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Boson-sampling is a highly simplified, but non-universal, approach to implementing optical quan-
tum computation. It was shown by Aaronson & Arkhipov that this protocol cannot be efficiently
classically simulated unless the polynomial hierarchy collapses, which would be a shocking result in
computational complexity theory. Based on this, numerous authors have made the claim that exper-
imental boson-sampling would provide evidence against, or disprove, the Extended Church-Turing
thesis – that any physically realisable system can be efficiently simulated on a Turing machine.
We argue against this claim on the basis that, under a general, physically realistic independent
error model, boson-sampling does not implement a provably hard computational problem in the
asymptotic limit of large systems.

Boson-sampling [1] has been presented as a new, highly
simplified, yet limited form of linear optics quantum com-
putation [2]. It has attracted interest because, despite not
being universal for quantum computation, it implements
a classically hard algorithm using far fewer physical re-
sources than conventional approaches.

In the boson-sampling model we begin by preparing a
multi-mode Fock state, comprising n single photons in m
modes,

|ψin〉 = |11, . . . , 1n, 0n+1, . . . , 0m〉. (1)

This input state is passed through a linear optics net-
work, comprising only beamsplitters and phase-shifters,
implementing a unitary transformation Û . Importantly,
there is no active feedforward, measurement or quantum
memory within the circuit, representing a significant sim-
plification compared to universal linear optics quantum
computing schemes [2]. The output state to the interfer-
ometer is a superposition of all possible photon-number
configurations, subject to the constraint that total pho-
ton number is preserved,

|ψout〉 = Û |ψin〉 =
∑
S

γS |n(S)
1 , . . . , n(S)

m 〉, (2)

where S, of which there are an exponential number, are

the different photon number configurations and n
(S)
i is

the number of photons in the ith mode associated with
configuration S. Following the interferometer we perform
an m-fold number-resolved coincidence measurement of
the output modes. We repeat the experiment many times,
each time sampling from the probability distribution
P (S) = |γS |2. It was shown by Aaronson & Arkhipov
[1] that this sampling problem is likely classically hard
to simulate, offering an exponential quantum speed-up
compared to the best known classical algorithm. The pre-
sumed classical hardness of this problem relates to (1)
there are an exponential number of terms in the out-
put superposition, and (2) each of the amplitudes γS is

proportional to a (different) matrix permanent, which re-
sides in the complexity class #P-complete, a class higher
in the complexity hierarchy than NP-complete, which is
presumed to be classically hard to calculate. Note that
boson-sampling does not actually let us calculate matrix
permanents as this would require an exponential number
of measurements.

The presumed classical hardness of boson-sampling,
combined with its relative simplicity, has attracted much
interest from experimentalists, who wish to demonstrate
architectures with quantum speed-up using the fewest
possible physical resources. Recently, there have been
four demonstrations of boson-sampling using three pho-
tons [3–6].

Any physical system will exhibit imperfections, how-
ever small. Let us assume that each of the desired input
single photon states is actually the desired single photon
state with probability p, otherwise some residual state
comprising erroneous terms, which we will label ρ̂error.
Then our input state is of the form,

ρ̂in =

(
n⊗

i=1

[p|1〉〈1|+ (1− p)ρ̂(i)error]

)
⊗ [|0〉〈0|]⊗

m−n

, (3)

where, for generality, ρ̂
(i)
error may be distinct for each in-

put mode i. This independent error model is very general
and applies to a variety of physically realistic errors. In
the case of photon-number errors, ρ̂error collects all non-
single-photon terms. For example, if the photon source
has a probability of loss and a probability of second or-
der excitation, then ρ̂error = p0|0〉〈0|+ p2|2〉〈2|. Similarly,
spectral impurity and mode-mismatch are common errors
in optical quantum computing. In this instance we can
let |1〉 correspond to a desired spectral mode, which over-
laps with all other photons, whilst ρ̂error collects spectral
components orthogonal to the desired mode. In either
case, p quantifies how close our single photons are to the
desired state. We desire that p = 1. But in any physically
realistic system p < 1.
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After passing this state through the interferometer and
sampling the output distribution, sometimes we will have
sampled from a distribution whereby the input state was
the desired |1〉⊗n ⊗ |0〉⊗m−n, otherwise we have sampled
from an erroneous distribution. The probability that we
have sampled from the desired distribution is P = pn.
That is, the probability of sampling from the desired dis-
tribution scales inverse exponentially with the size of the
system. This scaling characteristic was noted by Aaron-
son & Arkhipov [1, 7] and represents one of the major
challenges facing large-scale demonstrations.

The original proof by Aaronson & Arkhipov only con-
sidered the regime where P > 1/poly(n). This bound has
to-date not been loosened. One cannot rule out that loos-
ening of this bound will be achieved in the future. How-
ever, based on present understanding, boson-sampling is
only known to be hard in this regime. Thus, based on the
presently best known bound, an independent error model
takes us outside the regime whereby boson-sampling is
known to be classically hard. Future developments in our
understanding of this bound may mitigate the concerns
raised here.

It has been widely claimed that experimental demon-
stration of boson-sampling would provide evidence
against [7, 8], strongly contradict [3], or disprove [9–
11] the Extended Church-Turing thesis (ECT) – that
any physical system can be efficiently simulated by
a Turing machine. However, the validity of the ECT
thesis is an asymptotic statement – we cannot make
statements about computational complexity other than
in the asymptotic limit. Since boson-sampling fails in
the asymptotic limit under the physically realistic error
model we presented, it is questionable to make the claim
that boson-sampling provides evidence against the ECT
thesis.

This argument is reminiscent of the P vs. NP debate.
It has long been known that perfect analog computers can
solve NP-complete problems in polynomial time. Thus,
one might expect that demonstration of an analog com-
puter might provide evidence that P = NP. However,
upon closer examination, we find that if physically real-
istic error models are incorporated into analog computa-
tion, their computational complexity collapses and they
are only able to solve problems in P. Thus, for physi-
cal rather than mathematical reasons, analog computa-
tion will never provide evidence in the P vs. NP debate.
Similarly, whilst it is mathematically rigorous that ideal
boson-sampling implements a classically hard problem,
once physical effects are taken into consideration, we find
that large-scale boson-sampling fails, providing no eluci-
dation on the ECT debate.

To overcome the discussed problems we need some
mechanism to accommodate for errors. In conventional
quantum computing, quantum error correction and fault-
tolerant codes are employed to allow for correct opera-
tion of quantum circuits even in the asymptotic limit.

These techniques require intermediate measurement and
feed-forward to progressively keep errors in check. In
the boson-sampling model, however, we are explicitly
forbidden from doing this – we are only allowed pas-
sive operations prior to photo-detection. Instead, exper-
imentalists employ another technique – post-selection.
Here, we simply run the device many times and throw
away measurement results that are incompatible with
the hypothesis. For example, to overcome spectral im-
purity, we perform narrowband filtering prior to photo-
detection. This projects the photons’ wavepackets onto
frequency eigenstates, which are effectively indistinguish-
able, thereby keeping only the component of the output
state for which the photons are indistinguishable. How-
ever, narrowband filtering in effect discards most of the
photons’ wavepackets, significantly reducing the effective
detection efficiency. If this effective efficiency is η then
the total success probability of the device is ηn, which is
exponentially small. Thus, filtering trades one exponen-
tial dependence for another, resulting in a device which
is still exponentially susceptible to errors. In the case of
photon-number errors, post-selection doesn’t help at all.
If ρ̂error = p0|0〉〈0|+ p2|2〉〈2|, then post-selecting on de-
tecting exactly n photons at the output does not project
us uniquely onto the |1, 1, 1, 1, . . . 〉 input state, but could
have equally well projected us onto the |2, 0, 2, 0, . . . 〉 or
|0, 0, 2, 2, . . . 〉 input states and so on, and we have am-
biguity as to which distribution we were sampling from,
yielding the same exponential error dependence as before.

There are two clear ways out of this conundrum.
First, if it were shown that the requirement for sampling
from the correct distribution scaled as P > 1/exp(n)
rather than as P > 1/poly(n) this would overcome this
obstacle. However, this would be an unexpected and
shocking result, as it would imply that there exists a
subset of quantum computation, which implements a
classically hard problem, in the absence of any kind
of fault-tolerance. Were this shown to be the case, it
would be an enormous theoretical achievement in its
own right. Second, error correction techniques suitable
to the boson-sampling model might be developed. This
is perhaps the more promising route. Already, steps
have been made in overcoming significant experimental
scaling problems. Recently, so-called ‘scattershot’ boson-
sampling [12] was presented. This approach overcomes
the problem of non-determinism in spontaneous paramet-
ric down-conversion sources, allowing a scalable, but still
computationally hard device, to be constructed in spite
of non-deterministic sources. This discovery is a signifi-
cant simplification for experimentalists, and overcomes a
major scalability issue, a clear demonstration that funda-
mental scalability issues can be addressed with improved
understanding. We hope that future developments in our
understanding of boson-sampling will overcome the scal-
ability issues raised here.

Of course, no finite sized experiment can ever provide
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proof of an asymptotic statement such as the ECT thesis.
However, large-scale experiments can provide evidence,
if they are combined with an argument that in principle
the device is arbitrarily scalable. In the case of univer-
sal fault-tolerant quantum computation this is possible –
one could in principle demonstrate a large-scale device,
and present the theoretical knowledge of fault-tolerance
theory that in principle arbitrary scalability is possible,
even though the demonstration is of finite size. On the
other hand, in the case of boson-sampling, we have pre-
sented an argument that arbitrary scalability is problem-
atic with present understanding of scalability. This makes
asymptotic claims questionable. However, we hope that
future work will further address scalability issues, and,
in a similar manner to ‘scattershot boson-sampling’, new
developments will overcome these obstacles. Were these
fundamental scalability issues addressed, one could make
a strong claim that experimental boson-sampling pro-
vides evidence against the ECT thesis.

For ‘conventional’ quantum computation, fault-
tolerance requires active feedforward, which we is explic-
itly forbidden in the boson-sampling model. Thus, we
expect that fault-tolerance in the boson-sampling model
would require entirely different techniques. However, such
techniques should remain consistent with the passive-
only nature of boson-sampling. Were fault-tolerance tech-
niques developed that deviated from the model, requiring
active elements, then one might as well build a universal
quantum computer.

We emphasise that our claims apply only in the asymp-
totic limit – we are not making claims about boson-
sampling devices of fixed, finite size. With sufficiently low
error rates, no doubt larger and larger boson-sampling
devices will continue to be demonstrated into the fu-
ture, and we might even reach the point whereby an ex-
perimental implementation demonstrates post-classical
capabilities. However, whilst finite sized instances of
boson-sampling might continue to be demonstrated in
the future, we argue that scalable boson-sampling in the

asymptotic limit is far more challenging, and will require
further developments in our understanding of scalability
issues. Thus, promoting it as a means by which to dis-
prove the ECT thesis – inherently an asymptotic question
– is, based on present understanding, questionable.
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