1 ´ Z2}n2 q

1

n

)
.

The infimum in the above formula is taken over all pairs of random variable pZ1, Z2q such that
LawpZiq “ νi, with i “ 1, 2. We denote by Ent pν1 | ν2q the Boltzmann-relative entropy

Ent pν1 | ν2q :“
ż

log

ˆ
dν1

dν2

˙
dν1 if ν1 ! ν2, and `8 otherwise.

1.4 Statement of the main results

In Section 2.2 and Section 2.3 (cf. Theorem 2.4 and formula (2.17)) we will check that

φπt pQq ě φtpQq.

This property shows that any π-perturbation or π-projection of the Kalman-Bucy diffusion induces
a larger covariance matrix w.r.t. the Loewner order. This property is one key driving motivation
for regularisation in the EnKF literature.

Our first contribution concerns the continuity properties of the first class of perturbation models
presented in (1.9) and introduced more formally in Section 2.2. We consider a compact subset Π of
continuous mappings π : S

`
r ÞÑ S

`
r equipped with the uniform norm induced by the L2-norm on

S
`
r . We let Bpδq be a δ-ball around the identity mapping. For example, consider (1.7), (1.8) and

suppose further that

BtP π
t “ RiccπpP π

t q
:“ rA´ πpP π

t qSsP π
t ` P π

t rA ´ πpP π
t qSs1 `R ` πpP π

t qSπpP π
t q

“ RiccpP π
t q ` ΓπpP π

t q (1.14)
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with the quadratic positive mapping Γπ defined by

ΓπpQq “ B0 `B1Q`QB1
1 `QB2Q` RpQq

for some matrices pB0, B1, B2q P S
3
r with B2 ď S and̟ :“ supQPS`

r
}RpQq}2 ă 8 ñ RpQq ď ̟ Id.

This model captures, e.g., simple inflation models like (1.10), and Stein-Shrinkage methods like
those discussed in Section 4.4. This model also captures those perturbations relevant in, e.g.,
linear-quadratic differential games, control of stochastic jump processes, robust control theory, etc.

This mapping Γπ already hints that the analysis of the semigroups φπt is a delicate mathematical
problem, since it cannot be deduced directly from that of the Riccati flow φt. By the Cauchy-
Lipschitz theorem, the existence and the uniqueness of the flow of matrices φπt pQq for any starting
covariance matrix Q is ensured by the local Lipschitz property of the drift function Riccπ, on some
open interval that may depend on Q. The existence of global solutions on the real line is not ensured
as the quadratic term may induce a blow up on some finite time horizon.

In this setting, our first main result concerns the first class of perturbation models presented in
(1.9), and takes the following mildly informal form.

Theorem 1. Assume that the filtering problem is observable and controllable. In this situation,
under some regularity conditions, there exists some δ ą 0 such that for any ǫ ă δ, any π P Bpǫq,
and any n ě 1 we have the uniform estimates

sup
tě0

}φπt pQq ´ φtpQq}2 ď cpδq ǫ and sup
tě0

E
“
}ψπ

0,tpx,Qq ´ ψ0,tpx,Qq}2n2
‰ 1

2n ď cpδq
?
n ǫ (1.15)

for some finite constant cpδq whose values only depend on the parameter δ.

A precise statement of this result is given in Theorem 2.6 and Theorem 3.2; e.g. with clarification
of the required regularity conditions. The proof of the Riccati estimates in the l.h.s. of (1.15) is
provided in Section 2.2.2, dedicated to the boundedness and the robustness properties of Riccati
semigroups (cf. Theorem 2.6). The proof of the r.h.s. estimates in (1.15) is provided in Section 3.1
dedicated to the continuity properties of Kalman-Bucy stochastic flows (cf. Theorem 3.2).

The preceding theorem concerns time-uniform bounds on the mean and the covariance of the
Kalman-Bucy flows. Our second objective, given the first class of perturbations, is to quantify the
difference between the conditional distributions of the nonlinear Kalman-Bucy diffusion,

ηs,tpx,Qq :“ Law
`
ψs,tpx,Qq | Fs,t

˘
and ηπs,tpx,Qq :“ Law

´
ψ

π
s,tpx,Qq | Fs,t

¯

where Fs,t “ σpYu, s ď u ď tq stands for the σ-field generated by the observations from time s to the
time horizon t. By construction ψs,t and ψ

π
s,t are time-varying Ornstein-Ulhenbeck diffusions [16]

and consequently ηs,tpx,Qq and ηπs,tpx,Qq are both Gaussian distributions. Our next main result
informally takes the following form.

Theorem 2. Under the assumptions of Theorem 1, for any n ě 1, we have the almost sure relative
entropy and Wasserstein distance estimates

Ent
`
ηπs,tpx,Qq | ηs,tpx,Qq

˘
ď c

”››ψπ
s,tpx,Qq ´ ψs,tpx,Qq

››2
2

` }φs,tpQq ´ φπs,tpQq}2
ı

W2n

“
ηπs,tpx,Qq, ηs,tpx,Qq

‰
ď }ψπ

s,tpx,Qq ´ ψs,tpx,Qq}2 ` c
?
n }φπs,tpQq ´ φs,tpQq}2

for some constant c ă 8 that depends on the system and observation matrices.
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The proof of these estimates, with a more precise description of the constant c, is provided in
Section 3.1; e.g. see the precise statement of these results in Theorem 3.3 and Theorem 3.5.

The impact of these two theorems is illustrated in Section 4.1 and Section 4.4 in terms of
the variance inflation and the Stein-Shrinkage methods commonly seen in the data assimilation
literature.

Our second contribution concerns the continuity properties of the second class of projection
mappings presented in (1.9) and discussed further in Section 2.3. We assume that π is some positive
map from Mr into itself, of the form

πpQq “ argmin
BPB

π
“
pQ ´BqpQ´Bq1

‰
for some matrix ring B Ă Mr.

From the geometrical viewpoint, these orthogonal projections map the set S`
r into the set of matrices

with the same sparsity structure as the matrices in the ring B. These projection techniques are
unbiased when the covariance graph of the filtering model (reflecting the sparsity structure of the
matrices Pt) is defined in terms of the same association scheme. Thus, the optimal use of these
projections requires some prior knowledge on the sparsity structure of the solution to the Riccati
equation. This is a special class of projection model differing somewhat from the typical localization
used in the EnKF literature; e.g. see [34, 44]. However, under the particular chosen class of projection,
explicit and rigorous convergence results are possible when the correlation structure is well-enough
adapted to the projection. Heuristically, these results may act as a proxy to gain intuitive, or
qualitative, insight into the behaviour of more practical localization implementations [44]; e.g. and
can be taken in combination with the first class of perturbation model for this purpose.

A prototype model satisfying these conditions are orthogonal projections onto the set of block-
diagonal matrices B “ Mrr1s ‘ . . . ‘ Mrrns Ă Mr, with r “ ř

1ďqďn rrqs. Another important class
of models satisfying the above conditions are orthogonal projections on Bose-Mesner-type cellular
algebras w.r.t. the Frobenius norm [18]. These more sophisticated projections are interesting and
can be used to project sample covariance matrices based on the topological/graph structure of the
matrices pA,R, Sq.

See Section 4.2 for applications to block-diagonal masking matrices and Section 4.3 for further
discussion on Bose-Mesner projections; e.g. Section 4.3.4 provides an explicit solution of the Riccati
equation as soon as the matrices pA,R, Sq and the initial condition belong to some Bose-Mesner
algebra.

In this context, our third main result takes the following mildly informal form.

Theorem 3. Assume that the filtering problem is observable and controllable and assume that
pA,A1, S,Rq P B. In this situation we have

φπt ˝ π “ φt ˝ π and ψπ
s,tpx,Qq “ ψs,tpx, πpQqq (1.16)

for any px,Qq P pRr ˆS
`
r q and t ě 0. In addition, there exists some ρ ą 0 such that for any Q P S

`
r

and any time horizon t ě 0 we have the local exponential-Lipschitz inequality

}φπt pQq ´ φtpQq}2 ď cQ e´ρt }Q´ πpQq}2 (1.17)

for some finite constant cQ whose values only depend on }Q}2.
The result in (1.16) is stated precisely as Theorem 2.12 and is covered also in Section 3.2. The

estimate (1.17) is stated precisely in Theorem 2.13; see also the corollaries in Section 2.3.1.
The relationship (1.16) shows that the set B is stable w.r.t. the π-projected Riccati flow. The

exponential estimate (1.17) shows that, for any initial condition, the Kalman-Bucy stochastic flow
as well as the π-projected Riccati flow converges to the set B as the time horizon t tends to 8.
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Last, but not least, Theorem 3 allows one to transfer, without further work, all the exponential
contraction inequalities developed in [16], dedicated to the stability properties of Kalman-Bucy
diffusions.

1.5 Some background results

1.5.1 Observability, controllability and the steady-state Riccati equation

We assume that pA,R1{2q is a controllable pair and pA,Cq is observable in the sense that

”
R1{2, ApR1{2q . . . , Ar´1R1{2

ı
and

»
———–

C

CA
...

CAr´1

fi
ffiffiffifl (1.18)

have rank r. We consider the observability and controllability Gramians pOt, CtpOqq and pCt,OtpCqq
associated with the triplet pA,R, Sq and defined by

Ot :“
ż t

0

e´A1s S e´As ds and CtpOq :“ O´1

t

„ż t

0

e´pt´sqA1

Os R Os e
´pt´sqA ds


O´1

t

Ct :“
ż t

0

eAs R eA
1s ds and OtpCq :“ C´1

t

„ż t

0

ept´sqA Cs S Cs e
pt´sqA ds


C´1

t .

Given the rank assumptions on (1.18), there exists some parameters υ,̟o,c
˘ ,̟c

˘pOq,̟o
˘pCq ą 0

such that
̟c

´ Id ď Cυ ď ̟c
` Id and ̟o

´ Id ď Oυ ď ̟o
` Id (1.19)

as well as

̟c
´pOq Id ď CυpOq ď ̟c

`pOq Id and ̟o
´pCq Id ď OυpCq ď ̟o

`pCq Id.

The parameter υ is often called the interval of observability-controllability. By Theorem 4.4 in [16],
for any t ě υ and any Q P S

`
r we have the uniform estimates

`
OυpCq ` C´1

υ

˘´1 ď φtpQq ď O´1

υ ` CυpOq. (1.20)

When (1.19) is satisfied, we say that a triplet pA,R, Sq satisfy the Gramian condition for some
parameters υ,̟o,c

˘ ą 0. These conditions ensure the existence and the uniqueness of a positive-
definite fixed-point matrix P solving the so-called algebraic Riccati equation

RiccpP q :“ AP ` PA1 ´ PSP `R “ 0. (1.21)

Importantly, in this case, the matrix difference A ´ PS is asymptotically stable even when the
signal matrix A is unstable. Relaxed conditions for this solution to exist are discussed widely in the
literature and we highlight the important works [64, 20]. See the discussion and linked references
in [16] for further discussion on the nominal Riccati equation and its convergence.
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1.5.2 Exponential and Kalman-Bucy semigroup estimates

The transition matrix associated with a smooth flow of pr ˆ rq-matrices A : u ÞÑ Au is denoted by

Es,tpAq “ exp

»
–

t¿

s

Au du

fi
fl ðñ BtEs,tpAq “ At Es,tpAq and BsEs,tpAq “ ´Es,tpAq As

for any s ď t, with Es,s “ Id, the identity matrix. Equivalently in terms of the fundamental solution
matrices EtpAq :“ E0,tpAq we have Es,tpAq “ EtpAqEspAq´1.

The following technical lemma provides a pair of semigroup estimates of the state transition
matrices associated with a sum of drift-type matrices.

Lemma 1.3 ([16]). Let A : u ÞÑ Au and B : u ÞÑ Bu be some smooth flows of pr ˆ rq-matrices.
For any s ď t and any matrix norm } ¨ } we have

}Es,tpAq} ď αA exp p´ωA pt´ sqq ñ }Es,tpA `Bq} ď αA exp

„
´ωApt ´ sq ` αA

ż t

s

}Bu} du

.

for some positive constant αA and some parameter ωA.

For any s ď t and Q P S
`
r we set

Es,tpQq :“ exp

»
–

t¿

s

pA´ φupQqSq du

fi
fl.

When s “ 0 sometimes we write EtpQq instead of E0,tpQq. In this notation we have

Es,tpQq “ EtpQqEspQq´1.

For any s ď u ď t and Q P S
`
r we set

Et|spQq “ exp

»
–

t¿

s

pA´ φs,vpQq Sq dv

fi
fl and Eu,t|spQq :“ Et|spQqEu|spQq´1.

Also observe that

Es,tpQq “ exp

»
–

t¿

s

pA´ φs,upφspQqqSq du

fi
fl “ Et|spφspQqq.

For any s ď u ď t and any Q P S
`
r we have

Et|spQq “ Et´spQq and Eu,t|spQq “ Epu´sq,pt´sqpQq. (1.22)

Observe that the Riccati equation is time-homogeneous so that

φs,s`tpQq “ φtpQq :“ φ0,tpQq.

By Proposition 4.3 in [16] we have

0 ď φtpQq ď P ` epA´PSqtpQ ´ P qepA´PSqt ùñ }φtpQq}2 ď }P }2 ` κ}Q ´ P }2 (1.23)

for some constant κ whose values doesn’t depend on the time parameter nor on Q.
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Theorem 1.4 ([16]). For any Q1, Q2 P S
`
r and for any t ě 0 we have the local contraction inequality

}EtpQ1q}2 ď κEp}Q1}2q e´2νt (1.24)

}φtpQ2q ´ φtpQ1q}2 ď κφp}Q1}2, }Q2}2q e´2νt }Q2 ´Q1}2 (1.25)

}EtpQ2q ´ EtpQ1q}2 ď κEp}Q1}2, }Q2}2q e´νt }Q2 ´Q1}2 (1.26)

for some rate ν ą 0, and some finite non-decreasing functions κEpq1q, κEpq1, q2q, κφpq1, q2q ă 8.

A proof of this theorem can be found in [16, see e.g. Corollary 4.10 and 4.13].

2 Riccati semigroups

2.1 Variational and backward semigroups

We let LpSr,Srq be the set of bounded linear functional from Sr into itself, and equipped with the
Frobenius norm. A mapping φ : S`

r ÞÑ S
`
r is Fréchet differentiable at some Q1 P S

`
r if there exists

a continuous linear functional BφpQ1q P LpSr,Srq such that

lim
Q2ÑQ1

}Q2 ´Q1}´1

F }φpQ2q ´ φpQ1q ´ BφpQ1q ¨ pQ2 ´Q1q}F “ 0.

For instance the first-order Frechet-derivative of the Riccati quadratic drift function

Ricc : Q P S
`
r ÞÑ RiccpQq P Sr

defined in (1.3) is given for any pQ1, Q2q P pS`
r ˆ Srq by the formula

BRiccpQ1q ¨Q2 “ pA ´Q1SqQ2 `Q2pA ´Q1Sq1. (2.1)

Lemma 2.1. For any t ě 0 the mapping Q ÞÑ φtpQq is Fréchet differentiable and for any pQ1, Q2q P
pS`

r ˆ S
`
r q we have the formulae

BφtpQ1q ¨ Q2 “ EtpQ1q Q2 EtpQ1q1.

Proof. Using the decomposition

φtpQ1q ´ φtpQ2q “ Es,tpQ2q rφspQ1q ´ φspQ2qs Es,tpQ2q1

´
ż t

s

Eu,tpQ2q rφupQ1q ´ φupQ2qs S rφupQ1q ´ φupQ2qs Eu,tpQ2q1 du

we have

φtpQ2q ´ φtpQ1q “ EtpQ1q rQ2 ´Q1s EtpQ1q1

´
ż t

0

Eu,tpQ1q rφupQ2q ´ φupQ1qs S rφupQ2q ´ φupQ1qs Eu,tpQ1q1 du.

We end the proof of the first assertion using the Lipschitz property (1.25). The proof of the lemma
is completed.

We have the following backward flow and first-order variational result that will be used subse-
quently, but which is also of interest in its own right.
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Proposition 2.2. For any Q P S
`
r and any 0 ď s ď t we have

Bsφs,tpQq “ ´Riccpφs,tpQqq and Btφs,tpQq “ Riccpφs,tpQqq “ Bφs,tpQq ¨ RiccpQq.

In addition, the first-order variational equation associated with the Riccati equation is given by the
composition formula

Bt pBφtpQqq “ BRiccpφtpQqq ˝ BφtpQq. (2.2)

Proof. For any Q P S
`
r we have

Bsφs,tpQq “ Bsφ0,t´spQq “ ´Riccpφ0,t´spQqq “ ´Riccpφs,tpQqq.

On the other hand, we have

}Riccpφs´h,upQqq ´ RiccpQq}F ď cQ h

ùñ }
ż s

s´h

rRiccpφs´h,upQqq ´ RiccpQqs du}F ď cQ h2

for some finite constant cQ whose values only depends on }Q}F . Using Lemma 2.1 this yields

φs´h,tpQq ´ φs,tpQq “ φs,tpφs´h,spQqq ´ φs,tpQq

“ φs,t

ˆ
Q`

ż s

s´h

Riccpφs´h,upQqqdu
˙

´ φs,tpQq

“ Bφs,tpQq ¨
„ż s

s´h

Riccpφs´h,upQqqdu


` ophq

“ Bφs,tpQq ¨ RiccpQq h

`Bφs,tpQq ¨
„ż s

s´h

rRiccpφs´h,upQqq ´ RiccpQqs du


` ophq

“ Bφs,tpQq ¨ RiccpQq h ` ophq.

This implies that

Bsφs,tpQq “ lim
hÑ0

1

´h rφs´h,tpQq ´ φs,tpQqs “ ´Bφs,tpQq ¨ RiccpQq

from which we conclude that

´Riccpφs,tpQqq ` Bφs,tpQq ¨ RiccpQq “ Bsφs,tpQq ` Btφs,tpQq “ 0. (2.3)

Finally, by Lemma 2.1 and (2.1) we have

Bt rBφtpQ1q ¨Q2s “ rA´ φtpQ1qSs rBφtpQ1q ¨Q2s ` rBφtpQ1q ¨Q2s rA´ φtpQ1qSs1

“ BRiccpφtpQ1qq ¨ rBφtpQ1q ¨ Q2s
“ rBRiccpφtpQ1qq ˝ BφtpQ1qs pQ2q.

This ends the proof of the proposition.
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2.2 Perturbation-type models

2.2.1 First and second order perturbations

We consider perturbation-type distortions in (1.8) of the first type in (1.9). Formally, consider (1.8)
and (1.14) and the class of perturbation mappings Γπ in (1.14) with the hypothesis

(H)
0

ΓπpQq “ B0 `B1Q`QB1
1 `QB2Q` RpQq

for some given matrices pB0, B1, B2q P S
3
r such that B2 ď S, and a uniformly bounded (symmetric)

remainder term
̟ :“ sup

QPS`
r

}RpQq}2 ă 8 ùñ RpQq ď ̟ Id.

In this situation, the π-Riccati drift function Riccπ in (1.8) takes the form

RiccπpQq “ RiccπpQq ` RπpQq ď RiccπpQq

with
RiccπpQq :“ AπQ`QA1

π `Rπ ´QSπQ, RπpQq “ RpQq ´̟Id ď 0 (2.4)

and the matrices

Rπ :“ R `B0 `̟Id Aπ :“ A`B1 and Sπ :“ S ´B2 ě 0.

Definition 2.3. We let φπ,t, resp. φπt be the Riccati flows associated with the drift function Riccπ
and resp. Riccπ. We consider the observability and the controllability Gramians pOπ,t, Cπ,tpOqq and
pCπ,t,Oπ,tpCqq associated with the triplet pAπ, Rπ, Sπq.

We also let Ξπ be the mapping from Sr into itself defined by

ΞπpQq :“ RiccπpQq ´ RiccpQq “ pAπ ´AqQ`QpAπ ´Aq1 ` pRπ ´Rq ´QpSπ ´ SqQ.

We also set
γpπq :“ }Aπ ´A}2 ` }Rπ ´R}2 ` }Sπ ´ S}2.

We consider the following condition,

(H)
1

pAπ, Rπ, Sπq satisfies the Gramian condition (1.19) for some υπ,̟
o,c
˘ pπq ą 0.

We recall that this condition ensures the existence and the uniqueness of a positive-definite
fixed-point matrix Pπ solving the so-called algebraic Riccati equation

RiccπpPπq :“ AπPπ ` PπA
1
π ´ PπSπPπ `Rπ “ 0. (2.5)

In addition, the matrix difference Aπ ´ PπSπ is asymptotically stable.
Our first objective is to analyze the existence and the uniqueness of the flow φπt .

Theorem 2.4. Assume (H)
0

and (H)
1
. For any t ě pυ _ υπq and Q P S

`
r ,

`
OυpCq ` C´1

υ

˘´1 ď φtpQq ď φπt pQq ď φπ,tpQq ď O´1

π,υπ
` Cπ,υπpOq. (2.6)
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Proof. By (1.20) and (H)
1

we have the uniform estimates

`
Oπ,υπ pCq ` C´1

π,υπ

˘´1 ď φπ,tpQq ď O´1

π,υπ ` Cπ,υπpOq.

We let Eπ,t|spQq be the transition semigroups defined as Et|spφπs pQqq by replacing pA,φtq by
pAπ, φπ,tq. In this notation, the proof (2.6) is a direct consequence of the backward perturbation
formulae

φπt pQq ´ φπ,tpQq “
ż t

0

Eπ,t|spφπs pQqq Rπ rφπs pQqs Eπ,t|spφπs pQqq1 ds ď 0 (2.7)

as well as

φπt pQq ´ φtpQq “
ż t

0

Et|spφπs pQqq Γπ rφπs pQqs Et|spφπs pQqq1 ds ě 0. (2.8)

That is, the l.h.s. estimate in (2.6) is a direct consequence of (1.20) and the relationship
φtpQq ď φπt pQq ď φπ,tpQq following from (2.7) and (2.8). The r.h.s. estimate in (2.6) follows
obviously from the above.

To check (2.8) we use the interpolating path

s P r0, ts ÞÑ φs,tpφπs pQqq from φtpQq to φπt pQq.

By Proposition 2.2 we have

Bsφs,tpφπs pQqq “ ´Riccpφs,tpφπs pQqq ` Bφs,tpφπs pQqq ¨ Bsφπs pQq
“ Bφs,tpφπs pQqq ¨ Γπ rφπs pQqs “ Et|spφπs pQqq Γπ rφπs pQqs Et|spφπs pQqq.

This ends the proof of (2.8). The proof of (2.7) follows the same arguments, thus it is skipped. This
ends the proof of the theorem.

The next lemma compares the semigroups φπ,tpQq and φtpQq when the matrices pAπ, Rπ, Sπq
are close to pA,R, Sq.
Lemma 2.5. Assume (H)

0
and (H)

1
. For any t ě 0 and Q P S

`
r we have

φπ,tpQq ´ φtpQq “
ż t

0

Et|spφπ,spQqq Ξπ rφπ,spQqs Et|spφπ,spQqq1 ds (2.9)

as well as

φtpQq ´ φπ,tpQq “
ż t

0

Eπ,t|spφspQqq Ξπ rφspQqs Eπ,t|spφspQqq1 ds. (2.10)

The proof of this lemma follows the same arguments as the proof of Theorem 2.4; thus it is
skipped. Observe that

p2.9q ùñ Pπ ´ P “ φtpPπq ´ P `
ż t

0

Et|spPπq Ξπ rPπs Et|spPπq1 ds

and

p2.10q ùñ P ´ Pπ “ φπ,tpP q ´ Pπ `
ż t

0

Eπ,t|spP q Ξπ rP s Eπ,t|spP q1 ds.
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2.2.2 Robustness theorems

We equip the set CpS`
r ,S

`
r q of continuous mappings π : S

`
r ÞÑ S

`
r with the uniform norm

}π1 ´ π2} “ sup
QPS`

r

}π1pQq ´ π2pQq}2.

Let Π Ă CpS`
r ,S

`
r q be a compact subset, and let t ą 0 be some fixed time horizon. For any

δ ą 0, we let Bpδq be the δ-ball around the identity mapping; that is

Bpδq :“ tπ P Π : }π ´ id} ď δu.

We consider the following continuity condition

(H)
2

@ǫ, α Ps0, 1s Dδ ą 0 such that @π P Bpδq we have

α S ď Sπ ď α´1 S α R ď Rπ ď α´1 R and }A´Aπ}2 ď ǫ.

Assume that (H)
0

and (H)
1

are met. Importantly, in this situation we have

}φπt pQq ´ φtpQq}2 ď }φπ,tpQq ´ φtpQq}2 (2.11)

We check this claim using the fact that

p2.6q ùñ 0 ď φπt pQq ´ φtpQq ď φπ,tpQq ´ φπt pQq ` φπt pQq ´ φtpQq “ φπ,tpQq ´ φtpQq.

Of course, it is important to note that we can take (H)
2

without (H)
0
, and consider directly just

the flow φπ,t. The main objective of this section is to prove the following robustness theorem.

Theorem 2.6. Let pAπ, Rπ, Sπq be a collection of matrices satisfying condition (H)
2
. In this case,

there exists some δ ą 0 such that for any π P Bpδq, any horizon t ě 0 and any Q P S
`
r we have

}φπ,tpQq ´ φtpQq}2 ď
“
χ1pδq ` e´4tν χ2pδ, }Q}2q

‰
γpπq

for some finite constants χ1pδq and χ2pδ, }Q}2q, whose values only depend on the parameters δ, and
pδ, }Q}2q respectively. In particular we have

@π P Bpδq }Pπ ´ P }2 ď χ1pδq γpπq.

Note that whenever we take (H)
0

as holding, then we take (H)
2

as being compatible in the
definition of pAπ, Rπ, Sπq as given in (2.4). This allows us to compare φπt and φπ,t. In this case,
(2.11) means this theorem guarantees the boundedness of those perturbation models satisfying (1.8),
(1.14) and (H)

0
.

Note also however, that (H)
2
, and Theorem 2.6, capture a broader class of perturbation model

than (1.8), (1.14) and (H)
0

alone. In particular, (H)
2

is simply concerned with direct perturbations
of the original pA,R, Sq system matrices in the Riccati operator (1.3).

The proof of the preceding theorem relies on the following proposition.

Proposition 2.7. We have (H)
2

ñ (H)
1
. In addition when (H)

2
is met, for any α Ps0, 1s there

exists some δ ą 0 such that the the matrices pAπ, Rπ, Sπq indexed by mappings π in the δ-ball Bpδq
satisfy the Gramian condition with a common interval of observability-controllability υπ “ υ and
some parameters

α ̟
o,c
˘ ď ̟

o,c
π,˘ ď α´1 ̟

o,c
˘

and well as

α ̟c
˘pOq ď ̟c

π,˘pOq ď α´1 ̟c
˘pOq and α ̟o

˘pCq ď ̟o
π,˘pCq ď α´1 ̟o

˘pCq.
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We already quote a direct consequence of Theorem 2.4 and Proposition 2.7.

Corollary 2.8. Assume (H)
2
. In this situation, for any α Ps0, 1s there exist some δ ą 0 such that

for any π P Bpδq, any Q P S
`
r and any t ě 0 we have the common uniform estimates

α
`
̟o

`pCq ` 1{̟c
´

˘´1
Id ď φt`υpQq, φπ,t`υpQq ď α´1

“
̟c

`pOq ` 1{̟o
´

‰
Id. (2.12)

If (H)
0

also holds, then we know additionally that φtpQq ď φπt pQq ď φπ,tpQq.
We have already studied the ordering between φt, φ

π
t and φπ,t in Theorem 2.4 when (H)

0
holds.

But if we take (H)
2

as holding alone (i.e. forget (H)
0

and φπt ), then we cannot compare φπ,tpQq
with φtpQq in the same way. To be more specific, φπ,t`υpQq ě φt`υpQq holds when ΞπpQq ě 0, and
φπ,t`υpQq ď φt`υpQq holds when ΞπpQq ď 0. To check this simply see (2.9).

The proof of the above Proposition 2.7 relies on the next couple of comparison lemmas of interest
on their own.

Lemma 2.9. Let V1, V2 P S
`
r be a couple of definite positive matrices s.t. V1 ě V2. We set

Q1 :“ U1V1U
1
1 and Q2 :“ U2V2U

1
2

for some pU1, U2q P M
2
r. Assume that Q2 ě q2 Id, for some q2 ą 0. With U2 invertible we have

}Q2}2 }U1U
´1

2
´ Id}2 ă

a
1 ` q2 ´ 1 ùñ Q1 ě q1,2 Q2

with
q1,2 “

”
1 ´ q´1

2

!`
1 ` }Q2}2 }U1U

´1

2
´ Id}2

˘2 ´ 1
)ı
.

Proof. We set
U2U

´1

1
“ Id ` U1,2 and U1U

´1

2
“ Id` U2,1.

Observe that

Q2 ě q2 Id ñ λminpQ2q ě q2 ñ λminpQ1{2
2

q ě ?
q2

ñ λmaxpQ´1{2
2

q ě 1{?
q2 ñ }Q´1{2

2
}22 ď q´1

2
.

In this situation, we have

Q1 ě U1U
´1

2
Q2 pU1U

´1

2
q1

ùñ Q´1

1
ď Q

´1{2
2

”
Q

´1{2
2

U1U
´1

2
Q2 pU1U

´1

2
q1Q

´1{2
2

ı´1

Q
´1{2
2

.

Observe that

”
Q

´1{2
2

U1U
´1

2
Q2 pU1U

´1

2
q1Q

´1{2
2

ı´1

“
”
Id ´Q

´1{2
2

 
Q2 ´ U1U

´1

2
Q2 pU1U

´1

2
q1
(
Q

´1{2
2

ı´1

“
ÿ

ně0

”
Q

´1{2
2

 
Q2 ´ U1U

´1

2
Q2 pU1U

´1

2
q1
(
Q

´1{2
2

ın
.
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On the other hand, we have
 
Q2 ´ U1U

´1

2
Q2 pU1U

´1

2
q1
(

“
 
Q2 ´ rId ` U2,1s Q2

“
Id ` U 1

2,1

‰(
“ ´

“
U2,1Q2 `Q2U

1
2,1

‰
´ U2,1Q2U

1
2,1.

This implies that

}Q´1{2
2

 
Q2 ´ U1U

´1

2
Q2 pU1U

´1

2
q1
(
Q

´1{2
2

}

ď q´1

2
}U2,1}2}Q2}2 r2 ` }U2,1}2}Q2}2s “ q´1

2

!
p1 ` }U2,1}2}Q2}2q2 ´ 1

)
ă 1

from which we conclude that
”
Q

´1{2
2

U1U
´1

2
Q2 pU1U

´1

2
q1Q

´1{2
2

ı´1

ď
”
1 ´ q´1

2

!
p1 ` }U2,1}2}Q2}2q2 ´ 1

)ı´1

Id.

This yields the estimate
Q´1

1
ď q´1

1,2 Q
´1

2
ðñ Q1 ě q1,2 Q2

with

q´1

1,2 “
”
1 ´ q´1

2

!
p1 ` }U2,1}2}Q2}2q2 ´ 1

)ı´1

.

This ends the proof of the lemma.

Lemma 2.10. Let U ,V be a pair of bounded functions from r0, ts ˆ Π into S
`
r . We consider the

integral mappings

ps, πq P pr0, ts ˆ Πq ÞÑ Wspπq :“
ż s

0

UupπqVupπq U 1
upπq du P S

`
r .

Let π1, π2 P Π be such that

@s P r0, ts Vspπ1q ě Vspπ2q and Wtpπ2q ě ̟´,tpπ2q Id for some ̟´,tpπ2q ą 0. (2.13)

Also assume that the flow of matrices Uspπ2q are invertible for any s P r0, ts and they satisfy the
following Lipschitz inequality

sup
sPr0,ts

} Uspπ1q Uspπ2q´1 ´ Id}2 ď liptpUq }π1 ´ π2} (2.14)

for some finite constant liptpUq. In this situation, for any ǫ Ps0, 1s there exists some parameter
δ “ δpt, ǫ, π2q ą 0 such that

}π1 ´ π2} ď δ ùñ Wtpπ1q ě ǫ Wtpπ2q.

The proof of this lemma follows the same line of argument as used in the proof of Lemma 2.9,
thus it is skipped here. For the convenience of the reader a detailed proof of the lemma is provided
in the Appendix.

Now we come to the proof of Proposition 2.7.
Proof of Proposition 2.7:

We assume that for any ǫ Ps0, 1s there exists some δ ą 0 such that

}π ´ id} ď δ ùñ Sπ ě p1 ´ ǫq S and Rπ ě p1 ´ ǫq R.
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We apply Lemma 2.10 to the functions

Wo
t pπq :“ p1 ´ ǫq´1 Oπ,t ùñ Wo

t pidq “ p1 ´ ǫq´1Ot

Wc
t pπq :“ p1 ´ ǫq´1 Cπ,t ùñ Wc

t pidq “ p1 ´ ǫq´1Ct

with pπ1, π2q “ pπ, idq and the time horizon t “ υ. For any ǫ1 Ps0, 1s there exists some parameter
δ1 “ δpǫ1, υq such that

}π ´ id} ď δ1 ùñ Oπ,υ ě ǫ1 Oυ and Cπ,υ ě ǫ1 Cυ.

We assume that for any ǫ Ps0, 1s there exists some δ ą 0 such that

}π ´ id} ď δ ùñ S ě p1 ´ ǫq Sπ and R ě p1 ´ ǫq Rπ.

We apply Lemma 2.10 to the functions

Wo
t pπq “ Oπ,t and Wc

t pπq “ Cπ,t

with pπ1, π2q “ pid, πq and the time horizon t “ υ. From previous estimates we have

}π2 ´ id} ď δ1 ùñ Wo
υpπ2q ě ǫ1 ̟

o
´ Id and Wc

υpπ2q ě ǫ1 ̟
c
´ Id.

By Lemma 2.10 for any ǫ2 Ps0, 1s we can choose δ “ δpǫ1, ǫ2, υq such that

}π ´ id} ď δ ùñ Oυ ě ǫ2 Oπ,υ and Cυ ě ǫ2 Cπ,υ.

This shows that

}π ´ id} ď δ ùñ ǫ1 Oυ ď Oπ,υ ď ǫ´1

2
Oυ and ǫ1 Cυ ď Cπ,υ ď ǫ´1

2
Cυ.

In the same vein we prove the estimates of the Gramians Oπ,υpCq and Cπ,υpOq. This ends the proof
of the proposition.

We are now in position to prove Theorem 2.6
Proof of Theorem 2.6:

By Corollary 2.8, there exist some δ ą 0 such that for any π P Bpδq we have the uniform estimate

sup
tě0

sup
QPS`

r

}Ξπpφπ,t`υpQqq}2 ď χ1pδq r}Aπ ´A}2 ` }Rπ ´R}2 ` }Sπ ´ S}2s

for constant finite constant χ1pδq whose values only depend on δ. We have

p1.23q ùñ sup
πPBpδq

sup
0ďtďυ

}φπ,tpQq}2 ď χ2pδq p1 ` }Q}2q

for some constant χ2pδq whose values only depend on δ. Combining (1.24) with (2.9) we have

}φπ,tpQq ´ φtpQq}2 ď rκEpχ2pδq p1 ` }Q}2qqs2

ˆ
“
2χ2pδq p1 ` }Q}2q}Aπ ´A}2 ` }Rπ ´R}2 ` χ2pδq2 p1 ` }Q}2q2}Sπ ´ S}2

‰

ˆre´4νpt´υq ´ e´4tνs{p4νq

`χ1pδq κEpχ1pδqq2 r}Aπ ´A}2 ` }Rπ ´R}2 ` }Sπ ´ S}2s
”
1 ´ e´4νpt´υq

ı
{p4νq.
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We also let χ2pδ, }Q}2q capture terms like χ2pδq p1 ` }Q}2q and χ2pδq2 p1 ` }Q}2q2, etc. This ends
the proof of the first assertion.

To check the last assertion we simply let t Ò 8. More precisely, observe that

}Pπ ´ P }2 ď }φπ,tpPπq ´ φtpPπq}2 ` }φtpPπq ´ φtpP q}2.

This implies, using (1.25) and the first assertion of this theorem, that

}Pπ ´ P }2 ď κφp}Pπ}2, }P }2q e´2νt }Pπ ´ P }2

`
“
χ1pδq ` e´4tν χ2pδ, }Pπ}2q

‰
r}Aπ ´A}2 ` }Rπ ´R}2 ` }Sπ ´ S}2s .

Letting t Ñ 8 we end the proof of the desired estimate. This ends the proof of the theorem.

2.3 Projection-type models

We consider projection-type mappings in (1.8) of the second type in (1.9). Let π be some positive
map from Mr into itself; that is πpS`

r q Ď S
`
r . We first assume the matrices pA,R, Sq satisfy

pπpAq, πpA1q, πpSq, πpRqq “ pA,A1, R, Sq

and we let B Ă Mr be a given matrix ring. Also assume that the pair pπ,Bq satisfies the following
orthogonality property:

(H)
3

@Q P Mr @B P B πpBrQ ´ πpQqs ` rQ´ πpQqsBq “ 0. (2.15)

In this situation, we have

π
“
pQ´BqpQ´Bq1

‰
“ π

“
pQ ´ πpQqqpQ ´ πpQqq1

‰
` πpBB1q

ě π
“
pQ ´ πpQqqpQ ´ πpQqq1

‰
ě 0.

This shows that π can be interpreted as a π-orthogonal projection

(H)
3

ðñ πpQq “ argmin
BPB

π
“
pQ´BqpQ´Bq1

‰
.

In addition, we have the Cauchy-Schwartz inequality

π
“
pQ ´ πpQqqpQ ´ πpQqq1

‰
ě 0 ùñ πpQQ1q ě πpQqπpQ1q.

Whenever B is closed by transposition we have

πpQ1q “ πpQq1 ùñ πpQqπpQq1 ď πpQQ1q.

The identity mapping π “ id and the set B “ Mr clearly satisfies the above properties.
The prototype of a non-trivial pair pB, πq satisfying (H)

3
are orthogonal projections π “ projB

(w.r.t. the Frobenius norm) onto cellular (a.k.a. coherent) algebras; that is a sub-algebra of matrices
which are additionally closed under the Hadamard-Schur product and contains the identity elements
Id and J , where J stands for the matrix with all ones entries. Up to a unitary change of basis,
these projections can be reformulated in terms of block-diagonal matrices [11]. By [19, page 57], a
sub-algebra of Sr is a Bose-Mesner algebra [18] of some association scheme if and only if it contains
I and J , and it is closed under the Hadamard-Schur product. This shows that cellular sub-algebras
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of Sr coincide with the Bose-Mesner algebras (of some association scheme). We refer to Section 4.3
for a detailed discussion on these models.

The set B “ Mrr1s ‘ . . . ‘ Mrrns Ă Mr (with r “ ř
1ďqďn rrqs) of block-diagonal matrices

with null entries outside the blocks is also a matrix ring which is closed under the Hadamard-Schur
product w.r.t. any matrix in Mr; but B is not a cellular algebra since J R B. The orthogonal
projection from Mr onto this B is given by

πpQq :“ LdQ with the block-diagonal matrix L :“ diagpJ1, . . . , Jnq ě 0. (2.16)

In the above display, Ji stands for the i-th block unit matrix w.r.t. the Hadamard-Schur product;
that is the prris ˆ rrisq-square matrix with all unit entries. It is readily checked that pB, πq satisfies
condition (H)

3
. We refer to Section 4.2 for a discussion on these models.

We let φπt be the π-Riccati semigroup defined in Section 1.4. By (2.8) we have the domination
property

@Q P Sr, φπt pQq ě φtpQq. (2.17)

In contrast with the second order approximation models discussed in Section 2.2.1 these pro-
jection techniques don’t depend on some perturbation index that quantifies the distance between π
and the identity mapping.

When pπpAq, πpSq, πpRqq ­“ pA,R, Sq we can replace pA,R, Sq by their projections pAπ, Rπ, Sπq.
In this case, φπ,t is the Riccati semigroup associated with the drift function RiccπpQq defined
simply by RiccpQq with pA,R, Sq replaced by pAπ, Rπ, Sπq. The difference between φπ,t and φt can
be analyzed as in Theorem 2.6. It is not possible to ensure that φπ,t is arbitrarily close to φt without
some continuity conditions.

Section 4.4 discusses a way to combine these projection-type models with the perturbation-type
models discussed in Section 2.2.1

In the latter development of Section 2.3.1 we will provide exponential concentration inequalities
that ensure the π-projected Riccati flows converge exponentially fast to the solution of the (nominal,
Kalman-Bucy) Riccati equation, viz [47, 16], as the time horizon tends to 8, and as soon as condition
(H)

3
is met. Speaking somehow loosely we shall show that

φt ˝ π “ φπt ˝ π and φπt » φt.

Definition 2.11. We let ϕπ
t pQq be the flow of the projected Riccati equation

Btϕπ
t pQq “ π rRicc pϕπ

t pQqqs

The next theorem shows that the flows ϕπ
t and φπt coincide with the π-projection of the Riccati

flow π ˝ φt as soon as we start from an initial state Q that satisfies πpQq “ Q and pA,R, Sq P B3.
It also provides an explicit description of the flow φπt in terms of φt and π when (H)

3
is satisfied.

Theorem 2.12. Assume (H)
3

and recall Riccπ defined in (1.8). For any time horizon t ě 0 we
have the formula

π ˝ Ricc ˝ π “ Riccπ ˝ π “ Ricc ˝ π “ π ˝ Riccπ ˝ π
as well as the semigroup commutation properties

π ˝ φt ˝ π “ π ˝ ϕπ
t ˝ π “ ϕπ

t ˝ π “ φt ˝ π “ φπt ˝ π. (2.18)

In addition, we have the formula

φtpQq ď φπt pQq “ rφt ˝ πs pQq ` EtpπpQqqpQ ´ πpQqqEtpπpQqq1. (2.19)
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Proof. Recall that pA,A1, R, Sq P B. Since B is a matrix ring we have

π
“
AπpQq ` πpQqA1 `R ´ πpQqSπpQq

‰
“ AπpQq ` πpQqA1 `R ´ πpQqSπpQq

or equivalently
π ˝ Ricc ˝ π “ Ricc ˝ π.

Also observe that

RiccπpQq “ pA ´ πpQqSqQ `QpA ´ πpQqSq1 `R ` πpQqSπpQq
“ RiccpπpQqq ` pA ´ πpQqSqpQ ´ πpQqq ` pQ´ πpQqqpA ´ πpQqSq1

“ rπ ˝ Ricc ˝ πs pQq ` pA´ πpQqSqpQ ´ πpQqq ` pQ´ πpQqqpA ´ πpQqSq1

and thus
Riccπ ˝ π “ π ˝ Ricc ˝ π “ π ˝ Riccπ ˝ π.

Now, we also have

π2 :“ π ˝ π “ π ñ Btπpϕπ
t pQqq “ Btϕπ

t pQq ñ πpϕπ
t pQqq “ ϕπ

t pQq ` πpQq ´Q.

This implies that
π ˝ ϕπ

t ˝ π “ ϕπ
t ˝ π.

This yields

Bt rϕπ
t ˝ πs pQq “ Bt rπ ˝ ϕπ

t ˝ πs pQq “ π prRicc ˝ ϕπ
t ˝ πs pQqq

“ π prRicc ˝ π ˝ ϕπ
t ˝ πs pQqq “ rRicc ˝ π ˝ ϕπ

t ˝ πs pQq
“ rRicc ˝ ϕπ

t ˝ πs pQq
and by the uniqueness of the solution of the Riccati equation we conclude that

ϕπ
t ˝ π “ φt ˝ π ñ π ˝ φt ˝ π “ π ˝ ϕπ

t ˝ π “ ϕπ
t ˝ π “ φt ˝ π.

We also have

Bt rϕπ
t ˝ πs pQq “ Bt rπ ˝ ϕπ

t ˝ πs pQq “ π rRiccπ prπ ˝ ϕπ
t ˝ πs pQqqs

“ Riccπ prπ ˝ ϕπ
t ˝ πs pQqq “ Riccπ prϕπ

t ˝ πs pQqq
which implies that

φπt ˝ π “ ϕπ
t ˝ π.

This completes the proof of (2.18).
Now, we have

Bt rφπt pQq ´ φtpπpQqqs

“ Riccpπpφπt pQqqq ´ RiccpφtpπpQqqq

`pA ´ φtpπpQqqSqpφπt pQq ´ πpφπt pQqqq ` pφπt pQq ´ πpφπt pQqqqpA ´ φtpπpQqqSq1

“ pA´ φtpπpQqqSqpφπt pQq ´ πpφπt pQqqq ` pφπt pQq ´ πpφπt pQqqqpA ´ φtpπpQqqSq1.

This implies that
φπt pQq ´ φtpπpQqq “ EtpπpQqqpQ ´ πpQqqEtpπpQqq1.

The l.h.s. estimate in (2.19) is a consequence of the domination property (2.17). This ends the
proof of the theorem.
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2.3.1 Exponential contraction inequalities

We continue with the projection-type models and (H)
3

holding.

Theorem 2.13. For any Q1, Q2 P S
`
r and for any t ě 0 we have

}φπt pQ2q ´ φπt pQ1q}2 ď κφπ pQ1, Q2q e´2νt
“
}πpQ2q ´ πpQ1q}2 ` e´2νt }Q2 ´Q1}2

‰
(2.20)

some finite constant κφπ pQ1, Q2q ă 8 whose values only depend on p}Q1}2, }Q2}2q. This implies
the existence of an unique fixed point P π “ φπt pP πq with πpP πq “ P . In addition, for any Q P S

`
r

and for any t ě 0 we have

}π rφπt pQqs ´ φπt pQq}2 ď κφπ pQ,πpQqq e´4νt }πpQq ´Q}2. (2.21)

Proof. We have

φπt pQq “ φπt pπpQqq ` EtpπpQqqpQ ´ πpQqqEtpπpQqq1

“ φtpπpQqq ` EtpπpQqqpQ ´ πpQqqEtpπpQqq1.

This implies that

φπt pQ1q ´ φπt pQ2q “ φtpπpQ1qq ´ φtpπpQ2qq

` rEtpπpQ2qqpπpQ2q ´Q2qEtpπpQ2qq1 ´ EtpπpQ1qqpπpQ1q ´Q1qEtpπpQ1qq1s .

Using (1.24) we find that

}φtpπpQ1qq ´ φtpπpQ2qq}2 ď κφpπpQ2q, πpQ1qq e´2νt }πpQ2q ´ πpQ1q}2.

To estimate the second term, we use the decomposition

EtpπpQ2qq pπpQ2q ´Q2q EtpπpQ2qq1 ´ EtpπpQ1qq pπpQ1q ´Q1q EtpπpQ1qq1

“ rEtpπpQ2qq ´ EtpπpQ1qqs pπpQ2q ´Q2q EtpπpQ2qq1

`EtpπpQ1qq rtpπpQ2q ´ πpQ1qq ´ pQ2 ´Q1quEtpπpQ2qq1s

`EtpπpQ1qq rpπpQ1q ´Q1q rEtpπpQ2qq1 ´ EtpπpQ1qq1ss .

Combining (1.24) with (1.26) we find that

}EtpπpQ2qq pπpQ2q ´Q2q EtpπpQ2qq1 ´ EtpπpQ1qq pπpQ1q ´Q1q EtpπpQ1qq1}2

ď κEpπpQ2q, πpQ1qq e´3νt

ˆ }πpQ2q ´ πpQ1q}2 rκEpπpQ2qq}πpQ2q ´Q2}2 ` κEpπpQ1qq}πpQ1q ´Q1}2s

` κEpQ1qκEpQ2q e´4νt r}πpQ2q ´ πpQ1q}2 ` }Q2 ´Q1}2 s .

To prove (2.21) we recall from Theorem 2.12 that π ˝ φπt “ φπt ˝ π. This implies that

}π rφπt pQ2qs ´ φπt pQ1q}2

ď κφπpQ1, πpQ2qq e´2νt
“
}πpQ2q ´ πpQ1q}2 ` e´2νt }πpQ2q ´Q1}2

‰
.
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If we set Q1 “ Q2 we obtain (2.21). This ends the proof of the theorem.

Combining (2.20) with the fact that φπt ˝π “ φt˝π and πpP πq “ P we readily prove the following
estimate.

Corollary 2.14. For any Q P S`
r and for any t ě 0 we have

}φπt pQq ´ φtpπpQqq}2 ď κφπ pQ,πpQqq e´4νt }Q´ πpQq}2 ùñ P π “ P. (2.22)

In addition, we have

}φπt pQq ´ φtpQq}2 ď e´2νt
“
κφpQ,πpQqq ` κφπ pQ,πpQqq e´2νt

‰
}Q´ πpQq}2. (2.23)

The estimate (2.23) is a direct consequence of (1.25) and (2.22). Replacing Q by P “ P π in
(2.22) we obtain the following exponential decays to equilibrium.

Corollary 2.15. For any Q P S
`
r and for any t ě 0 we have the local Lipschitz estimate

}φπt pQq ´ P }2 ď κφπpQ,P q e´2νt
“
}πpQq ´ P }2 ` e´2νt }Q´ P }2

‰
. (2.24)

This yields the uniform estimate

}φπpQq}2 :“ sup
tě0

}φπt pQq}2 ď }P }2 ` κφπ pQ,P q r}πpQq ´ P }2 ` }Q´ P }2s .

Combining (1.26) with Corollary 2.15 we prove the following local Lipschitz contraction.

Corollary 2.16. For any 0 ď s ď t and any Q P S
`
r

}Et|spφπs pQqq ´ Et|spP q}2 ď κE,πpQ,P q e´νpt`sq
“
}πpQq ´ P }2 ` e´2νs }Q´ P }2

‰

some finite constant κE,πpQ,P q ă 8 whose values only depend respectively on p}P }2, }Q}2q.

3 Kalman-Bucy stochastic flows

3.1 Perturbation-type models

We consider the perturbation models discussed in Section 2.2. We set

σ2δ pQq :“ 2
?
2 κδ,EpQq

”
r
”
}R}2 ` }S}2 pδ ` }φpQq}δ,2q2

ı
{pp1 ´ δqνq

ı
1{2

with

κδ,EpQq :“ κEp}Q}2q exp rχ2pδ, }Q}2q{p4νqs and }φpQq}δ,2 :“ sup
tě0

sup
πPBpδq

}φπt pQq}2 ă 8

where χ2p¨, ¨q ă 8 is introduced in Theorem 2.6 and ν ą 0 and κEp¨q ă 8 are defined in (1.24).
Recall the semigroup and stochastic flow notation defined in Section 1.4. The first lemma in

this section concerns the convergence of the perturbed Kalman-Bucy filter to the true underlying
signal process, both in a mean-square sense and in terms of actual sample paths.
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Lemma 3.1. Assume (H)
0

and (H)
2

are satisfied. For any ǫ ą 0 there exists some parameter
0 ă δ ă ǫ such that for any π P Bpδq, 0 ď s ď t, Q P S

`
r and any n ě 1 we have

E
“
}ψπ

s,tpx,Qq ´ θs,tpXsq}2n2 |Xs

‰ 1

2n ď κδ,EpQq e´2p1´ǫqνpt´sq }Xs ´ x}2 `
?
n σδpQq.

In addition, the conditional probability of the following event

}ψπ
s,tpx,Qq ´ θs,tpXsq}2 ď κδ,EpQq e´2p1´ǫqνpt´sq }Xs ´ x}2 ` σδpQq e2?

2

„
1

2
`
`
z `

?
z
˘

given the state variable Xs is greater than 1 ´ e´z.

Proof. We have

d
“
ψπ
s,tpx,Qq ´ θs,tpXsq

‰
“
“
A´ π

`
φπs,tpQq

˘
S
‰ “

ψπ
s,tpx,Qq ´ θs,tpXsq

‰
dt` dMπ

s,t

In the above display, t P rs,8rÞÑ Mπ
s,t stands for the r-dimensional martingale

dMπ
s,t :“ R1{2dWt ` π

`
φπs,tpQq

˘
C 1R

´1{2
2

dVt

with angle bracket

`
BtxMπ

s,tpkq,Mπ
s,tplqy

˘
1ďk,lďr

:“ R ` π
`
φπs,tpQq

˘
Sπ

`
φπs,tpQq

˘
.

This yields the formula

ψπ
s,tpx,Qq ´ θs,tpXsq ´ Eπ

t|spQqpx ´Xsq “
ż t

s

Eπ
u,t|spQq dMπ

s,u

with the exponential semigroup Eπ
u,t|spQq defined for any s ď u ď t by

Eπ
u,t|spQq “ exp

¨
˝

t¿

u

“
A´ π

`
φπs,upQq

˘
S
‰
du

˛
‚.

We have the decomposition

A ´ π
`
φπs,upQq

˘
S “ A´ φs,upQqS `

“
φs,upQq ´ φπs,upQq ` φπs,upQq ´ π

`
φπs,upQq

˘‰
S.

By (1.24) we have
}Et|spQ1q}2 ď κEp}Q1}2q e´2νpt´sq.

By Theorem 2.6 there exists some δ ą 0 such that for any π P Bpδq

}π rφπt pQqs ´ φπt pQq}2 ď δ ùñ sup
tě0

sup
πPBpδq

}π rφπt pQqs }2 ď δ ` }φpQq}δ,2.

In addition, we have

}φs,tpQq ´ φπs,upQq}2 ď
”
χ1pδq ` e´4pt´sqν χ2pδ, }Q}2q

ı
γpπq.

Applying Lemma 1.3 we find that

}Eπ
u,t|spQq}2 ď κδ,EpQq exp r´ t2ν ´ δ ´ γpπq κEp}Q}2qχ1pδqu pt´ sqs.
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For any ǫ ą 0 we choose ǫ ą δ ą δ1 ą 0 and so that for any π P Bpδ1q

δ ` γpπq κEp}Q}2qχ1pδq ď 2ǫν ñ }Eπ
u,t|spQq}2 ď κδ,EpQq exp r´2p1 ´ ǫqνpt´ sqs.

Following the proof of Lemma 5.3 in [16], for any n ě 1 we have

E

„ˆ
}
ż t

s

Eπ
u,t|spQq dMπ

s,u}2n2
˙ 1

n

ď 42n r

ż t

s

}R` π
`
φπs,upQq

˘
Sπ

`
φπs,upQq

˘
}2 }Eπ

u,t|spQq}2 du

ď 8n r κδ,EpQq
”
}R}2 ` }S}2 pδ ` }φpQq}δ,2q2

ı
{pp1 ´ ǫqνq ď n σ2δ pQq.

The end of the proof of the first assertion is now easily completed. The proof of the exponential
concentration inequality follows the same line of argument as the proof of Theorem 5.2 in [16]. This
ends the proof of the lemma.

The next three theorems concern convergence of the π-perturbed Kalman-Bucy filter/diffusion
to the true, optimal, Kalman-Bucy filter [16]. The first concerns the stochastic flow of the two filters
themselves, while the second two theorems concern the associated (conditional) distributions.

Theorem 3.2. Assume (H)
0

and (H)
2

are satisfied. In this situation, there exists some parameter
δ ą 0 such that for any 0 ă ǫ ă δ, π P Bpǫq, 0 ď s ď t, Q P S

`
r , and any n ě 1 we have

E
“
}ψπ

s,tpx,Qq ´ ψs,tpx,Qq}2n2 | Xs

‰ 1

2n ď ǫ χpδ,Qq
”?

n` e´p1´ǫqνpt´sq }Xs ´ x}2
ı

for some finite constants χpδ,Qq whose value only depends on the parameters pδ, }Q}2q.

Proof. We have

d
“
ψπ
s,tpx,Qq ´ ψs,tpx,Qq

‰

“
 “
A´ π

`
φπs,tpQq

˘
S
‰

´ rA ´ φs,tpQqSs
(
ψπ
s,tpx,Qq

´ rA´ φs,tpQqSs
“
ψs,tpx,Qq ´ ψπ

s,tpx,Qq
‰
dt `

“
π
`
φπs,tpQq

˘
´ φs,tpQq

‰
C 1Σ´1 dYt.

This implies that

d
“
ψπ
s,tpx,Qq ´ ψs,tpx,Qq

‰

“
“
φs,tpQq ´ π

`
φπs,tpQq

˘‰
S ψπ

s,tpx,Qq dt

`
“
π
`
φπs,tpQq

˘
´ φs,tpQq

‰
C 1Σ´1

´
Cθs,tpXsqdt `R

1{2
2
dVt

¯

` rA´ φs,tpQqSs
“
ψπ
s,tpx,Qq ´ ψs,tpx,Qq

‰
dt

“ rA´ φs,tpQqSs
“
ψπ
s,tpx,Qq ´ ψs,tpx,Qq

‰
dt

`
“
φs,tpQq ´ π

`
φπs,tpQq

˘‰
S

“
ψπ
s,tpx,Qq ´ θs,tpXsq

‰
dt ` dMπ

s,t
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with the r-dimensional martingale t P rs,8rÞÑ Mπ
s,t defined by

dMπ
s,t “

“
π
`
φπs,tpQq

˘
´ φs,tpQq

‰
C 1R

´1{2
2

dVt.

This implies that

ψπ
s,tpx,Qq ´ ψs,tpx,Qq

“
ż t

s

Eu,t|spQq
“
φs,upQq ´ π

`
φπs,upQq

˘‰
S

“
ψπ
s,upx,Qq ´ θs,upXsq

‰
du`

ż t

s

Eu,t|spQq dMπ
s,u.

Arguing as in the proof of Lemma 3.1, there exists some 0 ă ǫ ă δ such that for any π P Bpǫq
}π rφπt pQqs ´ φπt pQq}2 ď ǫ

and
}φs,upQq ´ φπs,upQq}2 ď ǫ

”
χ1pδq ` e´4pu´sqν χ2pδ, }Q}2q

ı
.

By the generalized Minkoswki iequality, we have

}
ż t

s

Eu,t|spQq
“
φs,upQq ´ π

`
φπs,upQq

˘‰
S

“
ψπ
s,upx,Qq ´ θs,upXsq

‰
du}2 ď ǫ κEpQq }S}2

ˆ
ż t

s

”
e´pt´uqνp1 ` χ1pδqq ` e´4pt´sqν χ2pδ, }Q}2q

ı
}ψπ

s,upx,Qq ´ θs,upXsq}2 du.

This implies that

E

„
}
ż t

s

Eu,t|spQq
“
φs,upQq ´ π

`
φπs,upQq

˘‰
S

“
ψπ
s,upx,Qq ´ θs,upXsq

‰
du}2n2 | Xs

 1

2n

ď ǫ κEpQq }S}2
ż t

s

”
e´pt´uqνp1 ` χ1pδqq ` e´4pt´sqν χ2pδ, }Q}2q

ı

ˆ E
“
}ψπ

s,upx,Qq ´ θs,upXsq}2n2 | Xs

‰ 1

2n du.

By Lemma 3.1 we have

E

„
}
ż t

s

Eu,t|spQq
“
φs,upQq ´ π

`
φπs,upQq

˘‰
S

“
ψπ
s,upx,Qq ´ θs,upXsq

‰
du}2n2 | Xs

 1

2n

ď ǫ κEpQq }S}2
ż t

s

”
e´pt´uqνp1 ` χ1pδqq ` e´4pt´sqν χ2pδ, }Q}2q

ı

ˆ
”
κδ,EpQq e´2p1´ǫqνpu´sq }Xs ´ x}2 `

?
n σδpQq

ı
du.

This yields the estimate

E

„
}
ż t

s

Eu,t|spQq
“
φs,upQq ´ π

`
φπs,upQq

˘‰
S

“
ψπ
s,upx,Qq ´ θs,upXsq

‰
du}2n2 | Xs

 1

2n

ď ǫ κEpQq }S}2
!?

n
”
χ1pδ,Qq ` e´3pt´sqν χ2pδ,Qq

ı

` }Xs ´ x}2 e´p1´ǫqνpt´sq
”
χ
1
pδ,Qq ` e´3pt´sqν χ

2
pδ,Qq

ı )
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with
χ1pδ,Qq :“ σδpQq p1 ` χ1pδqq{ν and χ2pδ,Qq :“ σδpQqχ2pδ, }Q}2q

and

χ
1
pδ,Qq :“ κδ,EpQq p1 ` χ1pδqq{pp1 ´ δqνq and χ

2
pδ,Qq :“ κδ,EpQqχ2pδ, }Q}2q{p2p1 ´ δqνq.

Following the proof of Lemma 5.3 in [16], for any n ě 1 we have

E

„ˆ
}
ż t

s

Eu,t|spQq dMπ
s,u}2n2

˙ 1

n

ď 42n r

ż t

s

}
“
φs,upQq ´ π

`
φπs,upQq

˘‰
S
“
φs,upQq ´ π

`
φπs,upQq

˘‰
}2 }Eu,t|spQq}2 du

ď 8 ǫ2 n r κEpQq}S}2{ν “ ǫ2 σ2pQq

with
σ2pQq :“ 8 r n κEpQq}S}2{ν.

This yields

ǫ´1
E
“
}ψπ

s,tpx,Qq ´ ψs,tpx,Qq}2n
2

‰ 1

2n

ď ?
n σpQq ` κEpQq }S}2

 ?
n

“
χ1pδ,Qq ` e´3pt´sqν χ2pδ,Qq

‰

` }Xs ´ x}2 e´p1´ǫqνpt´sq
”
χ
1
pδ,Qq ` e´3pt´sqν χ

2
pδ,Qq

ı )

ď ?
n

“
σpQq ` κEpQq }S}2

“
χ1pδ,Qq ` e´3pt´sqν χ2pδ,Qq

‰‰
`

` e´p1´ǫqνpt´sq }Xs ´ x}2
”
χ
1
pδ,Qq ` e´3pt´sqν χ

2
pδ,Qq

ı
.

This ends the proof of the theorem.

Theorem 3.3. Assume (H)
0

and (H)
2

are satisfied. In this situation, for any s ` υ ď t, and any
Q P S

`
r we have

Ent
`
ηπs,tpx,Qq | ηs,tpx,Qq

˘

ď 1

2

`
̟o

`pCq ` 1{̟c
´

˘ „››ψπ
s,tpx,Qq ´ ψs,tpx,Qq

››2
2

` 5

2

?
r }φs,tpQq ´ φπs,tpQq}2


.

Proof. The Boltzmann relative entropy of ηπs,tpx,Qq w.r.t. ηs,tpx,Qq is given by the formula

Ent
`
ηπs,tpx,Qq | ηs,tpx,Qq

˘
“ ´1

2

“
tr
`
I ´ φs,tpQq´1φπs,tpQq

˘
` log det

`
φπs,tpQqφs,tpQq´1

˘‰

`1

2

@`
ψπ
s,tpx,Qq ´ ψs,tpx,Qq

˘
, φs,tpQq´1

`
ψπ
s,tpx,Qq ´ ψs,tpx,Qq

˘D
.
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By Corollary 2.8, for any t ě s` υ we have

Ent
`
ηπs,tpx,Qq | ηs,tpx,Qq

˘
“ ´1

2

“
tr
`
I ´ φs,tpQq´1φπs,tpQq

˘
` log det

`
φπs,tpQqφs,tpQq´1

˘‰

`1

2

`
̟o

`pCq ` 1{̟c
´

˘ ››ψπ
s,tpx,Qq ´ ψs,tpx,Qq

››2
2
.

In addition, there exists some δ ą 0 s.t. for any π P Bpδq

}I ´ φs,tpQq´1φπs,tpQq}2 “ }pφs,tpQq ´ φπs,tpQqqφs,tpQq´1}2

ď
`
̟o

`pCq ` 1{̟c
´

˘
}φs,tpQq ´ φπs,tpQq}2 ď 1

2
?
r
.

This implies that

Ent
`
ηπs,tpx,Qq | ηs,tpx,Qq

˘
“ 1

2
tr
`
φs,tpQq´1

“
φπs,tpQq ´ φs,tpQq

‰ ˘

`1

2

`
̟o

`pCq ` 1{̟c
´

˘ „››ψπ
s,tpx,Qq ´ ψs,tpx,Qq

››2
2

` 3

2

?
r }φs,tpQq ´ φπs,tpQq}2


.

The last assertion is a consequence of the following lemma applied to A “ I ´ φs,tpQq´1φπs,tpQq.
Lemma 3.4. For any pr ˆ rq-matrix A we have

}A}2 ă 1

2
?
r

ùñ |log det pI ´Aq| ď 3

2

?
r }A}2.

Proof. For any n ě 1 we have
|trpAnq| ď }A}nF ď

?
r
n }A}2n.

Using the well-known trace formulae

log detpI ´Aq “ trplog pI ´Aqq “ ´
ÿ

ně1

n´1 trpAnq

we conclude that
| log detpI ´Aq| ď ´ log

`
1 ´

?
r }A}2

˘
.

The last assertion comes from the inequality

0 ď ´ log p1 ´ uq ď u ` 1

2

u2

1 ´ u
“ u

ˆ
1 ` 1

2

u

1 ´ u

˙
ď 3u{2

which is valid for any u P r0, 1{2r. This ends the proof of the lemma.

To take the final step in the proof of the theorem we note that φπs,tpQq ě φs,tpQq implies

tr
`
φs,tpQq´1

“
φπs,tpQq ´ φs,tpQq

‰ ˘
ď

`
̟o

`pCq ` 1{̟c
´

˘
tr
`“
φπs,tpQq ´ φs,tpQq

‰˘

ď ?
r
`
̟o

`pCq ` 1{̟c
´

˘
}φπs,tpQq ´ φs,tpQq}2

.

This ends the proof of the theorem.
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Theorem 3.5. Assume (H)
0

and (H)
2

are satisfied. For any Q P S
`
r , and for t ě s ` υ we have

the almost sure Wasserstein estimate

W2

“
ηπs,tpx,Qq, ηs,tpx,Qq

‰
2

ď }ψπ
s,tpx,Qq ´ ψs,tpx,Qq}2

2
` tr

“
φπs,tpQq ´ φs,tpQq

‰

` 4r
“
̟c

`pOq ` 1{̟o
´

‰ “
̟o

`pCq ` 1{̟c
´

‰
}φπs,tpQq ´ φs,tpQq}2.

In addition, for any n ě 1 and any t ě s` υ we have

W2n

“
ηs,tpx1, Q1q, ηπs,tpx2, Q2q

‰

ď }ψs,tpx,Qq ´ ψπ
s,tpx,Qq}

`
c
rn

2

`
̟o

`pCq ` 1{̟c
´

˘1{2 }φt´spx1, Q1q ´ φπt´spx2, Q2q}2 e1{2` 3

4n .

Proof. The L2-Wasserstein distance between the Gaussian distributions ηπs,tpx,Qq, and ηs,tpx,Qq is
given by

W2

“
ηπs,tpx,Qq, ηs,tpx,Qq

‰2

“ }ψπ
s,tpx,Qq ´ ψs,tpx,Qq}2

2
` tr

”
φs,tpQq ` φπs,tpQq ´ 2

“
φs,tpQq1{2φπs,tpQqφs,tpQq1{2

‰1{2
ı
.

A proof of this formula can be found in [37, 63]. We assume that

”
φs,tpQq1{2φπs,tpQqφs,tpQq1{2

ı1{2
ě 0

is the principal square root of the positive definite matrix φs,tpQq1{2φπs,tpQqφs,tpQq1{2 ě 0. Also
observe that

φπs,tpQq ě φs,tpQq ñ φs,tpQq1{2φπs,tpQqφs,tpQq1{2 ě φs,tpQq2
ě λminpφs,tpQqq2 Id
ě

`
̟o

`pCq ` 1{̟c
´

˘´2
Id

as soon as t ě s` υ. The last estimate is a consequence of Theorem 2.4.
Observe that

φs,tpQq ` φπs,tpQq ´ 2
”
φs,tpQq1{2φs,tpQqφs,tpQq1{2

ı1{2
“ φπs,tpQq ´ φs,tpQq ě 0.

This implies that

W2

“
ηπs,tpx,Qq, ηπs,tpx,Qq

‰2

“ }ψπ
s,tpx,Qq ´ ψs,tpx,Qq}2

2
` tr

“
φπs,tpQq ´ φs,tpQq

‰

`2 tr
”“
φs,tpQq1{2φs,tpQqφs,tpQq1{2

‰1{2 ´
“
φs,tpQq1{2φπs,tpQqφs,tpQq1{2

‰1{2
ı

ď }ψπ
s,tpx,Qq ´ ψs,tpx,Qq}2

2
` tr

“
φπs,tpQq ´ φs,tpQq

‰

`2 r }
“
φs,tpQq1{2φs,tpQqφs,tpQq1{2

‰1{2 ´
“
φs,tpQq1{2φπs,tpQqφs,tpQq1{2

‰1{2 }2.
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Using (1.12) we have

}
“
φs,tpQq1{2φs,tpQqφs,tpQq1{2

‰1{2 ´
“
φs,tpQq1{2φπs,tpQqφs,tpQq1{2

‰1{2 }2

ď 2
`
̟o

`pCq ` 1{̟c
´

˘
}φs,tpQq1{2

“
φπs,tpQq ´ φs,tpQq

‰
φs,tpQq1{2}2

ď 2
“
̟o

`pCq ` 1{̟c
´

‰
}φs,tpQq1{2}22 }φπs,tpQq ´ φs,tpQq}2.

By Corollary 2.8 we conclude that

}
“
φs,tpQq1{2φs,tpQqφs,tpQq1{2

‰1{2 ´
“
φs,tpQq1{2φπs,tpQqφs,tpQq1{2

‰1{2 }2

ď 2
“
̟c

`pOq ` 1{̟o
´

‰ “
̟o

`pCq ` 1{̟c
´

‰
}φπs,tpQq ´ φs,tpQq}2.

This ends the proof of the first assertion.
Observe that

ψs,tpx,Qq law“ ψs,tpx,Qq ` φt´spx,Qq1{2 Z

and
ψ
π
s,tpx,Qq law“ ψπ

s,tpx,Qq ` φπt´spx,Qq1{2 Z

where Z stands for an r-dimensional Gaussian random variable with unit covariance matrix, and
φt´spx,Qq1{2 stands for the principal square root of φt´spx,Qq. Combining (1.12) with Theorem 2.4
for any n ě 1 and any t ě s` υ we have

W2n

“
ηs,tpx1, Q1q, ηπs,tpx2, Q2q

‰

ď }ψs,tpx,Qq ´ ψπ
s,tpx,Qq}

`
c
rn

2

`
̟o

`pCq ` 1{̟c
´

˘1{2 }φt´spx1, Q1q ´ φπt´spx2, Q2q}2 e1{2` 3

4n .

To check the last assertion, we use Stirling approximation to prove that

E

«
}

ÿ

1ďkďr

Z2

k}n
ff 1

n

ď
ÿ

1ďkďr

E
“
Z2n
1

‰ 1

n “ r

2

„p2nq!
n!

 1

n

ď 2 r n e1` 3

2n .

This ends the proof of the theorem.

3.2 Projection-type models

We consider the projection models discussed in Section 2.3. The semigroup commutation properties
(2.18) already imply that

ψπ
s,tpx, πpQqq “ ψs,tpx, πpQqq and ψ

π

s,tpx, πpQqq “ ψs,tpx, πpQqq.

Since πpP q “ P “ Pπ “ πpPπq we the steady state Kalman-Bucy diffusions coincide; that is we
have that

ψπ
s,tpx, Pπq “ ψs,tpx, P q and ψ

π

s,tpx, P q “ ψs,tpx, P q.
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By Theorem 2.12 we have
$
&
%

dψπ
s,tpx,Qq “

“
A ´ π

`
φπs,tpQq

˘
S
‰
ψπ
s,tpx,Qq dt` π

`
φπs,tpQq

˘
C 1Σ´1 dYt

Btπpφπs,tpQqq “ Riccpπpφπs,tpQqqq.
This implies that

ψπ
s,tpx,Qq “ ψs,tpx, πpQqq and ψ

π
s,tpx,Qq “ ψs,tpx, πpQqq.

Thus, we have the decompositions

ψπ
s,tpx,Qq ´ ψs,tpx,Qq “ ψs,tpx, πpQqq ´ ψs,tpx,Qq

and
ψ
π
s,tpx,Qq ´ ψs,tpx,Qq “ ψs,tpx, πpQqq ´ ψs,tpx,Qq.

These formulae show that the convergence analysis of both ψπ
s,tpx,Qq ´ ψs,tpx,Qq and ψ

π
s,tpx,Qq ´

ψs,tpx,Qq to 0, as the time horizon pt ´ sq Ò 8, reduces exactly to the stability properties of the
Kalman-Bucy diffusion discussed in the article [16]. We point to this detailed study [16] for the
exact Kalman-Bucy convergence results.

4 Some applications

4.1 Variance inflation models

We let Π :“ tπǫ : ǫ P r0, 1su be the set of mappings

πǫpQq “ Q` ǫ T ùñ Γπǫ
pQq “ ǫ2 TST

indexed by ǫ P r0, 1s and a given reference matrix T ě 0. In this situation, the δ-balls around the
identity mapping are given for any δ ď 1 by the compact sets

Bpδ}T }2q “ tπǫ : ǫ P r0, δsu Ă Π.

Conditions (H)
0

and (H)
1

are clearly met with

B0 “ ǫ2 TST B1 “ 0 B2 “ 0 RpQq “ 0

Rπ “ R ` ǫ2 TST Aπ “ A Sπ “ S ùñ ΞπpQq “ ǫ2 TST.

To check (H)
2

we observe that

R´1{2RπR
´1{2 ´ Id “ ǫ2R´1{2TSTR´1{2

ùñ R´1{2RπR
´1{2 ď

`
1 ` ǫ2 }R´1{2TSTR´1{2}

˘
Id

ùñ R ď Rπ ď R
`
1 ` ǫ2 }R´1{2TSTR´1{2}

˘
Id ùñ (H)

2
.

In this situation Theorem 2.6 yields the following corollary.

Corollary 4.1. There exists some δ P r0, 1s such that for any ǫ P r0, δs and for any time horizon
t ě 0 and any Q P S

`
r we have

}φπǫ

t pQq ´ φtpQq}2 ď ǫ2
“
χ1pδq ` e´4tν χ2pδ, }Q}2q

‰

for some finite constant χ1pδq, resp. χ2pδ, }Q}q, whose values only depend on the parameter δ, resp.
on pδ, }Q}q. In addition, for any ǫ P r0, δs we have

}Pπǫ
´ P }2 ď ǫ2 χ1pδq.
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4.2 Block-diagonal localization

Assume the covariance matrices associated with the Kalman filter in (1.2) satisfy the property,

D ι ą 0 : @t ě 0 |i ´ j| ą ι ùñ Ptpi, jq “ 0.

In words, the coordinates of the signal have been arranged so that the ι-long (or longer) range
interactions between the state coordinates are null. The above condition is met if and only if the
matrices Pt are block-diagonal. Since the state variables are Gaussian, this property is equivalent to
the fact that the state block components are block-two-by-two marginally independent. In this case,
the signal-observation process pXt, Ytq “ pXtrks, Ytrksq1ďkďn defined in (1.1) can be decomposed
into n-independent prrks ˆ r1rksq-dimensional filtering problems pXtrks, Ytrksq of the form

"
dXtrks “ Arks Xtrks dt ` R1{2rks dWtrks
dYtrks “ Crks Xtrks dt ` Σ1{2rks dVtrks with 1 ď k ď n.

with r “
ř

1ďiďn rris. In this elementary case, the resulting Kalman-Bucy filter and the associated
Riccati equation collapse to n independent evolution equations. In this case, the drift and the
sensor matrices pA,Cq, as well as the covariance matrices pR,Σq and Pt are block-diagonal matrices
of appropriate dimensions.

Now observe that the sample covariance matrices ptpi, jq are generally non-null, even if Ptpi, jq “
0. To mask these noisy entries, we use a localization mapping given in (2.16). It is readily checked
that the mapping π satisfies the orthogonality condition (H)

3
discussed in (2.15) with the cellular

algebra B “ Mrr1s ‘ . . . ‘ Mrrns. With a little extra work, we can also check that

n´1J ď L ď r‹ Id ñ n´1 Q ď πpQq ď r‹ DiagpQp1, 1q, . . . , Qpr, rqq

with r‹ :“ _1ďkďnrpkq.
The central idea behind these mask-regularisations is to transform a given sample covariance

matrix p into some covariance matrix with the same sparsity pattern as the limiting covariance P ; or
in practice, to mask spurious ‘long-range’ correlations that are (almost) null in the true covariance.
This idea is relevant in numerous applications of the EnKF in which state-space interaction and signal
observations are mostly local, and a kind-of ‘decay-of-correlation’ effect is present; see [44, 40, 67].

One difficulty is ensuring the mask-matrix L is positive definite so that the projection Ld p is a
positive map. In the block-diagonal model discussed above this property is clearly satisfied. In more
general situations, several strategies can be underlined. The first one is to design mask-matrices as
linear combinations L “

řn
i“1

li zi z
1
i of unit rank vectors zi, with li ě 0.

4.3 Bose-Mesner projections

We introduce the Bose-Mesner algebra and relevant projections and applications here. For a more
thorough discussion on Bose-Mesner algebras and their application in statistical and quantum
physics, combinatorics, coding, graph theory, and statistical covariance analysis (more particularly in
experimental designs) we refer to the seminal article of Bose-Mesner [18], the ones of Nelder [61, 62],
the more recent articles [30, 22, 38], as well as the books [19, 10].

4.3.1 Association schemes

We set I “ t1, . . . , ru the index set of the coordinates of the signal. Let P “ Y0ďqďnPq be an
n-partition of the product set I2 such that
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• The associated classes Pq are symmetric for any 0 ď q ď n, and P0 :“ tpi, iq : i P Iu.

• For any 0 ď q1, q2 ď n, there exists some integer wq
q1,q2 (the parameters of the scheme; a.k.a.

parameters of the first kind or the structural constants) such that

@0 ď q ď n @pi, jq P Pq wq
q1,q2

“ Card tk P I : pi, kq P Pq1 pk, jq P Pq2u .

These association schemes can be interpreted as a partition of the edges/arcs of a complete
graph (with vertex set I) into n classes, often thought of as color classes. In this representation,
there is a loop at each vertex and all the loops receive the same 0-th color. The number of triangles
with a fixed arc-base with color q and the other two arcs with colors q1 and q2 is a number wq

q1,q2

that doesn’t depend on the choice of the arc-base. Each vertex i is contained in exactly vq arcs
with color q. The number vq is called the valency of the relation induced by Pq. The parameters
w

q
q1,q2 “ w

q
q2,q1 are called the parameters of the scheme (a.k.a. parameters of the first kind or the

structural constants).
For each 1 ď q ď n we let Bq be the adjacency matrix; that is

Bqpk, lq “ 1pk,lqPPq
“ Bqpl, kq ùñ B0 “ Id and

ÿ

0ďqďn

Bq “ J.

We also have
Bq1Bq2 “ Bq2Bq1 “

ÿ

0ďqďn

wq
q1,q2

Bq and BqJ “ JBq “ vq J.

This shows that Bq has exactly vq non-zero entries in every row and every column. Since for any
q1 ­“ q2 we have

pBq1 ˝ Bq2qpk, lq “ 1pk,lqPPq1
XPq2

“ 0 ñ Bq1 ˝Bq2 “ 1q1“q2 Bq1

the set B is also closed w.r.t. the Hadamard product and contains I, J . Thus, the set

B :“
#

ÿ

0ďqďn

bq Bq : b “ pbqq0ďqďn Ă R
n`1

+

is an associative commutative algebra called the Bose-Mesner algebra of the association scheme.
Notice that B is also a matrix ‹-algebra (i.e. closed by matrix multiplication, the transposition,
addition and the scalar multiplication). These special cases of finite dimensional C

‹-algebra are
unitarily equivalent to block-diagonal matrices. By a theorem of Von Neumann we also mention
that the orthogonal projection on any matrix ‹-algebra is a positive map.

An illustration when n “ 2 and r “ 6 is provided by

B0 “ Id, B1 “

»
——————–

0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0

fi
ffiffiffiffiffiffifl

and B2 “ J ´ rB0 `B1s .

In this case we have B2
1

“ 2Id `B1 “ 2B0 `B1 and B1B2 “ 0 “ B2B1.
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4.3.2 Minimal orthogonal projections

The commuting matrices Bq are simultaneously diagonalizable, B has a basis of minimal orthogonal
idempotents Di; that is, we have that

Dq1Dq2 “ 1q1“q2Dq1 and
ÿ

0ďqďr

Dq “ Id.

Without any loss of generality we can choose D0 “ r´1J . The matrices Dq are called the minimal
idempotents of the algebra B. In addition, the column vectors Di,1 . . . ,Di,r ofDi are the eigenvectors
of any matrix in B. The eigenvector spaces Di “ SpanpDi,1 . . . ,Di,rq are mutually orthogonal and
every vector u P R

r can be expressed uniquely as u “ ř
0ďqďn ui with ui P Di (notice that D0 is the

1-dimensional space of constant vectors). Also notice that the dimension of Di equals to the rank
of Di, which is equal to the trace of Di (since all non-zero eigenvalues of Di are equal to 1).

In particular, we have

BqDk “ xBq,DkyF
xDk,DkyF

Dk ùñ λkpBqq “ xBq,DkyF
xDk,DkyF

where λkpBqq stands for the k-th eigenvalue of Bq. Further details on these simultaneous diagonal-
ization can be found in [11].

The orthogonal projection of a matrix Q on B is given by the formulae

πpQq “ projBpQq :“
ÿ

0ďqďn

xQ,BqyF
xBq, BqyF

Bq “
ÿ

0ďqďn

xQ,DqyF
xDq,DqyF

Dq.

To check condition (H)
3

we observe that

Dq1Dq2 “ 1q1“q2Dq1 ùñ projBpDq Qq “ xQ,DqyF
xDq,DqyF

Dq “ Dq projBpQq.

This yields
@B P B projBpB rQ´ projBpQqsq “ 0.

For any matrix M we have

xMM 1,DqyF “ trpDqMM 1q “ trpM 1D2

qMq “ trppDqMq1pDqMqq ě 0.

This implies that

@Q P S
`
r xQ,DqyF ě 0 and projBpQq “

ÿ

0ďqďn

xQ,DqyF
xDq,DqyF

Dq ě 0.

This shows that the orthogonal projection is a positive map from the algebra of square matrices
into itself. In addition, it is trace-preserving and unital in the sense that

trpprojBpQqq “ trpQq and projBpIdq “ Id.

Last, but not least, using the decomposition

Q “ projBpQq
K
` rQ´ projBpQqs ùñ }Q´ projBpQq}F ď }Q}F ď trpQq (4.1)

as soon as Q P S
`
r . Working a little harder, we check that

}Q´ projBpQq}F ď }Q}F
„
1 ´ 1

n` 1

1

^0ďqďntrpDqq
trpQq2
trpQ2q

1{2

.
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4.3.3 Distance regular graphs

Another prototype of Bose-Mesner algebra are distance regular graphs. Given a connected graph
G “ pV, Eq with vertex set V and arc/edges set E , we let ρpi, jq be the path-length distance between
two vertices i, j P V. Let

Spi, qq “ tj P V : ρpi, jq “ qu
be the sphere of radius q. The graph G is distance regular if and only if we have

Card pSpi, q1q X Spj, q2qq “ wρpi,jq
q1,q2

for some parameters wq
q1,q2 . In words, for every two vertices pi, jq at distance q there are precisely

w
q
q1,q2 vertices in the graph at distance q1 from i and q2 from j.

In these settings, the matrices

pBqqpi, jq “ 1ρpi,jq“q with 0 ď q ď diampGq :“ sup
pi,jqPV2

ρpi, jq

are called the distance matrices (B0 “ Id, B1 the adjacency matrix, and so on). In this situation,
the association scheme is given by the partition

@0 ď k ď d :“ diampGq Pk “ tpi, jq P I2 : ρpi, jq “ ku.

In addition we have wq1
q2,1

“ 0 for any q1 ­“ 0, and q2 ­“ tq1 ´ 1, q1, q1 ` 1u. If we set

aq :“ w0

q,q bq :“ w
q
q´1,1 and cq :“ w

q
q`1,1

then we have
B1Bq “ cq´1 Bq´1 ` pa1 ´ bq ´ cqq Bq ` bq`1Bq`1

and
B1Bd “ cd´1Bd´1 ` pa1 ´ bdq Bd.

This shows that the adjacency matrix B1 generates B (i.e. the matrices Bq can be written as
polynomials of degree q in B1), so that the eigenvalues pλkpB1qq

1ďkďd of B1 are mutually distinct.

4.3.4 Riccati solvers

A given matrix Q belongs to B if and only if it is constant within each block. To check this claim,
we observe that

Q “ projBpQq ðñ @0 ď q ď n QdBq “ xQ,BqyF
xBq, BqyF

Bq

ðñ @0 ď q ď n @pi, jq P Pq

ÿ

pk,lqPPq

Qk,l “ w0

q,q Qi,j

ðñ @0 ď q ď n @pi, jq, pi1, j1q P Pq Qi,j “ Qi1,j1.

In other words, the matrix is constant within each block. When r “ r1, then pπpAq, πpSq, πpRqq “
pA,R, Sq is satisfied as soon as pA,R,C,Σ´1q P B.

We further assume that pA,R, Sq P B and we set

A :“
ÿ

0ďqďn

aq Dq R :“
ÿ

0ďqďn

rq Dq and S :“
ÿ

0ďqďn

sq Dq.
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Let P0 “ πpP0q “ ř
0ďqďn αqp0q Dq be some covariance matrix in B. By Theorem 2.12 we have

Pt “ π pPtq “
ÿ

0ďqďn

αqptq Dq.

In addition, we have

BtPt “
ÿ

0ďqďn

Btαqptq Dq “ RiccpPtq “ AπpPtq ´ πpPtqA1 `R ´ πpPtqSπpPtq

“
ÿ

0ďqďn

“
2aq αqptq ` rq ´ αqptq2 sq

‰
Dq.

This implies that "
Btαqptq “ 2aq αqptq ` rq ´ αqptq2 sq

q “ 0, . . . , n.

When sq ­“ 0 ­“ rq this collection of Riccati equations take the form

Btαqptq “ ´sq pαqptq ´ z1pqqq pαqptq ´ z2pqqq

with the couple of roots

z1pqq “
aq ´

b
a2q ` sqrq

sq
ă 0 ă z2pqq “

aq `
b
a2q ` sqrq

sq
.

The solutions of the above equations are given by the formulae:

αqptq ´ z2 “ pαqp0q ´ z2pqqq pz2pqq ´ z1pqqq e´2t
?

a2q`sqrq

pz2pqq ´ αqp0qq e´2t
?

a2q`sqrq ` pαqp0q ´ z1pqqq
ÝÑtÑ8 0.

4.4 Stein-Shrinkage models

Stein-Shrinkage models are an extension of the variation inflation model to parameters ǫ “ ǫpQq
and target-type matrices T “ T pQq that both may depend on the matrix Q. These models are
defined by the formula

πpQq “ ǫpQq T pQq ` p1 ´ ǫpQqq Q
for some function Q ÞÑ ǫpQq P r0, 1s and some mapping T from S

`
r into itself. It is not within scope

of this article to review all the relevant covariance matrix estimators encountered in the statistics
literature fitting this general model. We will just illustrate this model with three important and
currently used approximations:

• Mask matrix estimates are associated with mappings T defined by T pQq :“ L d Q with a
matrix L of the form

Li,j “ 1|i´j|ăι ùñ Q´ LdQ “ 1|i´j|ěι Qi,j. (4.2)

• Maximum likelihood type estimates are associated with mappings T defined by

T pQq :“ argmax
qPS`

r

`
log detpqq ` trpq´1Qq ` α }Ld q}

˘

for some α ą 0, some mask matrix L [15, 23, 48, 49], and some matrix norm }.} on S
`
r .
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• Nyström estimates are associated with mappings T defined by

T pQq “ pJ ´ LPcq dQ` LPc d
“
QPc,P Q´1

P
QP,Pc

‰
(4.3)

where t1, . . . , ru “ P Y Pc stands for a partition of the index coordinate set and LPc stands
for the mask matrix defined by

LPcpi, jq “ 1PcˆPcpi, jq.

At the level of the sample covariance matrices p0, the matrix T pp0q is obtained by taking the
sample covariance matrix associated with projection TVpζlq of the state particle vectors

ζ 1 :“

»
—–
ζ 1
1

...
ζ 1
r

fi
ffifl :“

“
ξ10 ´m0, . . . , ξ

N
0 ´m0

‰
“

»
—–
ξ1
0
p1q ´m0p1q . . . ξN

0
p1q ´m0p1q

...
...

...
ξ1
0
prq ´m0prq . . . ξN

0
prq ´m0prq

fi
ffifl

onto the vector space VP of RN spanned by the random vectors

Vi “ ζki :“

»
—–

ξ1
0
pkiq ´m0pkiq

...
ξN
0

pkiq ´m0pkiq

fi
ffifl P R

N with P “ tk1, . . . , ksu and s :“ CardpPq ď r.

More precisely, if we set

N T pp0q “

»
—–

pTVζlq1

...
pTVζrq1

fi
ffifl rTVζl, . . . ,TVζls

“ pTVζq1TVζ “ ζ 1TVζ “

»
—–

xT ζ1,TVζ1y . . . xT ζ1,TVζry
...

xT ζr,TVζ1y . . . xTVζr,TVζry

fi
ffifl

then we have that

E pT pp0qq “ T pP0q ` s

N
LPc d

“
QPc ´QPc,P Q´1

P
QP,Pc

‰
. (4.4)

The proof of this bias property and related variance estimates can be found in [9]. For the
convenience of the reader a proof of the last assertion is provided in the Appendix.

For mask type mappings of the form (4.2), condition (H)
0

is satisfied by first letting

pB0, B1, B2q “ p0, 0, 0q ùñ ΓπpQq “ RpQq :“ ǫpQq2 pL dQ´QqSpL dQ´Qq.

To ensure the uniform estimate supQPS`
r

}RpQq}2 ă 8 holds we use Gershgorin’s theorem to show
that

}Q´ LdQ}2 ď lιpQq :“ sup
1ďiďr

ÿ

|i´j|ěι

|Qi,j|.

This yields

}RpQq}2 ď ǫ2pQq }S}2 l2ι pQq ñ RpQq ď RpQq Id with RpQq “ ǫ2pQq }S}2 l2ι pQq.

39



When lιpQq is too large, the quadratic perturbation may have some destabilizing effects. To avoid
these issues we assume that ǫpQq is chosen so that

ǫpQq “ ǫ1 1lιpQqďǫ´1

2

ùñ RpQq ď ̟ Id with ̟ “ }S}2 pǫ1{ǫ2q2

for some ǫ1 P r0, 1s, and some threshold ǫ2 ą 0. In this case, condition (H)
1

is also met with

Rπ “ R` pǫ1{ǫ2q2 }S}2 Id Aπ “ A and Sπ “ S ùñ ΞπpQq “ pǫ1{ǫ2q2 }S}2 Id.

Arguing as in the end of Section 4.1 we have

R´1{2RπR
´1{2 ´ Id “ pǫ1{ǫ2q2}S}2 R´1

ùñ R´1{2RπR
´1{2 ď

`
1 ` pǫ1{ǫ2q2 }S}2 }R´1}

˘
Id

ùñ R ď Rπ ď R
`
1 ` pǫ1{ǫ2q2 }S}2 }R´1}

˘
Id ùñ (H)

2
.

Now we can consider the set

Π “ tπǫ1,ǫ2 : pǫ1, ǫ2q P pr0, 1s ˆ rδ, δ´1squ

for some given parameter δ and the just described mappings πǫ1,ǫ2 given by

πǫ1,ǫ2pQq “ Q` ǫ1 1
lιpQqďǫ´1

2

rLdQ´Qs ùñ }πǫ1,ǫ2 ´ id}2 ď ǫ1{ǫ2.

The associated δ-balls around the identity mapping are given in this case by the compact sets

Bpδq “ tπǫ1,ǫ2 : ǫ1{ǫ2 ď δu

for any δ ď 1.
More generally, the Stein-Shrinkage models discussed above can be extended without further

work to general mappings of the following form

πǫ1,ǫ2pQq “ Q` ǫ1 1
lT pQqďǫ´1

2

rT pQq ´Qs

where T stands for some mapping from S
`
r into itself such that

}T pQq ´Q}2 ď lT pQq

for some mapping Q P S
`
r ÞÑ lT pQq P r0,8r. Further examples of such mappings include the Bose-

Mesner projections T pQq “ projBpQq discussed in Section 4.3 and which can be seen to fit this
model via the trace operator in (4.1).

In this general setting, Theorem 2.6 yields the following corollary.

Corollary 4.2. There exists some ρ P r0, 1s such that for any pǫ1, ǫ2q P pr0, 1s ˆ rδ, δ´1sq with
ǫ1 ď ρ ǫ2, for any Q P S

`
r and any time horizon t ě 0 we have

}φπǫ1,ǫ2

t pQq ´ φtpQq}2 ď pǫ1{ǫ2q2
“
χ1pρq ` e´4tν χ2pρ, }Q}2q

‰

for some finite constant χ1pρq, resp. χ2pρ, }Q}q, whose values only depend on the parameter δ, resp.
on pρ, }Q}q. In addition, for any ǫ1 ď ρ ǫ2 we have

}Pπǫ1,ǫ2
´ P }2 ď pǫ1{ǫ2q2 χ1pρq.

This section illustrates how our first class of perturbation-type model captures most projection-
type mappings; and consequently those results relevant to perturbation-type mappings are applica-
ble to projection-type models (but not vice-versa).
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4.5 Mean repulsion models

The preceding subsections were concerned with perturbation and projecting mappings π that di-
rectly fell within the class of models defined by (1.9). We also illustrated how the first class of
perturbation-type model captures most projection-type mappings considered in (1.9).

In this subsection we illustrate that our main result (viz. Theorem 2.6 and (H)
2
) on the robust-

ness and boundedness of perturbed Riccati semigroups, captures a larger class of perturbation-type
models than those simply defined by the condition (H)

0
and (1.14). Of course, Theorem 2.6 also

applies under the more constrained condition (H)
0

as a special case, and (H)
0

is still of specific
interest in, e.g., the variance inflation and Stein-Shrinkage-type models discussed in the preceding
subsections. However, (H)

0
is not satisfied by the perturbation scheme considered in this subsection.

Nevertheless, (H)
2

is satisfied, and thus Theorem 2.6 still applies.
As their name indicates, mean repulsion models are defined by adding an extra repulsion term

around the sample averages in the nonlinear diffusion (1.4). Consider the nonlinear diffusion

dX t “
”
A Xt dt ´ T1pPtqpX t ´ pXtq

ı
dt ` R1{2 dW t

`PtC
1Σ´1

”
dYt ´

´
C
´
X t ` T2pX t ´ pXtq

¯
dt ` Σ1{2 dV t

¯ı

“ rA ´ PtSsX t ´ rT1pPtq ` PtST2s pX t ´ pXtq dt
` R1{2 dW t ` PtC

1Σ´1

”
dYt ´ Σ1{2 dV t

ı

where T1 : S`
r ÞÑ Mr stands for some mapping and T2 some given matrix.

A key feature of this class of mean repulsion models is that their Ft-conditional projections
coincide with the Kalman-Bucy filter, only their conditional covariance matrices are altered.

To describe the Riccati equation associated with this class of nonlinear diffusions we observe
that

dpX t ´ pXtq “ pA´ PtS ´ rT1pPtq ` PtST2s q pX t ´ pXtq dt` R1{2 dW t ´ PtC
1R

´1{2
2

dV t.

Thus, the covariance evolution equation is given by the Riccati equation

BtPt “ rA´ PtS pId ` T2q ´ T1pPtqs Pt ` Pt rA ´ PtS pId ` T2q ´ T1pPtqs1 `R ` PtSPt

“ APt ` PtA
1 `R ´ PtSPt ´ PtST2Pt ´ pT1pPtqPt ` PtT1pPtq1q ´ PtT2SPt.

For instance, choosing
T1pQq “ ǫ1QS and T2 “ ǫ2Id

for some pǫ1, ǫ2q such that pǫ1 ` ǫ2q ą ´1{2 we find that

BtPt “ APt ` PtA
1 `R ´ PtSǫPt with Sǫ1,ǫ2 :“ p1 ` 2pǫ1 ` ǫ2qqS.

We let φǫ,t be the Riccati semigroup associated with the above equation, with ǫ “ pǫ1, ǫ2q P Π “
r0, 1s2. Theorem 2.6 yields the following corollary.

Corollary 4.3. There exists some δ P r0, 1s such that for any ǫ “ pǫ1, ǫ2q P r0, δs2 and for any time
horizon t ě 0 and any Q P S

`
r we have

}φǫ,tpQq ´ φtpQq}2 ď 2pǫ1 ` ǫ2q
“
χ1pδq ` e´4tν χ2pδ, }Q}2q

‰
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for some finite constant χ1pδq, resp. χ2pδ, }Q}q, whose values only depend on the parameter δ, resp.
on pδ, }Q}q. In addition, if Pǫ “ φǫ,tpPǫq is the fixed point of φǫ,t, then for any ǫ P r0, δs we have

}Pǫ ´ P }2 ď 2pǫ1 ` ǫ2q χ1pδq.

Appendix

Proof of formula (1.8)

Let φπs,t be the semigroup of equation (1.8). Also let X
π
t be the time non-homogeneous diffusion

given by the equation

dX
π
t “ A X

π
t dt ` R1{2 dW t ` π

`
φπ0,tpQq

˘
C 1Σ´1

”
dYt ´

´
CX

π
t dt` Σ1{2 dV t

¯ı

“
“
A ´ π

`
φπ0,tpQq

˘
S
‰
X

π
t dt ` π

`
φπ0,tpQq

˘
C 1Σ´1 dYt ` dMπ

t

with the r-valued martingale

dMπ
t :“ R1{2 dW t ´ π

`
φπ0,tpQq

˘
C 1R

´1{2
2

dV t

with covariation matrix

BtxMπpkq,Mπplqyt “
“
R ` π

`
φπ0,tpQq

˘
Sπ

`
φπ0,tpQq

˘‰
pk, lq.

We have

X
π
t “ exp

¨
˝

t¿

0

“
A´ π

`
φπ0,spQq

˘
S
‰
ds

˛
‚X

π
0

`
ż t

0

exp

¨
˝

t¿

s

“
A ´ π

`
φπ0,upQq

˘
S
‰
du

˛
‚π

`
φπ0,spQq

˘
C 1Σ´1dYs

`
ż t

0

exp

¨
˝

t¿

s

“
A´ π

`
φπ0,upQq

˘
S
‰
du

˛
‚dMπ

s .

This implies that the conditional expectations pXπ
t “ EpXπ

t | Ftq are given by the formula

pXπ
t “ exp

¨
˝

t¿

0

“
A´ π

`
φπ0,spQq

˘
S
‰
ds

˛
‚ pXπ

0

`
ż t

0

exp

¨
˝

t¿

s

“
A´ π

`
φπ0,upQq

˘
S
‰
du

˛
‚π

`
φπ0,spQq

˘
C 1Σ´1dYs.

Equivalently, we have

d pXπ
t “ A pXπ

t dt ` π
`
φπ0,tpQq

˘
C 1Σ´1

”
dYt ´ C pXπ

t dt
ı
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from which we prove that

d
”
X

π
t ´ pXπ

t

ı
“
“
A ´ π

`
φπ0,tpQq

˘
S
‰ ”

X
π
t ´ pXπ

t

ı
dt ` dMπ

t .

This implies that the covariation matrices

Qπ
t :“ E

ˆ”
X

π
t ´ pXπ

t

ı ”
X

π
t ´ pXπ

t

ı1
| Ft

˙
“ E

ˆ”
X

π
t ´ pXπ

t

ı ”
X

π
t ´ pXπ

t

ı1
˙

don’t depend on the observation process, and they satisfy the equation

BtQπ
t “

“
A ´ π

`
φπ0,tpQq

˘
S
‰
Qπ

t `Qπ
t

“
A ´ π

`
φπ0,tpQq

˘
S
‰1 `R ` π

`
φπ0,tpQq

˘
Sπ

`
φπ0,tpQq

˘
.

Recalling that φπ
0,tpQq is the Riccati semigroup of the equation (1.8) we have

Bt
`
Qπ

t ´ φπ0,tpQq
˘

“
“
A´ π

`
φπ0,tpQq

˘
S
‰ `
Qπ

t ´ φπ0,tpQq
˘

`
`
Qπ

t ´ φπ0,tpQq
˘ “
A ´ π

`
φπ0,tpQq

˘
S
‰1

We conclude that

Qπ
0 “ Q ùñ Qπ

t “ φπ0,tpQq “ Pηπt
ùñ π pQπ

t q “ π
`
φπ0,tpQq

˘

where ηπt “ LawpXπ
t | Ftq. This ends the proof of (1.8). See also [36, page 242] (among numerous

other sources) for the related covariance flow of a Kalman filter with an arbitrary gain matrix.

Proof of Lemma 2.10

Condition (2.13) implies that

λmin pWtpπ2qq ě ̟´,tpπq ùñ λmin

´
Wtpπ2q1{2

¯
ě
b
̟´,tpπ2q

ùñ λmax

´
Wtpπ2q´1{2

¯
ď 1{

b
̟´,tpπ2q

from which we conclude that
}Wtpπ2q´1{2}22 ď ̟´,tpπ2q´1. (4.5)

We also have

p2.13q ùñ Wtpπ1q ě Wtpπ1, π2q :“
ż t

0

Uspπ1qVspπ2q U 1
spπ1q ds. (4.6)

Observe that
BsWspπ1, π2q “ Uspπ1, π2q rBsWspπ2qsUspπ1, π2q1

with the flow of matrices

Uspπ1, π2q “ Uspπ1q Uspπ2q´1 ùñ Uspπ, πq “ Id.

We set

}U}2 :“ sup
ps,πqPpr0,tsˆΠq

}Uspπq}2 ă 8 and }V}2 :“ sup
ps,πqPpr0,tsˆΠq

}Vspπq}2 ă 8.

In this notation, using the fact that

sup
sPr0,ts

}BsWspπ2q}2 ď t }U}22 }V}2
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we find that

sup
sPr0,ts

}BsWspπ1, π2q ´ BsWspπ2q}2 ď cU }π1 ´ π2} t }U}2 }V}2 r2 ` cU }π1 ´ π2} t }U}2 }V}2s

from which we conclude that

}Wspπ1, π2q ´ Wspπ2q}2 ď cU }π1 ´ π2} t2 }U}2 }V}2
“
2 ` cU }π1 ´ π2} t2 }U}2 }V}2

‰
. (4.7)

The inequality in (4.6) implies that

Wtpπ1q´1 ď Wtpπ2q´1{2
”
Wtpπ2q1{2 Wtpπ1, π2q´1Wtpπ2q1{2

ı
Wtpπ2q´1{2

“ Wtpπ2q´1{2
”
Wtpπ2q´1{2 Wtpπ1, π2q Wtpπ2q´1{2

ı´1

Wtpπ2q´1{2.

On the other hand we have
“
Wtpπ2q´1{2 Wtpπ1, π2q Wtpπ2q´1{2

‰´1

“
“
Id´ Wtpπ2q´1{2 tWtpπ2q ´ Wtpπ1, π2quWtpπ2q´1{2

‰´1
.

This yields the estimate

Wtpπ2q1{2 Wtpπ1q´1 Wtpπ2q1{2 ď
ÿ

ně0

”
Wtpπ2q´1{2 tWtpπ2q ´ Wtpπ1, π2quWtpπ2q´1{2

ın
.

Combining (4.5) with (4.7), for any ǫ ą 0 there exists some δpt, ǫ, π2q ą 0 such that

}π1 ´ π2} ď δpt, ǫq ùñ }Wtpπ2q´1{2 tWtpπ2q ´ Wtpπ1, π2quWtpπ2q´1{2}2 ď 1 ´ ǫ.

This ends the proof of the lemma.

Proof of the bias estimate (4.4)

Observe that if Z „ N p0, Qq is Gaussian, then the conditional distribution of ZPc “ pZkqkPPc given
ZP “ pZkqkPP is again a centred Gaussian with covariance matrix

TPpQq “ QPc ´QPc,P Q´
P
QP,Pc

where Q´
P

stands for the Moore-Penrose pseudo-inverse of QP . The matrix TP pQq can be seen as
the Schur complement of QP in Q. This shows that

Q´ T pQq “ LPc d TPpQq.

In this notation we have

ζ ζ 1 “
“
ξ10 ´m0, . . . , ξ

N
0 ´m0

‰
»
—–

pξ1
0

´m0q1

...
pξN

0
´m0q1

fi
ffifl “

ÿ

1ďiďN

pξN0 ´m0qpξN0 ´m0q1

“

»
—–
ζ1
...
ζr

fi
ffifl
“
ζ 1
1, . . . , ζ

1
r

‰
“

»
—–

xζ1, ζ1y . . . xζ1, ζry
...

xζr, ζ1y . . . xζr, ζry

fi
ffifl .
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We let g be the matrix

@1 ď i, j ď s gi,j :“ xVi, Vjy ðñ g “

»
—–
V 1
1

...
V 1
s

fi
ffifl rV1, . . . , Vss .

Also let g´ “ pgi,jq1ďi,jďs be the pseudo-inverse of g. The orthogonal projection of a vector ζl with
l R P is given by

projVpζlq “
ÿ

1ďiďs

x
ÿ

1ďjďs

gi,j Vj , ζly Vi “ rV1, . . . , Vss g´

»
—–
V 1
1

...
V 1
s

fi
ffifl ζl :“ TVζl

N T pp0q “

»
—–

TVζl
...

TVζr

fi
ffifl
“
pTVζlq1, . . . , pTVζlq1

‰
“

»
—–

xT ζ1,TVζ1y . . . xT ζ1,TVζry
...

xT ζr,TVζ1y . . . xTVζr,TVζry

fi
ffifl

“

»
—–

xζ1,TVζ1y . . . xζ1,TVζry
...

xζr,TVζ1y . . . xζr,TVζry

fi
ffifl “ ζ pTVζq1 .

Given V, the N random vectors ζ iPc “ pζ ikqkRP P R
r´s, with 1 ď i ď N are independent random

vectors in R
N with mean

E
`
ζ iPc |V

˘
“ QPc,PQ

´1

P
ζ iP with ζ iP :“ pζ ikqkPP P R

s

and covariance matrix

E

´“
ζ iPc ´ E

`
ζ iPc |V

˘‰ “
ζ iPc ´ E

`
ζ iPc |V

˘‰1 |V
¯

“ QPc ´QPc,PQ
´1

P
QP,Pc .

This implies that for any k, l R P we have

E pxζk,TVζly|Vq “
ÿ

1ďi,jďN

E

´
ζ ik TVpi, jqζjl |V

¯

“
ÿ

1ďi,jďN

E

´“
ζ ik ´ E

`
ζ ik|V

˘‰
TVpi, jq

”
ζ
j
l ´ E

´
ζ
j
l |V

¯ı
|V
¯

`
ÿ

1ďi,jďN

E
`
ζ ik|V

˘
TVpi, jq E

´
ζ
j
l |V

¯

“ trpTVq pQPc ´QPc,PQ
´1

P
QP,Pcqpk, lq

`
ÿ

1ďi,jďN

`
QPc,PQ

´1

P
ζ iP

˘
pkq TVpi, jq

´
QPc,PQ

´1

P
ζ
j
P

¯
plq.
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On the other hand, we have

ř
1ďi,jďN

`
QPc,PQ

´1

P
ζ iP

˘
pkq TVpi, jq

´
QPc,PQ

´1

P
ζ
j
P

¯
plq

“ ř
u,vPP

`
QPc,PQ

´1

P

˘
pk, uq ř

1ďi,jďN

”
ζ iu TVpi, jq ζ

j
v

ı `
QPc,PQ

´1

P

˘
pl, vq

“ ř
u,vPP

`
QPc,PQ

´1

P

˘
pk, uq xζu,TV ζvy

`
QPc,PQ

´1

P

˘
pl, vq

“ ř
u,vPP

`
QPc,PQ

´1

P

˘
pk, uq xζu, ζvy

`
QPc,PQ

´1

P

˘
pl, vq.

Taking the expectation we find that

E pxζk,TVζlyq “ s pQPc ´QPc,PQ
´1

P
QP,Pcqpk, lq

`N
ÿ

u,vPP

`
QPc,PQ

´1

P

˘
pk, uq QPpu, vq

`
QPc,PQ

´1

P

˘
pl, vq

“ s pQPc ´QPc,PQ
´1

P
QP,Pcqpk, lq `N

“
QPc,PQ

´1

P
QP,Pc

‰
pk, lq

“
 
s QPc ` pN ´ sq

“
QPc,PQ

´1

P
QP,Pc

‰(
pk, lq.

This shows that

p4.3q ùñ E pT pp0qq “ pJ ´ LPcq dQ

`LPc d
´ s
N

QPc `
´
1 ´ s

N

¯ “
QPc,PQ

´1

P
QP,Pc

‰¯

“ T pP0q ` s

N
LPc d TPpQq.

This ends the proof of (4.4).
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