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Computing layer similarities is an important way of
characterizing multiplex networks because various static
properties and dynamic processes depend on the relationships
between layers. We provide a taxonomy and experimental
evaluation of approaches to compare layers in multiplex
networks. Our taxonomy includes, systematizes and extends
existing approaches, and is complemented by a set of practical
guidelines on how to apply them.

1. Introduction

Multiplex networks provide a simple yet expressive way to model
a wide range of physical and social systems as sets of entities
connected by multiple types of relationships, that in this paper
we also call layers following the terminology in [1]. For example,
a transport network can be modelled as a set of locations, such as
cities or streets, connected by different types of public transport
like airplanes, trains and buses. Several studies have investigated
the connection between layer similarity and other properties of
the network. For example, we known from previous research
that the relationships between layers have an impact on dynamic
processes such as behaviour and information diffusion [2].

Being able to measure relationships between layers is also
essential to validate models aimed at explaining the formation
of empirical multilayer networks [3,4]. While the problem of
comparing different networks has been thoroughly investigated
in the literature [5-13], the problem of quantifying layer similarity
where the same nodes can be present in multiple layers (which
characterizes multiplex networks) has not been studied in a
systematic and comprehensive way so far.
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In the literature, we can find a large number of works using layer similarity measures, but most use
them as a tool to study other phenomena such as multiplex network generation [3,4,14], link prediction
[15] and spreading processes [2]. As a result, different works use the same or very similar approaches
presented with different names, the relationships between several of these similarity measures have not
been explored, and there are no guidelines on how to quantify layer similarity in multiplex networks, e.g.
how to choose the appropriate measure given a specific dataset. In addition, various potentially useful
layer comparison measures have not been considered yet.

Therefore, in this paper we provide the following contributions: (i) a systematic study of approaches
and measures to compute the similarity between layers in multiplex networks, based both on a literature
study and on a theoretical framing of the problem; (ii) a set of measures that have not been used yet
to compare layers, complementing those already defined in the literature; (iii) an empirical study of the
relationships between different measures, compared on several real datasets; and (iv) a set of guidelines
on how to choose and use these measures.

In §2, we present the definitions, concepts and notation used in the paper. In §3, we present an
organized set of existing and new layer similarity measures. Section 4 provides the results of an empirical
study where the main similarity measures are applied to several real datasets from different domains,
such as genetic networks, social networks, co-authorship networks and transport networks. Section 5
discusses guidelines to be used to select the most appropriate measure.

2. Concepts, terminology and notation

In this section, we define the basic concepts needed to provide a systematic coverage of layer similarity
measures. We start with the standard definition of multiplex network, followed by an alternative
representation called property matrix allowing us to define similarity functions based on different types
of network structures and different ways to look at them.

In this paper, we use the following definition of multiplex network:

Definition 2.1 (Multiplex network). Given a set of nodes N and a set of layers £, a multiplex network
is defined as a quadruple M = (N, £, V, E), where (V,E) is a graph, VC N x £, and if (n1,11,n2,10) €E,
then I; =1Ip.

An example of multiplex network is shown in figure 1, where £={l1,lp}, N'={ny,...,n¢} and
(n1,11,m2,11) is an example of an edge in E. In the literature, alternative terminologies are used, and
here we adopt the one in [1], according to which we would say that node n; is present in both layer I;
and layer [5. In the literature, some extended multiplex models have also been proposed, allowing multi-
dimensional layers [1] and one-to-many relationships between nodes in different layers [16], but we do
not consider these extensions here.

Note that the original definition of multiplex network introduced in the field of Social Network
Analysis was more restrictive than the one adopted in this paper. In particular, our definition allows
some of the nodes not to be present in some layers. For example, (115,12) ¢ V in figure 1. In some cases,
when the term multiplex is used, it is assumed that all nodes are present in all layers, and this assumption
will often affect the result of layer comparisons. To avoid confusion, in this case we explicitly talk about
a node-aligned multiplex network [1] and when it is not clear from the context we will call a multiplex
network that is not node-aligned a generalized multiplex network.

Definition 2.2 (Node-aligned multiplex network). A node-aligned multiplex network is a multiplex
network (N, £, V,E) whereVn e N,le L:(n,]) e V.

Multiplex networks have usually been represented as a set of adjacency matrices A;, one for each layer
I, where a;(n1, np) =1 if there is an edge between node 111 and node 13 in layer [, a;(n1, n2) = 0 otherwise.
The adjacency matrices for our working example are shown in figure 2.

However, this representation is not the most appropriate to define similarity measures, for two main
reasons. First, it is incomplete, because it only allows representing node-aligned multiplex networks.
An example of why this is important is the case of online social media, where each layer represents a
different service (Twitter, Facebook, etc.), and it makes a difference whether a user has no connections on
Twitter or does not even have an account there. In our working example, we would lose the information
that nodes n5 and 14 are present in different layers.

Second, adjacency matrices present an edge-oriented view over the multiplex network, which might
be the reason why most similarity measures in the literature have been limited to edge similarity.
If we take a broader look at empirical networks, we can see how other structures can be relevant.
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Figure 1. An example of a multiplex network consisting of two layers, six nodes and 10 edges.

(@) (b)
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ny 0 1 0 0 1 0 ny 0 0 0 1 0 0
ny 1 0 1 1 1 0 15 0 0 1 1 0 0
ny 0 1 0 1 0 0 ny 0 1 0 1 0 0
ny 0 1 1 0 0 0 ny 1 1 1 0 0 0
ng 1 1 0 0 0 0 ns 0 0 0 0 0 0
ng 0 0 0 0 0 0 ng 0 0 0 0 0 0

Al1 A]2

Figure 2. Adjacency matrices for both layers of the multiplex network in figure 1.

As an example, if we look at figure 1, we can see that the triangle {1y, n3, 14} is present in both layers.
Unfortunately, this is not obvious from the adjacency matrices and would require checking several
disparate entries making definitions more complicated than needed. Therefore, in the following, we
use network representation targeted to the specific properties we want to consider when checking the
similarity between layers. We call this representation a property matrix.

Definition 2.3 (Property matrix). A property matrix P is a matrix where:

(i) the columns correspond to a set S of network structures (nodes, edges, triangles, . . .),
(ii) the rows correspond to a set C of contexts where these structures are observed (layers, groups,
snapshots, . ..), and
(iii) psc is the value of an observational function mapping each pair structure/context into a number
(degree, distance, .. .).

Since in this paper we focus on layer similarity we will only use layers as contexts, that is, C = L.
In summary, each cell ps. of a property matrix contains the value of the function describing the
structure s (for example, a node) on layer ¢, and different observational functions can be used to
define different types of similarity. Examples of property matrices for our working example are shown
in figure 3.

Given a structure s, we can further summarize its presence in the network by summing over all the
values in p*, computing their standard deviation or performing any other kind of aggregation (sum, avg,
median, min, max, etc.). As an example, from a node-degree property matrix (figure 3b) we can obtain
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Figure 3. Property matrices for our working example in figure 1. Each property matrix is defined by a type of structures (nodes, dyads,
triads, etc.), the contexts (layers) and an observational function (existence, degree, forming a clique, distance, etc.).

Table 1. Terminology and notation used in the paper.

symbol name

N setof nodes {m, ny, . .., Ny}

the total degree of a node in the whole multiplex network (sum) or its so-called degree deviation [17],
which is 0 if a node has the same number of connections on all layers and higher when a node is present
in different layers with different degrees, and so on. In summary, property matrices provide a more
general and informative representation of multiplex networks than adjacency matrices—which are still
useful when the objective is just to know about the edges in a node-aligned network. Property matrices
also allow us to provide simple and general mathematical definitions of different ways to compare
layers, which will instantiate into several existing and new measures when specific property matrices
are used. The terminology and notation used in the paper is summarized in table 1.

3. Layer similarity functions

Given a property matrix P where each row represents a layer, we can compare two layers in three
main ways. The first is to summarize each row using an aggregation function f and compare f(p;,) to
f(p1,)- For example, if the property matrix contains node degrees we can compare the layers’ average
degrees mean(p;,) and mean(py,). Comparing the distribution of values in p;, and py, is the second way
to compare layers. As an example, we can compare degree distributions on different layers and find
that both fit well a power-law distribution with the same exponent. The third way is to compare p;
with pg;, for all s. As an example, we can compute degree correlation to check whether nodes with a
high (respectively, low) degree on one layer tend to have a high (respectively, low) degree also on the
other layer.
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Table 2. Summary of common aggregation functions for property matrices.

name function

mean(p;) (azré(’;‘,';
........................ Sd(pl)zs(ps,—dm:a)n(p/))z
......................... seww) L ey
kurt(p,) %
o ewwe) My
ip) ety
Jarque—Bera(p,) “"‘6("’) (skew(p) + ““"t("’) =i )

where fry s is the relative frequency of the kth value of the property vector p; in a generic layer /.

Table 3. Main methods to compare distributions across layers.

name notation function

dissimilarity index ID(py,, p,) sz 1 g, — frip |
S DKL(p,]p,Z) ......................... Z k_1frkh|og% ..................................................................
......................... JensenShannonD,S(p,wp,z)%ZHfrk,]Iog —|—frlog kb)
......................... JeffreyD,(p,wp,z)Zk1frk,1|ogfr“*+zk1frk,2|ogfr

frin + 11
where fr, = S

3.1. Comparing aggregations of layer property vectors

This first class of comparison methods is based on comparing f(p;,) to f(p1,) using various functions
(f) aggregating each layer into a single value. Typical choices are basic statistical summary functions
such as mean, max, sum, skewness and kurtosis, combinations of the simple statistics, such as the
coefficient of variation (the ratio between the standard deviation and the mean), the Jarque—Bera statistics
(a combination of skewness and kurtosis), or the Shannon entropy [18] of the distribution. These methods
are summarized in table 2.

Then, given f(py,) and f(p;,) we can compare them, and in our experiments we have used their relative
difference, i.e. 2 - (f(p1,) — f(pi,))/(f(P1)] + f(P1,))-

Note that depending on the property matrix these measures correspond to various existing network
summaries. For example, the mean function may return the average degree (when applied to property
matrices about node degrees), or the global clustering coefficient also known as transitivity index (for
node clustering coefficients), or the average path length for property matrices about dyads and geodesic
distances (which in the field of chemistry coincides with the Wiener index [19]).

Whether the multiplex network is node-aligned or not, does not pose any problems regarding the
computation of the functions in table 2. These functions are computed for each layer, only for the nodes
existing on the layer, so if some nodes are not present they are just not considered in the computation.
Similarly, also the measures in table 3 can be easily computed for node-aligned and for node-non-aligned
as the frequency distributions are computed layer by layer. However, the results of the function and of
the comparison can be strongly affected by the alignment, as shown and discussed in our experimental
results.

3.2. Comparing distributions of layer property vectors

While using a single value to compare layers can provide some useful knowledge about the multiplex
network, for example, by highlighting the presence of denser or more clustered layers than others,
looking at the whole distribution of values in the property matrix can reveal other types of relationships
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among layers. From a statistical point of view, some ways are open to pursuing this task. The first one
consists in comparing the moments of two distributions. For example, it is possible to compare the
first four moments, even if from a theoretical point of view this is not completely sufficient. Another
possible approach consists in comparing the distributions directly. In this case, we have to apply to each
property vector a function fr(p;) that derives the relative frequency distribution. In the case of discrete
distributions, such as the degree distribution, given a property vector p; we derive the disjoint values
pri, k=1,...,K, and we associate with each value the relative frequency fry ;.

In the case of continuous distribution, or in the case of very large networks in which also the discrete
distributions take a wide range of values, the function fr(p;) derives histograms. We first divide the
range of values of the property vector into K equal intervals, or bins, [b_1),bx], with by being the
minimum value in the property matrix and by ; being the maximum value in the property matrix.! Then
we associate the relative frequency fry with each interval. Note that the bins of all histograms for all layers
must be the same. Then we have to compare only the relative frequency distributions. This procedure is
very fast and efficient also for very large networks.

Given the frequencies or histograms, in order to compare two layers we can use the distance between
observed distributions based on distance between histograms, namely, the dissimilarity index (ID), the
Kullback-Leibler divergence Dy, [20], the Jensen-Shannon divergence Djs or the Jeffrey divergence Dy,
as defined in table 3 [21]. In the following, we do not consider the Jeffrey divergence, as the Jensen—
Shannon divergence is its smoother version. Note that this kind of comparison can be made both for
node-aligned and for not node-aligned multiplexes.

3.3. Comparing individual structures

The main feature of multiplex networks is that the same structure can be present or not, and have
different characteristics, on each layer. For example, a node can be present in one layer and not in the
other, or the same node may have different degrees depending on the layer. Therefore, a peculiar set of
measures to compare layers relies on the comparison of the structures of interest, one by one.

Two main cases are possible. In property matrices indicating the existence of different structures
on the different layers, we only have two values: 0 and 1. While represented as numbers, these are in
fact just nominal values indicating that the structure is present on the layer. For these binary matrices,
specific methods can be used, checking the overlapping or more in general, the common existence (or
common absence) of structures across layers. For numerical matrices containing generic numbers, e.g.
node degrees, other methods are more appropriate, as described in the following two sections.

3.3.1. Binary properties

When a structure can be present or not on different layers, a basic way to compute the similarity between
layers is to quantify the overlapping of these structures, that is, how often the same structure appears or
not on more than one layer. This is typically the case when the observation function defining the property
matrix checks the existence of the structure.

Measures of overlapping have been defined and redefined many times during the last few years in
different papers, but most definitions can be generalized using property matrices as

Cpj, Pl (3.1)

where C is some normalization function. Most (but not all) measures in the literature compare edges
across layers, this being the result of the traditional edge-based definitions of multiplex networks such
as adjacency matrices. In our definition, the usage of property matrices allows us to apply similar
comparisons to various other properties.

Consider two binary property vectors p;, and py,. Following [22] let us denote with:

—a= p}l - p1, the number of properties that /; and I, share;

— b= pgl - (1 — p1,) the number of properties that /; has and I, lacks;

— ¢=(1—py,) - p1, the number of properties that /; lacks and I, has;

— d=(1-py) - (1 - py,) the number of properties that both /; and I, lack;
— m=a+b+ c+d=1length(p;,) =length(py,).

Then, the binary similarity functions can be summarized as in table 4.

1f we only compare two rows, we can also choose the minimum and maximum values in those rows.
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Table 4. Similarity functions for binary property matrices. Column C indicates the normalization function in equation (3.1). For the two -
functions also considering the non-existence of structures on both layers, we only provide the standard definition not based on the
product of property vectors.

Table 5. Similarity functions for numerical property matrices. The function p(-) provides the ranks of the values in the property vectors.
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3.3.2. Numerical properties

Depending on the reason why we are computing the similarity between layers, we can use different
approaches. As each layer is represented as a vector in a property matrix, one way is to compute
vectorial distances such as Euclidean distance or cosine similarity. Another popular way to compare
numerical layer property vectors is to compute correlations. An example of this is the so-called inter-
layer correlation measure, which is just the Pearson coefficient computed on two node degree property
vectors [23,24]. It is interesting to note that in the literature correlations across layers have been almost
always computed on node degrees, and in [25] also on clustering coefficients. However, correlations can
be in fact be computed on any property matrix (table 5).

In addition, we would like to stress that Pearson correlation here is used as measure of accordance of
numerical vectors, and then it can be used also when usual statistical assumptions are not completely
fulfilled. However, in the case of highly skewed distributions, or in the case of severe and numerous
outliers, the Spearman rank correlation is a good solution. For this reason, we suggest to use them jointly.

Finally, when computing correlations in generalized multiplex networks a choice must be made on
how to handle actors not present in all layers. The choice we adopted in our experiments was to discard
pairs where at least one of the two values was missing, which is a typical option in statistical software
packages.

4. Empirical comparison of measures

The experiments have been performed using the multinet library? and 23 multilayer networks.> The
input format of the multinet library allows the distinction between nodes without connections and
missing nodes, as in our working example, but none of the datasets we have used explicitly makes this
distinction.

In the experiments, we have computed 50 different similarity measures (table 6) between all pairs
of layers in each dataset and grouped these results by network type (table 7). Figures 4-6 show the

Zhttps:/ /cran.r-project.org/ package=multinet.
Shttps:/ /comunelab.fbk.eu/data.php.
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Table 6. Fifty measures evaluated during experiments.

properties of distribution of values produced by each measure. Figures 7-10 show the Pearson correlation
between values obtained by different measures, where a value of 1 (yellow in the colour figures) indicates
that two measures are equivalent up to some constant rescaling. In addition to the results presented
in these figures, we have also performed a manual qualitative analysis of the results, to verify our
interpretation of the patterns emerging in the plots.

In the following sections, we highlight some of the results, grouped into four main areas.

4. Correlation-based measures

In figures 4 and 5, we can see how correlation measures (15, 16, 31, 32) prove their usefulness by
discriminating between, e.g. social networks, where the degrees are correlated—that is, (un)popular
people are often (un)popular on more than one layer, while for co-authorship networks where layers
indicate different disciplines researchers are often popular only in one or a few of them. Interestingly,
transport networks contain different extremes: airports that are hubs for one airline are often not hubs
for others (corresponding to anti-correlations, that is, values towards 1 in the figures) while for the
London data the same locations are often hubs for different types of transportation, resulting in positive
correlations.
In many cases, Pearson and Rank correlations show similar results.

4.2. Overlapping-based measures

Overlapping-based measures have been used multiple times in the literature, mainly applied to edges.
In figure 6, we can observe their behaviours on the various datasets used in our experiments.

Measures based on simple matching, Russel-Rao and Hamann degenerate whenever the property
vectors become large (that is, m is large) and sparse (that is, d is close to m). In these cases, Russel-
Rao tends to 0 while Hamann and SMC tend to 1, as we can see in the plots. However, with node-
existence property matrices, these degeneration conditions are often not verified, so these measures can
still capture different levels of similarity.

When applied to generalized multiplex networks, node overlapping shows significant differences
between different types of networks. For example, in figure 60 we can see that social networks tend
to have a high node overlapping (average close to one for measures 34-36), while for example, co-
authorship networks show values closer to 0, indicating a significant difference between people working
in different disciplines (figure 6¢c). In practice, we can say that many social networks are naturally
node-aligned.
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Table 7. Twenty-three multilayer networks used during experiments.

ID network description no. of layers ref.

1 Bos Linnaeus genetic 4

However, in both cases, we can see several outliers, highlighting special relationships between layers
and thus showing the usefulness of these measures also to identify special cases. For example for the
Arxiv co-authorship network (20 in table 7), the two layers physics.data-an (Physics Data Analysis,
Statistics and Probability) and ¢s.SI (Computer Science Social and Information Networks) are very similar
in terms of node overlapping, indicating an interdisciplinary topic which is of interest to both computer
scientists and physicists. Another example, this time for social networks, comes from the AUCS network
(14 in table 7). Almost all outliers are related to the two layers Facebook and co-author, both having a
significantly different number of actors if compared with the other layers in the network, which explains
e.g. low overlapping.

Higher-order structures, that is, dyads and triads in our experiments, also show different behaviours
in different types of networks. There are several similar layers in collaboration networks, maybe because
these networks are often obtained as projections from bipartite networks, but still, the majority of the
pairs of layers are not very similar. For social networks, a high overlapping is observed much more
frequently, also because of the high presence of triangles, while transportation and genetic networks
show the least overlapping.

43. Effects of node alignment

The impact of using a node-aligned or generalized multiplex is evident in many experimental results, as
expected. Obviously, node-based measures computing the overlapping among nodes in different layers
(33-38) become useless if we force all layers to contain all nodes (figure 6, right-hand side plots).

At the same time, using node-aligned networks also affects many other measures. As an example,
figure 4d shows the presence of anti-correlated layers (measures 15 and 16, left-hand side, values
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Figure 4. Boxplots for degree-based measures (1-16). Left: generalized multiplex network, right: node-aligned multiplex network.
The outliers have been scattered. (a) Genetic networks, (b) social networks, (c) co-authorship networks and (d) transport networks.

close to —1), revealing how airports that are hubs for one airline are often not hubs for others.
Considering many nodes that would not be present in the layers, and thus having degree 0, makes these
anti-correlations less evident (measures 15 and 16, right-hand-side, values now closer to 0).

For edge- and triangle-based overlapping measures the results are the same in the node-aligned and
in the non-aligned networks. This, however, is only because we have not made a difference between e.g.
a missing triangle and missing triad, which would be computationally demanding. This also shows how
the results we obtain may strongly depend on how we modelled the data and on implementation details
such as the policy to handle null values.

Correlations between different measures appear more evidently in node-aligned networks. This effect
is more evident for genetic networks and co-authorship networks. In these cases, the zeros added by the
alignment reinforce the correlation among the measures.

4.4. Correlation between measures

In figures 7-10, the value for each cell on the heat map is calculated in the following way. First layer—
layer similarity for each pair of layers is calculated, for each network. For example, if the network
has three layers it will have nine values of similarity. Next, for each network type (genetic, social, co-
authorship and transport) and each similarity measure a vector containing the layer-layer similarities
for all networks of that type is created. For example, if there are two networks of a given type, one with
three and one with four layers, each vector will contain 25 entries, nine concerning the first network and
16 concerning the second. Finally, Pearson correlation coefficients are computed for all pairs of vectors,
each representing all the similarities computed using one of the measures in one of the groups.
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Figure 5. Boxplots for clustering coefficient based measures (17-32). Left: generalized multiplex network, right: node-aligned multiplex
network. The outliers have been scattered. (a) Genetic networks, (b) social networks, (c) co-authorship network and (d) transport
networks.

Groups of measures producing highly correlated values can be identified in the figures, appearing
as yellow rectangles (colour figures). In the case of social networks and co-authorship networks, we can
see a higher correlation between degree-based measures (1-16) and measures based on the clustering
coefficient (17-32).

5. Guidelines

From our literature study, theoretical framing and experiments, it appears how layer comparison
measures can be very valuable and often succeed in practice to characterize the structure of multiplex
networks, but they are not always straightforward to use. Therefore, in this section, we list a set
of guidelines motivated by our experience acquired while testing these measures and by the results
presented in the previous section.

One important aspect to consider when choosing which function to use is the distribution of values
in the property matrix. Among the criteria that can be used to characterize layer property vectors and
comparison functions, the following appear to be useful:

— Sparsity: A layer property vector is sparse if the number of Os is much higher than the number
of non-0 values.

— Degeneracy: A layer property vector degenerates if its values are (almost) constant. Sparsity is a
special case of degeneracy.

— Linearity: A layer property vector is linear if the values in the vector and their rank are linearly
correlated.
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Figure 6. Boxplots for node-, edge- and triangle-based measures (33-50). Left: generalized multiplex network, right: node-aligned
multiplex network. The outliers have been scattered. (a) Genetic networks, (b) social networks, (c) co-authorship network and
(d) transport networks.

— Scale invariance: a similarity function is scale invariant if it does not (significantly) change when
one or more layer property vectors are multiplied by a constant.

We now list our guidelines, divided into four main areas.

5.1. Number of measures

The number of available measures is very large, considering that the 50 options used in our experiments
are only some of the measures we can obtain using different combinations of property matrices and
observation functions. While the choice of the measures to be used for a specific empirical network is of
course influenced by what the analyst is interested in, e.g. degree-based similarity, betweenness-based,
or specific motifs that are motivated by the application context, our experiments show that different
measures highlight different types of similarities.

At the same time, even during exploratory analyses where it is often useful to compute several
measures to get a good overview of the data, it can be practically preferable to identify a small number
of measures. This can be due to time constraints, if the data are large, but also to the need of producing
results that are easy to interpret and present. The choice of which measures to use can be simplified
using the correlation plots in figures 7-10. Groups of measures producing highly correlated values can
be identified, and one measure for each group can be chosen. In particular, JS, KL and D divergences
are similar, and JS divergence can be used from this group. Jaccard, coverage and Kulczynski are similar,
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Figure 7. Correlation between all fifty measures for genetic networks. (a) generalized multiplex network, (b) node-aligned multiplex
network. NaN is marked in white.
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Figure 8. Correlation between all 50 measures for social networks. Left: generalized multiplex network, right: node-aligned multiplex
network. NaN is marked in white.

and Jaccard or coverage can be used—with the latter highlighting how the non-overlapping structures
are distributed across the two layers, e.g. if one layer is containing the other.

When comparing layers by comparing a single value, particular attention should be paid to the so-
called discriminative power or uniqueness of the measure, i.e. the capability of a measure of taking
different values on non-isomorphic networks [37]. For example, while mean is not a representative
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Figure 9. Correlation between all 50 measures for co-authorship networks. (a) generalized multiplex network, (b) node-aligned
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Figure 10. Correlation between all 50 measures for transport networks. (a) generalized multiplex network, (b) node-aligned multiplex
network. NaN is marked in white.

measure for non-regular distributions, it can still be used to compare two distributions, such as degree
distributions. But not alone, because the same degree does not imply the same topology.

While min can be useful in general to characterize a distribution if used together with other statistical
summaries, it does not appear to be very useful to compare layers where there is typically at least one
node having value 0. For example, min degree is 0 for all layers for most networks. On the contrary, max
can be useful, e.g. to include the size of the layers in the comparison.
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5.2. Node-alignment

The choice of whether a node-aligned or generalized multiplex model should be used is often clear
from the context. For example, we would typically not align nodes when layers represent different social
network sites, to represent the fact that users may not have accounts on some sites, while we would
typically align nodes in a multirelational network about people interacting in multiple ways, where not
having edges on a layer does not imply that the person cannot interact in that specific way.

However, the choice may have a significant influence on the results of our analysis as highlighted by
our experiments.

Node-alignment may lead to some degeneracy. As expected, node-existence measures become
useless, but also other cases are affected, such as measures 11-16 (degree) and 27-32 (clustering
coefficient).

Measures based on node existence may also help us interpreting the results of other measures. So,
before using link-based measures (such as edge Jaccard) it is important to check node overlapping to
understand whether comparing higher-order structures is meaningful, or whether the results will just be
a consequence of the limited amount of node overlapping across layers.

Rank correlation can suffer from node-alignment because of false tie resolution, and also Pearson
correlation results may become less evident, as shown by the experiments where positive and/or
negative correlations are lost or decreased depending on the type of networks.

5.3. Sparsity

SMC and Hamann are only useful for non-sparse, non-degenerated cases, which in our experiments
correspond to node existence on generalized networks. Russel-Rao also suffers if property vectors are
sparse. As an example, these measures do not work well for triangle-existence property matrices in
general.

5.4. Linearity

Having nonlinear distributions of values in the property vectors, as is the case for degree property
matrices, is not problematic when computing linear correlation. Linear correlation (Pearson) is often
preferable to rank correlation, which can be problematic in the case of generalized networks (because of
null values) and also for node-aligned networks (because of the many nodes with the same values).

6. Conclusion

A summary of our guidelines is that there are many ways to compare layers, but (i) not all methods are
always appropriate and (ii) some are often correlated, which means that if we only want a small number
of layer similarities we can give priority to one for each group of related measures.

As we mentioned in the Introduction, our framework captures several measures that appeared in
the literature: node activity overlapping [24], global overlapping of edges [38] and absolute binary
multiplexity [39] are applications of the Russel-Rao function to node and edge existence property
vectors; average edge overlaps from [25] and from [40] are, respectively, the Jaccard and coverage
functions applied to edge existence. A general recommendation is to use the original names, as we do
in this article: all the measures used in this work and mentioned in this paragraph are applications of
existing proximity measures, most of them well known to data analysts. Calling them by their name,
such as edge Jaccard, makes it simpler to understand when it is reasonable to apply them if we already
know the original measure.

Also, notice that our framework allows the definition of a large number of other functions not tested
in this article, also considering directed /undirected networks, weights and other mesostructures such
as motifs. Other network summary functions that are not specific for multiplex networks can also be
obtained as combinations of property matrices and observational functions. Examples are order (node
existence + sum), size (edge existence + sum), density (edge existence + mean), average path length
(dyad distance + mean), etc. We believe that splitting the problem of computing layer similarities into
the two problems of (i) deciding what to observe and (ii) deciding how to compare these observations
using existing generic comparison functions gives the analyst the ability to easily generate custom layer
comparisons that are appropriate for the problem at hand.
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