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Abstract 17 

Wind speed forecasting plays a prominent part in the operation of wind power 18 

plants and power systems. However, it is often difficult to obtain satisfactory prediction 19 

results because wind speed data comprise random nonlinear series. Current some 20 

statistical models are not proficient in predicting nonlinear time series, whereas 21 

artificial intelligence models often fall into local optima. For these reasons, a novel 22 

combined forecasting model, which combines hybrid models based on decomposed 23 

methods and optimization algorithms, is successfully developed with variable 24 

weighting combination theory for multi-step wind speed forecasting. In this model, 25 

three different hybrid models are proposed and to further improve the forecasting 26 

performance, a modified support vector regression is used to integrate all the results 27 

obtained by each hybrid model and obtain the final forecasting results. To verify the 28 

forecasting effectiveness of the proposed forecasting model, 10-min wind speed series 29 

from Penglai, China, are used as case studies. The experimental results indicate that the 30 

developed combined model not only outperforms other benchmark models but also can 31 

be satisfactorily used for planning for smart grids. 32 
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1. Introduction  36 

Owing to the rapid pace of modern industrial development, the utilization rate of 37 

resources is increasing with each passing day, and the scarcity of resources has become 38 

an urgent problem. Wind power, a clean and renewable energy source, has been 39 

regarded as one of the alternatives to conventional fuel power generation. This led to a 40 

collaborative effort to achieve 20% of U.S. electricity supply from wind power by 2030 41 

[1]. Generally, wind speed forecasting is at the core of wind power generation systems, 42 

and it plays an important role in their control and operational decision-making. The 43 

exact prediction of wind speed is of great use to enhance the utilization rate of wind 44 

energy and stabilize the power supply. On the contrary, inaccurate forecasting will result 45 

in bad decision-making, which may cause considerable economic losses in wind power 46 

generation systems. 47 

Wind power forecasting (WPF) may produce decision risk to power system 48 

operation for its forecasting deviations [2]. Traditional methods of wind speed 49 

forecasting concentrate on the characteristics of historical data and the effect of 50 

numerical weather models on wind speed to perform the forecasting. Fortunately, 51 
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statistical models combined with artificial intelligence algorithm applied to the 52 

forecasting field have yielded good results. There are many methods for short-term 53 

wind speed forecasting, such as statistical models, artificial intelligence models, 54 

physical models, hybrid models, and combined models. 55 

Common statistical models for predicting wind speed following the classical Box–56 

Jenkins methodology include the auto-regressive moving average (ARMA (p, q)) and 57 

auto-regressive integrated moving average (ARIMA (p, d, q)) [3] models. The ARIMA 58 

model has a strong forecasting ability and it exhibits great precision in wind speed 59 

forecasting [4-5]. ARIMA models can help in understanding the dynamics of the data 60 

in a given application [6]. ARIMA can model linear patterns in time series well; 61 

however, it is not applicable to modeling nonlinear patterns [7]. Regression models are 62 

widely used in the field of time series prediction, which are suitable for certain time 63 

series with obvious trends. The disadvantage of traditional regression models is that 64 

they have fewer variable parameters and are difficult to adapt to the prediction of time 65 

series. 66 

Artificial intelligence prediction models are mainly focused on artificial neural 67 

networks (ANNs), including the back propagation neural network (BPNN), Elman 68 

neural network (ENN), and radial basis function neural network (RBF). In recent years, 69 

the ANN approach has been widely utilized in the fields of economic parameter 70 

forecasting [8], biology forecasting [9], and wind speed forecasting [10], among others. 71 

Great achievements have been made in the field of wind speed prediction. ENN has 72 

proven useful for forecasting discrete time series, because of its potential capacity to 73 

model nonlinear dynamic systems owing to feedback connections and learning time-74 

varying patterns [11-13]. BPNN has a long history in prediction, and it has made 75 

outstanding contributions to forecasting, especially in the state of uncovering 76 

nonlinearity between the inputs and outputs, even with a lack of sufficient information 77 

about the relationship between them [14]. BPNN is popular for forecasting complex 78 

nonlinear systems and it can actualize any complex nonlinear mapping function, which 79 

was mathematically proven [15]. However, BPNN easily falls into local minima, and 80 

often exhibits over-fitting [16]. 81 

Physical models need to describe information in detail according to the onsite 82 

conditions of the wind farm, and then the numerical weather prediction (NWP) system 83 

is applied to forecasting wind speed [7]. Physical models are easy to simulate at low 84 

cost. However, compared with statistical models, physical models have a high demand 85 

of data and are often utilized in long-term wind speed forecasting with diverse weather 86 

variables. 87 

Hybrid models can overcome the shortcomings of single models, and have 88 

therefore become increasingly popular. Hybrid models overcome the drawbacks and 89 

integrate the advantages of single models by integrating two or more single models. In 90 

this way, the overall forecasting accuracy of hybrid models is improved. Wind speed 91 

time series data is highly nonlinear and unstable. Empirical mode decomposition (EMD) 92 

has been widely used in the analysis of nonlinear signals [17, 18]. Wang et al. pointed 93 

out that EMD has many advantages compared with wavelet transformation and Fourier 94 

transformation, such as good multi-resolution and extensive applicability [19]. The 95 

EMD can decompose an original time series into a small and finite number of 96 

oscillatory modes called intrinsic mode functions (IMF), and then the IMFs can be used 97 

in the model for prediction. Thus, a hybrid model that contains EMD can improve the 98 

accuracy enormously by eliminating the unstable nonlinear parts of the original data 99 

[20-21]. Wang et al. [11] suggested that a hybrid model with the ENN, such as EMD–100 

ENN, could improve the prediction accuracy. Liu et al. [22] presented a novel hybrid 101 
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model, with fast ensemble empirical mode decomposition and wavelet packet 102 

decomposition, and ENN, which has desirable performance in the multi-step ahead 103 

wind speed forecasting. Jiang et al. [23] considered that people often ignored similar 104 

fluctuations between adjacent wind turbines in the process of the wind speed forecasting, 105 

and proposed a hybrid model combining upport vector machines   (ν-SVM) and 106 

cuckoo search (CS). Liu et al. [24] combined three individual forecasting models 107 

(BPNN, RBFNN, and LSSVM) using the adaptive neuro-fuzzy inference system and 108 

obtained a great improvement in accuracy with regard to three individual models. Wang 109 

et al. [25] built a hybrid model with improved EMD and the GA-BP neural network for 110 

short-term wind speed forecasting. 111 

In recent years, the research on the combination forecasting method has entered 112 

another peak. Many scholars have pointed out that the combination forecasting method 113 

has higher precision than the single model forecasting. Liang et al. [26] pointed out that 114 

a short-term wind power combined forecasting model based on error forecast correction 115 

can obtain better performance. By comparison with the existing traditional combined 116 

models, Xiao et al. [27] put forward a combined model that can always obtain 117 

satisfactory forecasting results. A weighting method or a meta-combination method can 118 

be used to combine the forecasts of individual models in the final step of the model. 119 

The most commonly used combination methods are the weighted median and the 120 

weighted average [28]. Zhang et al. [29] proposed that the best weights for the different 121 

models can be obtained by an optimization algorithm. The single forecasting model 122 

based on the classical combined method has a fixed weight, which cannot adapt to 123 

changes of the sample; thus, the adaptive weight can be adapted to different samples to 124 

obtain the matching weights. Support vector regression (SVR) is a method to perform 125 

a noise-robust and nonlinear regression based on the structural error minimization 126 

principle [30]. It can determine the regression model through the training set, and then 127 

obtain the prediction results from the test set. It has some parameters that have a 128 

profound impact on prediction accuracy, including a penalization term [30]. Chakri et 129 

al. [31] discussed the exploration capabilities of bat algorithm and improved it by 130 

introducing directional echolocation to standard bat algorithm. 131 

As mentioned above, single models have many drawbacks with poor forecasting 132 

accuracy and stability, while hybrid models can overcome the defects of single models 133 

and attain higher precision. Therefore, based on the limitations or strengths discussed 134 

above, and considering the combined model as the mainstream in forecasting models, 135 

a novel combined forecasting model is developed. Generally, combination forecasting 136 

models can be divided into fixed-weight combination forecasting models and variable 137 

weight combination forecasting models [32]. In this paper, a novel combined 138 

forecasting model is proposed on the basis of the variable weight combination theory. 139 

More specifically, three different hybrid models are proposed and to further improve 140 

the forecasting performance, the modified SVR is used to integrate all the results 141 

obtained from each hybrid model and obtain the final forecasting results. Through the 142 

experiment, it is found that the variable weight combination forecasting model can yield 143 

more robust and higher-accuracy forecasting.  144 

The contributions of the developed model are summarized as follows: 145 

(1) Wind speed series usually have the characteristics of randomness, fluctuation 146 

and nonlinear, which often leads to difficulties in forecasting. Data preprocessing is 147 

used to improve accuracy by disintegrating the time series into the sum of many time 148 

series and extracting the main features of the original time series. Therefore, the 149 

removal of noise in wind speed series yields smoother and more predictable series.  150 

(2) This paper proposed three hybrid models that are effective approaches to 151 
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noticeably increase the accuracy by decomposing the noisy components in the original 152 

series. Moreover, hybrid models combined with the bat algorithm greatly improved the 153 

efficiency of neural networks in forecasting. The hybrid models clearly outperform the 154 

traditional models in short-term wind speed forecasting.  155 

(3) In hybrid models, two kinds of commonly used neural networks (BPNN, ENN) 156 

and a statistical model (ARIMA) are used to forecast the wind speed. In the forecasting 157 

process, the statistical model focuses on the linear problem, whereas the neural network 158 

excels at nonlinear series forecasting. In addition to wind speed series being irregular 159 

and nonlinear, sometimes they also have linear features. Therefore, the integration of 160 

three hybrid forecasting models can not only solve the nonlinear problems but also the 161 

linear problems. 162 

(4)The novel combined forecasting model overcomes the disadvantages of 163 

traditional models that ignored the importance of variable weight. The SVR model is 164 

used to integrate all hybrid models’ forecasting results as a final forecasting for the 165 

original wind speed. 166 

The remainder of this article is organized as follows: Section 2 recalls the 167 

preliminaries and describes the method. Section 3 introduces the new proposed model 168 

in detail. The experiments and results are presented in Section 4 and Section 5, 169 

respectively. Section 6 discusses the results of the experiment and Section 7 presents 170 

the conclusions.  171 

2. Methodology 172 

In this section, we will recall several basic theories about the proposed model, and 173 

finally introduce the method of proposed combined model. 174 

2.1 Empirical Mode Decomposition (EMD) 175 
EMD is an effective algorithm, usually used to cope with nonlinear and non-176 

stationary time series. The basic method of EMD is to decompose the original time 177 
series into a small and limited number of oscillatory modes by local characteristic 178 
timescale filtering. The oscillatory modes (IMFs) should satisfy the following 179 
principles [33, 34]: (1) In the whole dataset, the number of extremes and zeros must 180 
either be equal or differ by at most one; (2) at any point, the mean between the upper 181 
and lower envelopes must be zero, which are defined by the local maxima and minima. 182 
Let ( )( 1,2, , )s t t l    be an original time series. The detailed steps of EMD are as 183 

follows: 184 
Step 1: Determine all local maxima and minima of time series. 185 

Step 2: Apply a cubic spline line to connect all local extrema to generate the upper 186 

envelop  upe t  and the lower envelop  lowe t . 187 

Step 3: Calculate the mean envelop from the upper and lower envelopes 188 

      [ ] / 2up lowm t e t e t    (1) 189 

Step 4: Calculate the difference between the original time series and the mean 190 

envelop then get the detailed components 191 

      h t s t m t    (2) 192 

Step 5: Check whether  h t   satisfies the IMF’s characteristics. If so,  h t   is 193 

treated as the ith  IMF and  s t  is replaced by the residuals      r t s t h t  . If not, 194 

 s t  is replaced by  h t . 195 

Step 6: Repeat Steps 1–5, and then terminate the procedure when the size of the 196 

standard deviation between two successive sifting results is smaller than the pre-defined 197 
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threshold. 198 

Through the above process, a set of IMFs can be picked out from the original time 199 

series in the order from high-frequency to low-frequency series. Thus, the original time 200 

series is decomposed to n IMFs and one residual as 201 

      
1

n

i n

i

s t c t r t


    (3) 202 

where n is the number of IMFs,  nr t  are the final residuals representing a trend in203 

  1,2, ,s t t l  , and   1,2, ,ic t t n   denotes the IMFs, which are periodic and 204 

nearly mutually orthogonal. When expressing local properties of an original signal, 205 

each IMF is independent and specific. The whole process can be seen in Fig.1 part a. 206 

2.2 Bat Optimization Algorithm (BA) 207 

The idea of the algorithm is to develop different bat heuristic algorithms using 208 

some of the ultrasonic features of tiny bats [35]. BA is more effective than many other 209 

optimization algorithms, because it controls the bat’s space and range of movement by 210 

using frequency tuning and it parameters are adjustable [36]. The principles of BA are 211 

as follows: 212 

(1) All the bats use the difference of ultrasonic echo feelings to determine the 213 

distance between food and obstacles. 214 

(2) Bats random flight with velocity 
iv   at position 

ix   with fixed frequency 215 

minf  (or wavelength   ), and search for prey with different wavelength    (or 216 

frequency f ) and volume 
0A . They automatically adjust their pulse wavelength (or 217 

frequency) according to the proximity of prey. 218 

(3) Volume varies from a large positive value 
0A  to a minimum 

minA . 219 

BA is an iterative optimization technique that is initialized as a set of random 220 

solutions; then the optimal solution is searched by iteration and the local solution is 221 

generated by random flight around the optimal solution to enhance the local search. 222 

Thus, the definition of the new solution 
t

ix  at time t and the speed 
t

iv  of the update 223 

formula is: 224 

  min max minif f f f      (4) 225 

  1 1t t t t

i i i gbest iv v x x f      (5) 226 

 
1t t t

i i ix x v    (6) 227 

where  is a random variable that is uniformly distributed over a range of [0, 1], 
t

gbestx228 

represents the current global optimal position, and if  is the frequency of the ith bat,  229 

which controls the range and speed of movement of the bats. 230 

For local search, once a solution is selected as the current optimal solution, then 231 

each bat produces a local new solution according to the random walk rule: 232 

 
t

new oldx x A    (7) 233 

where  0,1  is a random number, and tA  is the average volume of all bats in the 234 

same time period. 235 

 This study adopts the BA to optimize the BPNN and ENN for improved 236 

prediction accuracy, defining the fitness function as 237 
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1

1
forecast actualn

i i

actual
i i

y y
O

n y


    (8) 238 

Here, 
actual

iy   represents the actual wind speed, 
forecast

iy   represents the forecast 239 

wind speed, and n represents the bat population size. The specific process the BA is 240 

shown in Fig.1 part b and Fig.2 part a. 241 

2.3 Back Propagation Neural Network (BPNN) 242 

The BPNN is a kind of multilayer feedforward neural network that has the main 243 

characteristic of signal forward propagation and the error back propagation. In the 244 

existing studies, single hidden layer BPNNs are widely applied in one-step ahead 245 

forecasting. The appropriate number of input and hidden nodes can be determined by 246 

experiments or training based on the minimum mean square error of the test data [37]. 247 

Moreover, by using an optimization algorithm to determine the optimal weights and 248 

thresholds of networks, the forecasting capacity and accuracy can be significantly 249 

improved. In this study, the BPNN optimized by BA is applied to forecasting the wind 250 

speed.  251 

2.4 Elman Neural Network (ENN)  252 

ENN generally can be divided into four layers: the input layer, hidden layer, linked 253 

layer, and output layer. ENN has the characteristic that the output of the hidden layer 254 

leads to the input of the hidden layer through the delay and storage of the linked layer. 255 

This makes it sensitive to the history data by adding an internal feedback network, 256 

thereby enhancing the capacity of network dynamic information processing in order to 257 

achieve the purpose of dynamic modeling. The nonlinear state space expression of ENN 258 

is: 259 

     3y k g w x k   (9) 260 

        1 2 1cx k f w x k w u k     (10) 261 

    1cx k x k    (11) 262 

where y is an m-dimensional output node vector; x is an n-dimensional intermediate 263 

node unit vector; u is an r-dimensional input vector; cx  is an n-dimensional feedback 264 

state vector; 1w , 2w , and 3w  are the connection weights between the layers;  *g  is 265 

a transfer function of the output neuron; and  *f   is a transfer function of the 266 

intermediate layer neurons. Considering that ENN has a strong ability to deal with the 267 

nonlinear data, in this study, we use ENN to forecast the wind speed and obtain good 268 

performance. 269 

2.5 ARIMA 270 

ARIMA is a common statistical forecasting method, this study uses the ARIMA 271 

model to forecast wind speed. The model is known as ARIMA (p, d, q), where p is the 272 

order of the autoregressive part, q is the order of the moving average part, d is the degree 273 

of first differencing involved. ARIMA follows the Box–Jenkins methodology for the 274 

identification, estimation, diagnostic checking, and forecasting [38]. Because there is 275 

usually little historical data available, it is generally preferred to base the method on 276 

intra-sample fitting procedures. Therefore, Akaike's information criteria (AIC) was 277 

used to determine the lag order of ARIMA, which can penalize the possibility that the 278 

model compensates for data that may over-fit, which can also take into account the state 279 

of the fit and gives the order in the best fit state [39-40]: 280 

 2log( ) 2AIC L k     (12) 281 
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where L denotes the likelihood of the model and k represents the total number of 282 

parameters and initial states that have been estimated. 283 

 The linear expression that defines the previous symbols is as follows [8]: 284 

 
1 1

p q

t i t i j t j t

i j

y y e   

 

      (13) 285 

where i  is the ith   autoregressive parameter, j   is the jth   moving average 286 

parameter, and t  is the error term at time t. 287 

2.6 Hybrid Models EMD-BA-BPNN, EMD-BA-ENN, and EMD-ARIMA 288 

At present, there are two methods to forecast time series: artificial intelligence 289 

methods and statistical methods. In this study, two kinds of commonly used neural 290 

networks (BPNN and ENN) and a statistical model (ARIMA) are employed to forecast 291 

the wind speed. In the forecasting process, the statistical model focuses on the linear 292 

problem, whereas the neural network deals with nonlinear series forecasting. Because 293 

wind speed data has the characteristics of high degree of instability and nonlinearity, 294 

but occasionally exhibit certain linear features, the two kinds of models are not only 295 

selected to solve the nonlinear problem but also the linear series forecasting problem. 296 

Then, the EMD method is employed to eliminate noise from the wind speed series 297 

before the wind speed is predicted. For the ARIMA model, the parameters p and q have 298 

a great influence on the forecasting accuracy. Thus, in order to improve the effect of 299 

forecasting, the AIC criterion is applied to determine the order of the model. BPNN 300 

easily falls into local optima and exhibits excessive convergence, and its convergence 301 

speed is slow. On the contrary, ENN converges quickly, but with low accuracy. 302 

Therefore, to improve the forecasting accuracy, this study uses the BA to optimize the 303 

weights and thresholds of the two neural networks, and then to improve the forecasting 304 

accuracy. It can be seen from the results that the forecasting accuracy of the optimized 305 

model is significantly improved compared with that of the model without optimization. 306 



8 
 

 307 
Fig.1. The structure of the paper 308 

3．Combined Model 309 

Combined models which integrate the results from several models are often 310 

utilized in forecasting field. In the combination method, the weight coefficient can 311 

obtained by simply averaging all available forecasts of a given variable and attributing 312 

equal weights to the individual forecasting. However, it is more appealing that minimize 313 

some cost function or objective criterion when determining optimal combination 314 

weights. [41] 315 

3.1 Support Vector Machine Regression (SVR) 316 

SVR, an extension of support vector machine (SVM), was proposed by Drucker 317 

et al. [42]. In recent years, SVR has shown outstanding forecasting performance [43-318 

44]. The main idea of SVM is to establish a classification hyperplane as the decision 319 

surface, such that the separation edge between positive and negative cases is maximized. 320 

The theoretical basis of SVM is statistical theory; more precisely, SVM is the 321 

approximate realization of structural risk minimization. 322 

It has the advantage of versatility, and can construct a function among a wide range 323 

of functions. It is theoretically perfect and computationally simple. Furthermore, it is 324 
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often regarded as one of the best ways to solve practical problems. The following steps 325 

show this method’s specific form: 326 

Step 1: Suppose that the training set is as follows: 327 

       1 1, , , ,
l

l lT x y x y X Y      (14) 328 

where 
n

ix X R  ,   1, 1 1,2, ,iy Y i l     , and  ix  is an eigenvector. 329 

Step 2: Select the appropriate kernel function  ',K x x   and the appropriate 330 

parameters C; construct and solve following optimization problems: 331 

 

 
1 1 1

1

1
min ,

2

. . 0, 0 , 1, ,

j t l

i j i j i j j

i j j

l

i i i

i

y y K x x

s t y C i l


 

 

  





    

 



  (15) 332 

Then, obtain the optimal solution  * * *

1 , ,
T

l   . 333 

Step 3: Select a positive component of * ,
*0 j C  , and calculate the threshold 334 

according to the following: 335 

  * *

1

l

j i i i j

i

b y y K x x


     (16) 336 

Step 4: Structure decision function: 337 

    * *

1

sgn ,
l

i i i

i

f x y K x x b


 
  

 
   (17) 338 

The general flowchart followed in this study as shown in Fig.1. 339 

3.2 Traditional Combination Forecasting Method (TCM) 340 

The traditional combination forecasting method (TCM) indicates that when there 341 

are n forecasting methods for dealing with a certain forecasting problem, several 342 

methods’ forecasting results can be added up in order to simply and properly allocate 343 

weight coefficients. [45] 344 

Assume that  1,2, ,itf i n   are the forecasting values of the n forecasting 345 

methods at time t, ty  is the actual value, and iw  is the weight of the ith  forecasting 346 

method. Then the final forecasting value is:  347 

 
1

, 1,2, ,
n

t i it

i

y w f t m
 



     (18) 348 

 
1

1
n

i

i

w


   (19) 349 

3.3 Novel Combined Forecasting Model (NCFM) 350 

In order to improve the quality of forecasting, three hybrid models, EMD-BA-351 

BPNN, EMD-BA-ENN and EMD-ARIMA, were selected as the base predictors in this 352 

study. In the forecasting process, the EMD-ARIMA model focuses on the linear 353 

problem, whereas EMD-BA-BPNN and EMD-BA-ENN deal with the nonlinear series 354 

forecasting. Because wind speed data exhibits a high degree of instability and 355 

nonlinearity, but sometimes shows certain linear features, the three selected models not 356 

only solve the nonlinear problem, but also the linear series forecasting problem. 357 

However, optimally choosing the combination weights is the key to combining 358 

forecasting models. SVR is an application in the field of regression forecasting. In this 359 
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study, SVR is employed to integrate all the forecasted components into an ensemble of 360 

results for the final forecasting. The regression coefficient is considered as the weight 361 

of the combination. Because the regression coefficient changes with the data, it can be 362 

considered that the combination weight is variable. Therefore, a novel combined 363 

forecasting model (NCFM) that aggregates the results from three hybrid models based 364 

on the variable weight theory was proposed.  365 

Because SVR can find the perfect fitting variables from the training set, it can be 366 

used to realize the adaptive change of the weight of every forecasting method. The 367 

parameters of SVR have a significant impact on the results and hard to determine. 368 

Accordingly, the parameters of SVR were optimized by the BA, and the accuracy is 369 

markedly improved. From the experimental results, the proposed combined model 370 

(NCFM) performs better than the single model; furthermore, it evidently surpasses the 371 

TCM. Fig.2 shows the flowchart for the weighting-based combined methods. 372 

 373 
Fig.2. The flowchart for the weighting based combined approaches 374 

4. Numerical Experimentation 375 

Penglai is a seaside city of Shandong province in the north of Jiaodong Peninsula 376 

in China. Although the area is not large, because of its unique geographical advantages, 377 

it has a wealth of wind resources. Therefore, this study included an experiment based 378 

on the wind speed series of Penglai. Accordingly, the datasets A, B, and C are chosen 379 

from three adjacent sites of a wind farm in Penglai, and then three experiments were 380 

developed. For each experiment, the data is divided into four seasons, to facilitate the 381 

analysis of differences in the results of different seasons. This study also examined one-382 

step forecasting and multistep forecasting, and each experiment included one-step 383 

ahead forecasting and multistep ahead forecasting.  384 

The experiments performed in our study were implemented on Matlab2016a 385 

running on the Windows 8.1 Professional operating system. The specific hardware 386 

parameters of hardware were: Intel (R) Core i5-4590 3.30 GHz CPU and 8 GB RAM.387 
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 388 
Fig.3. The location of Penglai and data sructure about models. (a) the location of Penglai in 389 

Shandong province.(b) the original wind speed from four quarters.(c) the data structure of 390 
experiment 391 

4.1 Description of Data Sets 392 

Considering the different wind speed fluctuation of different units, the wind speed 393 

is greatly affected by the season. The 10-min wind speed data sample is selected from 394 

three observation sites (dataset A, dataset B, dataset C) of Penglai from the four seasons. 395 

The observations of each dataset are split into a training set and testing set. The size 396 

ratio of the training set to testing set was fixed as 3:1. The input–output structure of the 397 

forecasting involved using the five previous days of observations to forecast the next 398 

one day wind speed and to replace the latest day. Fig.3 shows the forecasting structure 399 

of the datasets of each unit. The detailed arrangements of the experimental dataset are 400 

presented in Table 1. 401 

4.2 Evaluation Metrics 402 

Evaluation metrics are used to directly reveal the forecasting accuracy of the 403 

combined forecasting model with variable weights. These include the mean absolute 404 

percent error (MAPE), mean absolute error (MAE), and mean square error (MSE), of 405 

which smaller values indicate higher forecasting accuracy [46]. The metrics are defined 406 

as follows: 407 
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where ny   is the actual value at time t, and 

~

ny   is the predicted value at the 411 

corresponding time. 412 

Table 1  413 

The arrangement of the experimental data set in spring 414 

Data Set Numbers 
Statistical Indicator 

Mean(m/s) Max(m/s) 

(m/s) 

Min(m/s) 

(m/s) 

Std(m/s) 

Data Set A 
All samples 2304 7.0809 15.5 0.8 3.0282 
Training 1728 7.3711 15.2 1.2 3.0261 
Testing 576 6.2102 15.5 0.8 2.8659 

Data Set B 
All samples 2304 7.6586 18.7 0.7 3.4504 
Training 1728 8.1397 18.7 1.0 3.4649 

Testing 576 6.2155 14.9 0.7 2.9737 

Data Set C 
All samples 2304 7.0079 18.5 0.6 3.3185 

Training 1728 7.4996 18.5 1.1 3.3933 
Testing 576 5.5328 14.8 0.6 2.5725 

MAPE can be used to effectively measure the prediction performance, and its 415 

specific criterion [46] is shown in Table 2. These three metrics measure the average 416 

effect of the forecast, and they are very sensitive to the changes of the dataset. When 417 

there has a small change in dataset, the metrics change significantly. Similar to reducing 418 

the number of training sets, adding a forecasting step, will increase the metrics. 419 
Table 2 420 
Criterion of MAPE 421 

MAPE

（%） 

forecasting 

power 

<10 Excellent 

10-20 Good 

20-50 Reasonable 

>50 Incorrect 

4.3 Experiment and Forecasting Model Parameter Selection 422 

The statistical model ARIMA and artificial intelligence neural networks ENN and 423 

BPNN play a significant role in this study, as do the weights and thresholds of the 424 

network optimized by the BA. Through many experiments, the parameters of the model 425 

are determined as follows: 426 

(1) For the BA, the bat population size usually varies from 10 to 25. From the 427 

experimental datasets, when the bat population size defined as 10, the optimization 428 

result is more stable and the precision is higher. The other parameters of the BA are 429 

presented in Table 3. 430 

(2) For ARIMA, the order of autoregressive as well as moving average have 431 

enormous implications for the establishment of the model and the forecasting results. 432 

The AIC criterion measures the fitting effect of the observed value and takes into 433 

account the number of parameters in the best fit state. In terms of the AIC, the best order 434 
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of the ARIMA model for forecasting is that with the smallest value of the AIC. 435 

Consequently, the lag order p and q determined by the AIC is presented in Table 4. 436 
Table 3 437 
Model Parameters 438 

Model Experimental Parameters Default Value 

BA 

BA population size 10 

Loudness(dB) 0.25 

Pulse rate (%) 50% 

Frequency maximum(kHz) 2 

Frequency minimum(kHz) 0 

Elman 

the number of input nodes 5 

the number of output nodes 1 

the number of hidden nodes 9--15 

The maximum number of trainings 1000 

Training requirements precision 0.00001 

BPNN 

the number of input nodes 5 

the number of output nodes 1 

the number of hidden nodes 9--15 

the learning velocity 0.1 

The maximum number of trainings 100 

Training requirements precision 0.00001 

 439 

 (3) For ENN, build the network using the newelm function. The dimensions of 440 

the input, hidden, and output layers are presented in Table 3. 441 

(4) For BPNN, build the network using the newff function. The dimensions of the 442 

input, hidden, and the output layers are presented in Table 3. 443 

Table 4 444 

The order of ARIMA 445 

Quarters 
ARIMA EMD-ARIMA 

p q p q 

First 

Quarter 

Site1 9 20 12 20 
Site2 6 10 11 16 
Site3 8 15 13 14 

Second 

Quarter 

Site1 9 3 14 12 
Site2 4 3 14 20 
Site3 12 12 15 20 

Third 

Quarter 

Site1 20 20 18 9 
Site2 19 12 7 6 
Site3 12 10 14 7 

Fourth 

Quarter 

Site1 12 12 12 11 
Site2 9 12 9 11 
Site3 13 14 19 17 

4.4 Experimental Results for Datasets 446 

For the simulation, the proposed new model is trained based on the wind speed 447 

values from the three datasets. The wind speeds of one day were forecasted by single-448 

step and multistep ahead forecasting. The method of multistep ahead forecasting 449 

involves updating the input data by discarding the old data for each loop to perform the 450 

prediction. The multistep ahead forecasting forecasts the next wind speed value in the 451 

form of iterations by using the previous forecasting values rather than the actual value 452 

[47]. Through the forecasting results, the effectiveness of the proposed combined model 453 
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was verified. The multistep ahead forecasting is described as follows: define the time 454 

index h as the forecast origin and the positive integer l as the forecast horizon. Suppose 455 

we are at time index h and intended to forecast 
h lr



, where 1l  . Let  hr l



 be the 456 

forecast of h lr   , then we defined  hr l


  as the l-step ahead forecast of tr   at the 457 

forecast origin h. When 1l  , we defined  1hr


 as the one-step ahead forecast of tr  458 

at the forecast origin h [48-49]. Tables 5-6 show the accuracy of different models for 459 

different datasets. The results of one-step ahead, two-step ahead, and three-step ahead 460 

are shown in Fig.4. 461 

 462 

  463 
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Table5 464 

Comparison of errors of different models for single-step vs multi-step in first two quarters 465 

Dataset Model 
MAPE(%) MAE(m/s) MSE(m/s)2 

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 

Spring 

 A 

EMD-ARIMA 6.6131 8.1257 9.0714 0.2970 0.3642 0.4083 0.1552 0.2427 0.3145 

EMD-BA-ENN 12.0970 15.5208 18.7744 0.4081 0.5307 0.6841 0.2589 0.4904 0.9369 

EMD-BA-BPNN 6.4298 9.5240 12.4630 0.2748 0.3954 0.5258 0.1236 0.2875 0.6159 

NCFM 5.7459 7.0996 8.2900 0.2565 0.3268 0.3800 0.1088 0.2033 0.2606 

 B 

EMD-ARIMA 6.4762 8.1863 9.2329 0.2944 0.3495 0.3945 0.1651 0.2442 0.3082 

EMD-BA-ENN 13.1992 17.6568 20.6656 0.3956 0.5533 0.6437 0.3278 0.6834 0.9322 

EMD-BA-BPNN 5.9013 9.0931 11.1932 0.2631 0.3967 0.4523 0.1293 0.3468 0.4823 

NCFM 4.6075 7.0229 7.8446 0.2158 0.3332 0.3599 0.0828 0.2353 0.2624 

 C 

EMD-ARIMA 6.6908 7.8840 9.0184 0.2946 0.3332 0.3774 0.1565 0.2228 0.2879 

EMD-BA-ENN 14.7032 20.4802 24.9502 0.3859 0.5338 0.6939 0.2577 0.5572 0.8616 

EMD-BA-BPNN 5.2003 8.5966 11.5258 0.2305 0.3454 0.4572 0.1034 0.2366 0.4013 

NCFM 4.8399 7.3619 8.7817 0.2209 0.3262 0.3800 0.0897 0.2113 0.2877 

Summer 

 A 

EMD-ARIMA 5.5492 5.9353 6.7353 0.2752 0.2930 0.3355 0.1314 0.1367 0.1869 

EMD-BA-ENN 6.9021 8.1961 9.9049 0.3488 0.4083 0.5106 0.2057 0.3210 0.4869 

EMD-BA-BPNN 5.0740 7.1604 8.2231 0.2568 0.3623 0.4232 0.0954 0.2514 0.2972 

NCFM 4.5723 5.9222 6.3354 0.2289 0.2914 0.3208 0.0769 0.1366 0.1714 

 B 

EMD-ARIMA 8.2129 8.7162 9.5838 0.3659 0.3925 0.4389 0.2173 0.2475 0.3195 

EMD-BA-ENN 10.4676 12.6239 14.4143 0.4863 0.5794 0.6865 0.3797 0.5472 0.7844 

EMD-BA-BPNN 7.6444 10.1428 12.3186 0.3428 0.4597 0.5474 0.1768 0.3470 0.6246 

NCFM 6.5418 8.4118 9.4938 0.2884 0.3835 0.4344 0.1331 0.2386 0.3237 

 C 

EMD-ARIMA 7.0995 7.9436 8.7701 0.3165 0.3589 0.3944 0.1549 0.2316 0.2826 

EMD-BA-ENN 8.1754 10.8831 12.5890 0.3790 0.5103 0.5835 0.2390 0.4983 0.6286 

EMD-BA-BPNN 7.0035 9.1102 11.4498 0.3251 0.4189 0.5169 0.1700 0.3562 0.4829 

NCFM 5.6535 7.8147 8.6145 0.2550 0.3561 0.4012 0.0991 0.2348 0.2841 
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Table 6 466 

Comparison of errors of different models for single-step vs multi-step in last two quarters 467 

Dataset Model 
MAPE(%) MAE(m/s) MSE(m/s)2 

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 

Autumn 

 A 

EMD-ARIMA 8.1799 7.8101 9.0549 0.2081 0.1962 0.2258 0.0626 0.0647 0.0826 

EMD-BA-ENN 16.7774 21.2795 24.8870 0.3115 0.3998 0.4679 0.1632 0.2615 0.3652 

EMD-BA-BPNN 7.2180 10.5148 13.9602 0.1797 0.2530 0.3175 0.0485 0.1105 0.1771 

NCFM 5.9417 7.3445 8.6143 0.1537 0.1902 0.2206 0.0368 0.0632 0.0801 

 B 

EMD-ARIMA 7.0930 8.2285 8.6828 0.1770 0.2037 0.2160 0.0476 0.0668 0.0757 

EMD-BA-ENN 9.9132 11.8559 13.9097 0.2421 0.2876 0.3175 0.0941 0.1379 0.1644 

EMD-BA-BPNN 6.2094 8.3945 10.3575 0.1528 0.2213 0.2713 0.0362 0.0862 0.1310 

NCFM 6.0736 8.1827 8.6534 0.1506 0.2097 0.2244 0.0333 0.0702 0.0800 

 C 

EMD-ARIMA 6.2787 6.7913 7.8072 0.1731 0.1877 0.2148 0.0500 0.0616 0.0788 

EMD-BA-ENN 12.4135 16.2894 19.6921 0.2861 0.3763 0.4549 0.1255 0.2232 0.3338 

EMD-BA-BPNN 5.3725 7.3716 10.3284 0.1460 0.2018 0.2787 0.0319 0.0662 0.1428 

NCFM 4.7648 6.7536 7.6200 0.1325 0.1862 0.2127 0.0268 0.0586 0.0789 

Winter 

 A 

EMD-ARIMA 4.3643 4.4716 4.5814 0.3958 0.3951 0.4125 0.2625 0.2444 0.2720 

EMD-BA-ENN 6.6654 8.3821 8.9026 0.6750 0.8213 0.8625 0.8791 1.2238 1.3528 

EMD-BA-BPNN 4.5059 5.9472 7.4693 0.4086 0.5466 0.7086 0.2847 0.5359 0.8919 

NCFM 3.5439 4.3845 4.4945 0.3216 0.4040 0.4511 0.1489 0.2566 0.3307 

 B 

EMD-ARIMA 4.9444 4.3035 4.6488 0.4375 0.3854 0.4125 0.2819 0.2173 0.2506 

EMD-BA-ENN 7.2625 10.2637 14.8425 0.7707 1.1604 1.6526 1.4030 4.6385 9.8762 

EMD-BA-BPNN 4.0534 6.1036 7.5744 0.3800 0.5882 0.7484 0.2431 0.6857 1.1326 

NCFM 3.4926 4.2143 4.6145 0.3164 0.4041 0.4584 0.1436 0.2532 0.3310 

 C 

EMD-ARIMA 4.5921 4.0730 4.3032 0.3920 0.3419 0.3608 0.2286 0.1926 0.2097 

EMD-BA-ENN 6.5974 8.3258 9.4818 0.6518 0.8269 0.9137 0.9968 1.6353 1.8391 

EMD-BA-BPNN 4.5442 6.2406 8.2066 0.3972 0.5620 0.7708 0.2689 0.6330 1.4048 

NCFM 3.9828 4.0147 4.2968 0.3277 0.3648 0.3938 0.1688 0.2125 0.2492 

468 
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 469 

Fig.4. The results for proposed model for one-step, two-step and three-step  470 

(1) First, we compare the hybrid and combined models in one-step forecasting.  471 

The hybrid models achieve the MAPE value of 5.2003%, 5.0740%, 5.3725% and 472 

4.5059%, in four quarters respectively. The combined models perform better, with 473 

MAPE values of 4.6075%, 4.5723%, 4.7648%, and 3.4926%, respectively. Therefore, 474 

the forecasting results of the combined model are better than the hybrid model. From 475 

Tables 5-6, the accuracy of the combined model is far better than the hybrid model.  476 

(2) Second, compared with multistep forecasting, the one-step forecasting 477 

performs better, and the MAPE values of the proposed model are 4.6075%, 7.0229%, 478 

and 7.8446% in one-step, two-step, and three-step forecasting, respectively, in spring. 479 

Multistep forecasting is based on single-step ahead forecasting, whereby the number of 480 

outputs is changed, and each forecasting input is added to the previous forecast. 481 

Therefore, with the increase in the number of forecasting steps, the forecasting accuracy 482 

gradually decreases. 483 

(3) Finally, compared with conventional models, the proposed model performs 484 

better. According to Fig.4, the new model has a high fitting degree with the true value. 485 

More importantly, the new model has higher forecasting accuracy. 486 

Remark: The combined forecasting model considers more information, and thus, 487 

it performs better. However, the multistep forecasting procedure is complex and it 488 

introduces high error. In the process of multistep forecasting, there is less historical 489 

information and the predicted values of each step will enter into the forecasting process 490 
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as input. As a result, each stack of the process will produce errors, causing an 491 

accumulation of errors decreased accuracy, and increased uncertainty. 492 

5. Analysis of the Experimental Results 493 

In this part, we will analyze the experimental results in detail, and demonstrate the 494 

validity of the new developed model, which is divided into two parts. First, from three 495 

angles to analyze one-step forecasting, one-step forecasting has the advantages of 496 

simple procedure, high forecasting accuracy shown in Tables 5-6 and Fig.4. Next, on 497 

the basis of one-step forecasting, the multi-step forecasting is analyzed.  498 

5.1 Analysis for One-Step Forecasting 499 

In this section, the experiments arranged to evaluate the forecasting results will be 500 

divided into three parts to demonstrate the validity of the proposed model. The first part 501 

is to verify the effectiveness of hybrid models compared with single models. The second 502 

part is conducted to analyze the wind speed forecasting of different datasets. The third 503 

part is compare the influence of seasonal factors on wind speed forecasting. 504 

5.1.1 Analysis Single Model vs Hybrid Model 505 

Take dataset A from the first quarter as an example. The accuracy data of single 506 

models and hybrid models are presented in Table 7. The actual wind speed fluctuated 507 

violently can be seen in Fig.5. The reconstructed wind speed series used EMD by 508 

removing the noise is shown in Fig.5. By comparing the actual series with the 509 

reconstructed series, the absolute residuals are calculated in Fig.5. We draw the 510 

following conclusions from the analysis. 511 

(1) From Fig.5, the extreme instability of wind speed series is very obvious and 512 

the reconstruction of wind speed series is helpful to overcome it, by comparing the 513 

forecasting results of denoising series with the actual series. From Table 7, the accuracy 514 

is all greatly improved when using the denoising wind speed series, the EMD-ARIMA 515 

decreases the MAPE value by 4.0471%, 3.1815%, and 4.9287%, respectively. Similarly, 516 

for the EMD-ENN model, the accuracy has the improvement of 2.3857%, 4.6630%, 517 

and 4.0122%, respectively. The EMD-BPNN model shows the biggest improvement of 518 

8.2018%, 4.6389%, and 6.9979%. The MAPE of the novel proposed model NCFM 519 

decreases by 4.2003%, 4.8081%, and 5.1002%. By comparing the results, it can be 520 

determined that EMD has good validity. 521 

(2) From Fig.6, the hybrid models with the BA perform better than the single 522 

model in the wind speed forecasting. This study used the BA to optimize the weights 523 

and thresholds of the network, and the results reveal that the BA is effective. From Table 524 

7, the BA-ENN shows MAPE values decreased by 1.3360%, 1.6301%, and 1.1425%, 525 

respectively. Moreover, BA-BPNN shows the improvement in accuracy of 3.57%, 526 

0.4681%, and 1.1379%. The value of the evaluation metrics all decreased significantly. 527 

It can be concluded that the BA contributes much to the forecasting process and hybrid 528 

models are effective.  529 

Remark : Consequently, it is necessary to remove the noise from the wind speed 530 

series before forecasting, and the EMD is one of the effective methods for this purpose. 531 

In conclusion, using the EMD to denoise the wind speed in the process of forecasting 532 

the wind series is valuable. The BA also positively impacts the forecasting process. 533 

Properly changing the weights and thresholds can greatly improve the network 534 
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forecasting ability. As a result, the hybrid model with the proper compound mode can 535 

exceed the single model in forecasting. 536 

 537 

Fig.5. The denoising results of datasetA from the first quarter 538 

Table 7 539 

The accuracy of the model with denoising and without denoising 540 

Model 

Dataset A Dataset B Dataset C 

MAPE 

(%) 

MAE 

(m/s) 

MSE 

(m/s)2 

MAPE 

(%) 

MAE 

(m/s) 

MSE 

(m/s)2 

MAPE 

(%) 

MAE 

(m/s) 

MSE 

(m/s)2 

ARIMA 10.6615 0.4818 0.4426 9.6649 0.4395 0.3816 11.6221 0.5117 0.4928 

EMD-ARIMA 6.6144 0.2970 0.1552 6.4834 0.2944 0.1651 6.6934 0.2946 0.1565 

ENN 14.8504 0.5205 0.4858 18.1247 0.5547 0.5210 19.0835 0.5917 0.6102 

BA-ENN 13.5144 0.4953 0.4248 16.4946 0.5178 0.4914 17.9410 0.5375 0.5123 

EMD-ENN 12.4647 0.4033 0.2559 13.4617 0.3819 0.2851 15.0713 0.3985 0.2819 

BP 14.8937 0.5367 0.4825 11.1124 0.4468 0.3804 12.8814 0.4889 0.4366 

BA-BP 11.3237 0.4679 0.4113 10.6443 0.4536 0.3893 11.7435 0.4626 0.3991 

EMD-BP 6.6919 0.2730 0.1660 6.4735 0.2794 0.1440 5.8835 0.2373 0.1083 

CFM 9.9531 0.4598 0.4057 9.4216 0.4354 0.3865 9.9438 0.4439 0.3932 

NCFM 5.7528 0.2565 0.1088 4.6135 0.2158 0.0828 4.8436 0.2209 0.0897 

5.1.2 Analysis of the Results of Different Datasets 541 

In the second part, the wind speed series of the three nonadjacent wind turbine 542 

units are selected to forecast the wind speed. Take the data from the first quarter as an 543 
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example. The results from all the different models are clearly visible in Fig.4 part a, and 544 

Tables 5-6 show the accuracy of different turbine units from four quarters. Then, we 545 

can draw the following conclusions: 546 

(1) From the view of the 10-min point wind speed series forecasted for a whole 547 

day, we can see that the wind speed series from the three wind turbine units have the 548 

same fluctuation trend in general, but the gap is obvious at a single time point. The 549 

reason for this is that the wind speed of the same place is roughly the same, but specific 550 

to different wind turbine units, the size and direction of the wind speed changes, 551 

creating the wind speed difference between different wind turbine units. 552 

(2) From Table 5, the MAPE values of the four quarters from the three turbine 553 

units are different. For example, the MAPE of the NCFM from the three datasets are 554 

5.7459%, 4.6075%, and 4.8399%. From the forecasting accuracy, we can see that 555 

dataset A shows the best accuracy. 556 

Remark : The direction and magnitude of wind speed are uncertain, and the wind 557 

speed values of different adjacent wind turbine units are also different. Moreover, the 558 

wind speed fluctuates distinctly in different periods of a day. Therefore, the forecasted 559 

accuracy varies diversely from sites and the periods. 560 

5.1.3 Analysis of Season Features 561 

This part compares the forecasted results and the forecasting accuracy of different 562 

wind turbines in different seasons. For example, Tables 5-6 present the accuracy of 563 

forecasting models. The following conclusions can be drawn: 564 

(1) The size and the fluctuation trend of wind speed are closely related to the 565 

seasons. From the original series of four quarters shown in Fig.3, the fluctuations in the 566 

second quarter are some of the more intense; the gap between the actual value and the 567 

forecast value for each model are slightly larger. The fourth quarter trend is obvious; 568 

the wind speed fluctuations in each period is more stable, so the predicted value is close 569 

to the actual value, and the forecast effect is better. 570 

(2) From Tables 5-6, it can be seen that the accuracy of different models from the 571 

four quarters is diverse. In the four quarters, the NCFM performs best all the time. It 572 

can still be concluded that the hybrid model is more accurate than the single model. The 573 

MAPE values of the NCFM from dataset A are 5.7459%, 4.5723%, 5.9417%, and 574 

3.5439%. MAPE of the fourth quarter is the smallest, because the wind speed of the 575 

fourth quarter shows smaller fluctuations. 576 

Remark: The accuracy of wind speed forecasting is greatly influenced by the 577 

fluctuation of wind speed. However, the forecasted results indicate that the novel 578 

developed method is more accurate. 579 

5.2 Analysis of Multi-Step Forecasting 580 

Multi-step forecasting plays a very important part in many forecasting experiments. 581 

Accordingly, the proposed model that integrates three hybrid models is applied to 582 

multistep forecasting in this study. Then the experimental results can be used to testify 583 

the effectiveness of the combined forecast model. The forecasting results of two-step 584 

and three-step from different models are shown in Tables 5-6 and Fig.4. The results 585 

indicate that the developed model also performs better than other benchmark models. 586 

Further comparison results are illustrated below. 587 
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(1) Similar to the analysis of one-step forecasting, the accuracy of the hybrid 588 

models is higher than the single model in multi-step forecasting. Similarly, the 589 

combined model is still the most accurate for multi-step forecasting, but its accuracy is 590 

less than that in the one-step forecasting. 591 

(2) From a comparison of the results of one-step forecasting and multistep 592 

forecasting, the one-step forecasting has obvious advantages in accuracy. Take the 593 

results of spring as an example. The MAPE of NCFM is 5.7459% in one-step 594 

forecasting of dataset A, and in two-step and three-step forecasting, it is 7.0996% and 595 

8.29%, respectively. The MAE values are 0.25, 0.32, and 0.38, respectively. The MSE 596 

values are 0.10, 0.20, and 0.26 respectively. 597 

These findings can be summarized as follows: 598 

(1) When comparing the results of different seasons, whether in single-step or 599 

multistep ahead forecasting, the proposed model performs best. 600 

(2) When comparing results of different datasets, we can draw the same conclusion 601 

that the developed combined model performs better than any other models, whether in 602 

single-step or multistep ahead forecasting. 603 

Remark: From the above analysis, we can conclude that the developed model 604 

always performs better than any other models by comparing the three benchmark 605 

indexes MAPE, MAE, and MSE, whether in the single-step or multistep forecasting. 606 

Therefore, the newly developed model is effective. 607 

  608 
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Table 8  609 

The real value and forecasting results of models on March 26th from 0:00 to 21:00 610 

Time 
Real 

(m/s) 

ARIMA ENN BPNN Traditional Combined NCFM 

Forecast(m/s) FE(%) Forecast(m/s) FE(%) Forecast(m/s) FE(%) Forecast(m/s) FE(%) Forecast(m/s) FE(%) 

Dataset A 

0:00 5.4000 6.1808 14.4588 5.8590 8.4996 6.1312 13.5410 5.7372 6.2444 5.7232 5.9849 

3:00 4.1000 4.2702 4.1505 4.4629 8.8512 4.3698 6.5815 3.9637 3.3238 3.9348 4.0295 

6:00 1.8000 2.1305 18.3585 2.3794 32.1902 2.0505 13.9141 1.8745 4.1393 1.8151 0.8381 

9:00 2.6000 2.4661 5.1516 2.7478 5.6831 2.6913 3.5098 2.4635 5.2499 2.4116 7.2469 

12:00 3.9000 4.3664 11.9584 4.4865 15.0397 4.4718 14.6626 4.1137 5.4790 4.0875 4.8074 

15:00 4.3000 3.7270 13.3257 3.6840 14.3248 3.9889 7.2347 3.7174 13.5498 3.6849 14.3040 

18:00 8.9000 8.3094 6.6360 8.5736 3.6676 8.4466 5.0948 8.6044 3.3212 8.6091 3.2684 

21:00 11.0000 10.7944 1.8692 10.6733 2.9701 10.9739 0.2371 10.9493 0.4608 11.0344 0.3132 

Dataset B 

0:00 5.3000 5.2008 1.8720 5.1094 3.5966 5.2229 1.4552 5.3166 0.3134 5.4295 2.4427 

3:00 4.0000 3.5610 10.9743 3.6466 8.8354 3.7355 6.6123 3.8349 4.1265 3.9059 2.3526 

6:00 1.9000 2.1910 15.3148 2.7017 42.1961 2.2812 20.0649 2.2014 15.8631 1.9306 1.6118 

9:00 3.1000 2.7705 10.6295 3.0164 2.6958 2.9921 3.4799 2.9254 5.6315 2.8374 8.4704 

12:00 3.5000 3.2953 5.8480 3.5123 0.3524 3.0773 12.0770 3.5331 0.9468 3.4342 1.8808 

15:00 2.8000 3.1396 12.1290 3.2490 16.0350 3.3691 20.3250 3.0649 9.4605 2.9906 6.8072 

18:00 8.9000 8.8202 0.8964 8.9873 0.9814 8.9835 0.9384 8.7277 1.9365 8.9422 0.4744 

21:00 11.0000 11.4935 4.4868 11.5933 5.3937 11.4685 4.2590 10.7984 1.8331 10.9745 0.2319 

Dataset C 

0:00 4.1000 4.1459 1.1188 3.9952 2.5569 4.1477 1.1629 4.0724 0.6722 4.2128 2.7512 

3:00 3.3000 3.4371 4.1534 3.3929 2.8145 3.4678 5.0851 3.3815 2.4705 3.3950 2.8785 

6:00 2.3000 2.3014 0.0606 2.7398 19.1205 2.4223 5.3189 2.4960 8.5202 2.3166 0.7206 

9:00 2.7000 2.5850 4.2593 2.9369 8.7747 2.6075 3.4253 2.7121 0.4464 2.4980 7.4810 

12:00 3.6000 3.8351 6.5319 3.8259 6.2751 3.7322 3.6716 3.8236 6.2122 3.8241 6.2255 

15:00 3.2000 2.7578 13.8176 2.9933 6.4595 2.4372 23.8368 3.1103 2.8030 3.1535 1.4526 

18:00 7.2000 6.9905 2.9100 6.7498 6.2524 6.7189 6.6826 7.2974 1.3528 7.2391 0.5426 

21:00 8.9000 9.7871 9.9677 9.4114 5.7465 9.4860 6.5840 9.1831 3.1807 9.2807 4.2772 

611 
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 612 

 613 

Fig.6. The forecasting results about the combined model 614 

6. Discussion 615 

This section provides a profound discussion of the experimental results, which 616 

includes forecasting models, each component in combined models, and the influence 617 

factors of metaheuristics. 618 

6.1 Hybrid Model and Combined Model 619 

Hybrid models and combined models are mainstream in the forecasting field. 620 

Hybrid models have many forms, combining algorithms with traditional models, and 621 

are the extension of single models. In the experiment, the developed hybrid model 622 

outperforms the corresponding single model, and the decreases in MAPE are 4.0471%, 623 

2.7534%, and 8.4639% in dataset A, which verifies the validity of the hybrid models. 624 

Combined models aim at taking full advantage of more methods to increase 625 

accuracy as much as possible. The key of a combined model is the estimation of weight 626 

coefficients. Traditional methods focus on searching for the best weight between the 627 

models; however, the weight is fixed. Therefore, this study developed the variable 628 

weight combination forecasting model considering that wind speed series changes with 629 

time. The success of the experiment proves that variable weight combination 630 

forecasting model outperforms the hybrid models in this study, decreasing the MAPE 631 

values by 0.8672%, 6.3511%, and 0.6831%. 632 

6.2 Variable Weight Combination Forecasting Model vs Constant Weight 633 

Combination Forecasting Model 634 

The forecasting model NCFM proposed in this paper is superior to the other 635 

models. Table 8 presents the time point data of the wind speed forecasting results and 636 

the forecasting precision of each model for 3-h intervals during one day. Then, Fig.6 637 

shows the forecasting results of one day ahead for different models. We can conclude 638 
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the following: (1) The black bold in Table 8 represents the minimum value of each 639 

model forecasting error at the same time point; we can see that the error of the variable 640 

weight combination forecasting model (NCFM) is shown to be the smallest many times, 641 

and it performs best among the models. (2) The fitting degree between the forecasted 642 

value and the true value of each model is clearly visible and the forecasted error of the 643 

models are clearly shown in Fig.6. Even though BPNN is the most prominent in the 644 

single model forecasting, all the hybrid models are better than the corresponding single 645 

model. However, of all hybrid models, the NCFM is also the validated model with high 646 

precision. 647 

The variable weight combination forecast method is obviously better than the fixed 648 

weight combination forecast method: (1) From Table 8, the predicted series of the two 649 

combined forecasting models are very close to the actual series; however, the variable 650 

weight combination forecasting model NCFM has a better forecasting effect. (2) By 651 

comparing the forecasting results of the description in Fig.6, it can be seen that the 652 

accuracy of the two combined models is higher than that of the hybrid models, but the 653 

NCFM has changed the equal weight characteristics of the traditional combined model, 654 

which improves the performance. 655 

Remark: From the above analysis, we can see that the NCFM forecasting accuracy 656 

is higher, which proves that the variable weight combination forecast method is better 657 

than the fixed weight combination forecast method. The variable weight combination 658 

forecasting model can better adapt to changes of the sample, and match the weight of 659 

the sample points in the corresponding model. Therefore, the NCFM is more applicable 660 

to forecast the wind speed. 661 

6.3 Steps of Forecasting 662 

To testify the performance of the developed forecasting model, multi-step ahead 663 

wind speed forecasting is also conducted in this study. Table 9 compares the multi-step 664 

forecasting accuracy in spring. From the accuracy of dataset A, the one-step forecasting 665 

improves by 1.3537% and 2.5441% compared with two-step and three-step forecasting, 666 

respectively. For dataset B, the improvements with two-step and three-step forecasting 667 

are 2.4154% and 3.2371%, respectively. For dataset C, the accuracy of one-step 668 

forecasting increases 2.5220% and 3.9418% for two-step and three-step forecasting, 669 

respectively. As the comparison reveals, the proposed combined model in multi-step 670 

forecasting is effective; moreover, it is more effective in one-step forecasting. 671 

6.4 Effectiveness of Data Preprocessing Approach 672 

The wind speed data is irregular, which always includes high fluctuation and noise. 673 

Therefore, it is essential to eliminate the noise in the series. To validate the importance 674 

of denoising, we compare the results of ARIMA, ENN, BA-ENN, BP, BA-BPNN, and 675 

NCFM before and after denoising. The MAPE decreases by 4.05%, 2.39%, 1.41%, 676 

8.2%, 4.89%, and 4.2% for the above models, respectively, in dataset A. From the 677 

improvement of accuracy, we can see that all MAPE decreased significantly, verifying 678 

that the accuracy improves significantly and the BPNN increases the most. Furthermore, 679 

the NCFM has the best forecasting performance, and its MAPE improves 4.2%. As 680 

Fig.7 reveals, the three metrics all decreased significantly and it demonstrates that the 681 

EMD not only enhance the forecasting accuracy but also can effectively reduce the 682 
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MAE and MSE. The results demonstrate that when data preprocessing methods were 683 

applied to denoise the original data, the forecasting accuracy improved enormously in 684 

this study. 685 

Table 9 686 

Comparison of multi-step forecasting accuracy 687 

Metric 1-Step 2-Step Improvement 3-Step Improvement 

Dataset A 

MAPE (%) 5.7459 7.0996 1.3537 8.2900 2.5441 

MAE(m/s) 0.2565 0.3268 0.0703 0.3800 0.1235 

MSE(m/s)2 0.1088 0.2033 0.0945 0.2606 0.1518 

Dataset B 

MAPE (%) 4.6075 7.0229 2.4154 7.8446 3.2371 

MAE(m/s) 0.2158 0.3332 0.1174 0.3599 0.1441 

MSE(m/s)2 0.0828 0.2353 0.1525 0.2624 0.1796 

Dataset C 

MAPE (%) 4.8399 7.3619 2.5220 8.7817 3.9418 

MAE(m/s) 0.2209 0.3262 0.1053 0.3800 0.1591 

MSE(m/s)2 0.0897 0.2113 0.1216 0.2877 0.1980 

 688 

 689 
Fig.7. The metrics between denoising and without denoising 690 

6.5 Significance of the Proposed Combination Forecast Model 691 

The ability to predict the evaluation model can not only be based on the error and 692 

the value of MAPE, MAE, MSE. But statistical tests can also be employed to verify the 693 

forecasting ability well. Diebold and Marino [50] proposed a comparing test, which is 694 

mainly based on the comparison of two predictive models. Therefore, from the 695 
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statistical perspective, the bias–variance statistics framework and the Diebold–Mariano 696 

(DM) test are used to evaluate the significance of the developed combined model. 697 

Table 10 698 

Bias-variance and Diebold-Mariano test of experiments among different models for the average 699 

value of four quarters and three sites 700 

Model 

Bias2-Variance 
Dt 

Bia2(m/s)2 Var(m/s)2 

1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 

ARIMA 0.4426 0.4067 0.3964 0.4451 0.4089 0.3988 4.9588* 4.6202* 3.5508* 

ENN 0.4248 0.4136 0.4138 0.4275 0.4139 0.4121 5.5181* 5.5471* 5.6011* 

BPNN 0.4113 0.4215 0.4158 0.4127 0.4098 0.4086 4.9514* 4.5863* 4.6734* 

EMD-ARIMA 0.1552 0.2427 0.3145 0.1562 0.2439 0.3160 2.6922* 2.4848** 2.9062* 

EMD-BA-ENN 0.1721 0.4904 0.9369 0.2583 0.4915 0.9428 6.0321* 5.1339* 4.0468* 

EMD-BA-BPNN 0.1236 0.2875 0.6159 0.1244 0.2895 0.6202 1.6646**

* 

2.4441** 3.5239* 

NCFM 0.1088 0.2033 0.2606 0.1093 0.2045 0.2620 - - - 

*indicates the 1% significance level; **indicates the 5% significance level; ***indicates the 10% significance level; 701 

The bias and variance of the bias–variance statistics framework are shown in Table 702 

10. The 2Bia  and var of the three hybrid models are much lower than the three 703 

corresponding single models for wind speed forecasting. Correspondingly, the hybrid 704 

model has higher forecasting accuracy. The 2Bia and var of the proposed model is still 705 

lower than the hybrid model, and the developed model is much better than the hybrid 706 

model in predicting ability. 707 

Table 10 shows the DM statistics values and reveals that (a) the DM statistics 708 

values of the ARIMA, ENN, BPNN, EMD-ARIMA, and EMD-ENN models are greater 709 

than the critical value at a 1% significance level; (b) the DM statistics values of EMD-710 

BA-BPNN model is greater than the critical value at 15% significance level;(c) the 711 

proposed model is far better than the other models when comparing DM statistics values 712 

at a 1% significance level. 713 

6.6 Metaheuristics 714 

In this study, metaheuristics were used to find the optimal weight and threshold 715 

values of networks to obtain high accuracy. In this section, we will focus on discussing 716 

the factors that would have an impact on the forecasting results. 717 

6.6.1 Comparison of Different Population Size.  718 

A comparative study of different population sizes is conducted in this section. The 719 

comparison results reveal that the performance of BA gets worse when increasing the 720 

population size of bats beyond 10 and keeping other parameters fixed. Moreover, 721 

decreasing the population size from 10, also degrades the performance. Therefore, we 722 

can conclude that the population size plays a vital role in the optimization algorithm. 723 

From Table 11, when population size is 10, the search ability of the algorithm is best. 724 

6.6.2 Comparison of Different Train-to-Verify Ratio. 725 

The train-to-verify ratios denote the degree of the usage of recent series and we 726 

can determine how it influences the forecasting results. We configured several train-to-727 

verify ratios to research the effect that ratios have on the results. The ratios were 728 

configured to 1:1, 2:1, 3:1, 4:1, and 5:1 for the wind speed data of three datasets. Large 729 

ratios mean that there is more recent series put into training. However, small ratios 730 
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indicate that there are fewer recent series for training. In our experiment, we found that 731 

increasing the ratios can obtain better accuracy. The reason is that using more recent 732 

data can improve the efficiency of training. However, this does not mean that the ratios 733 

can infinitely expand in practical application, because there is a lack of reliability when 734 

there are too few samples to verify. Therefore, we suggest selecting the higher ratios 735 

when the number of samples is taken into account. 736 

Table 11 737 

Selection of population size of bat algorithm (MAPE) 738 

Population Size 5 10 15 20 25 

Spring 

Dataset A  6.43% 6.25% 6.55% 6.61% 6.66% 

Dataset B 6.34% 5.69% 6.29% 5.91% 5.95% 

Dataset C 5.33% 4.87% 5.39% 5.29% 5.31% 

Summer 

Dataset A 5.14% 5.03% 5.10% 5.21% 5.30% 

Dataset B 7.70% 7.63% 7.67% 7.71% 7.83% 

Dataset C 7.09% 7.05% 7.10% 7.23% 7.29% 

Autumn 

Dataset A 7.06% 6.74% 7.02% 7.19% 7.25% 

Dataset B 6.22% 6.14% 6.17% 6.24% 6.19% 

Dataset C 5.51% 5.42% 5.47% 5.51% 5.59% 

Winter 

Dataset A 4.74% 4.67% 4.87% 4.79% 4.86% 

Dataset B 3.90% 3.82% 4.08% 4.27% 4.25% 

Dataset C 4.79% 4.57% 4.97% 4.89% 4.79% 

7. Conclusion 739 

Wind power generation is now developing rapidly in the world. Many scholars 740 

have carried out thorough research into wind speed forecasting. However, owing to the 741 

instability of wind speed, the models at this stage cannot still yield satisfactory results. 742 

This study proposed a new model to forecast short-term wind speed, which has several 743 

features: 744 

The first is to decompose the original data and reconstruct the time series. On the 745 

basis of the denoising model and the characteristics of the decomposed series, a proper 746 

model is established to fit and forecast the short-term wind speed series. As a result, 747 

EMD makes an outstanding contribution to the forecasting of unstable time series; 748 

moreover, the fitting ability and forecasting capacity have well improved. 749 

The second idea is that there are three models, which are from statistical models 750 

and artificial intelligence models, used to forecast the wind speed considering that wind 751 

speed data have both nonlinear and linear features. The BA is used to optimize the 752 

parameters of the models in order to improve the forecasting capacity. Accordingly, 753 

three hybrid models (EMD-ARIMA, EMD-BA-ENN, and EMD-BA-BPNN) are used 754 

in the forecasting process. The results reveal that the hybrid models show enormous 755 

improvements in the forecasting accuracy, stability, and trend. 756 

The last feature is that the developed model integrated the three hybrid models 757 

based on a variable weight method. Although the hybrid model improves the predictive 758 

ability of the single predictive model, it still has some defects. Consequently, the 759 

combination forecast method is used to further improve the forecasting ability of the 760 

hybrid model. In view of the fact that the SVR model has a good ability for fitting and 761 

regression forecasting, the predictive results of the hybrid model are fitted and 762 

forecasted by SVR, and the final results are obtained.  763 
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In our experiments, the novel combined model NCFM that integrates three hybrid 764 

models could cope with not only the nonlinear series forecasting problem, but also 765 

certain linear series forecasting problems. Compared with the hybrid models EMD-766 

ARIMA, EMD-BA-ENN, and EMD-BA-BPNN, the experimental results reveal that 767 

the average MAPE of the proposed combined model were significantly reduced by 768 

23.21%, 61.56%, and 13.16% respectively. Thus, the forecasting efficiency of NCFM 769 

was verified. Therefore, the developed forecasting model NCFM, which has the highest 770 

accuracy, is a potential model for use in the future. The combined model can also be 771 

applied in many other fields, such as power load forecasting, stock price forecasting, 772 

and traffic flow forecasting.  773 
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