OPEN Received: 26 February 2018 Accepted: 20 December 2018 Published online: 07 February 2019 # Disclosure of complementary medicine use to medical providers: a systematic review and meta-analysis H. Foley 1, A. Steel 1, H. Cramer 1, J. Wardle & J. Adams 1 Concomitant complementary medicine (CM) and conventional medicine use is frequent and carries potential risks. Yet, CM users frequently neglect to disclose CM use to medical providers. Our systematic review examines rates of and reasons for CM use disclosure to medical providers. Observational studies published 2003–2016 were searched (AMED, CINAHL, MEDLINE, PsycINFO). Eighty-six papers reporting disclosure rates and/or reasons for disclosure/non-disclosure of CM use to medical providers were reviewed. Fourteen were selected for meta-analysis of disclosure rates of biologically-based CM. Overall disclosure rates varied (7–80%). Meta-analysis revealed a 33% disclosure rate (95%CI: 24% to 43%) for biologically-based CM. Reasons for non-disclosure included lack of inquiry from medical providers, fear of provider disapproval, perception of disclosure as unimportant, belief providers lacked CM knowledge, lacking time, and belief CM was safe. Reasons for disclosure was important for safety, and belief providers would give advice about CM. Disclosure appears to be influenced by the nature of patient-provider communication. However, inconsistent definitions of CM and lack of a standard measure for disclosure created substantial heterogeneity between studies. Disclosure of CM use to medical providers must be encouraged for safe, effective patient care. Health care seeking invariably involves choices regarding the use of what can often be many competing health care services, treatments and providers from both within and beyond the public health care system. This level of individual choice in health seeking is increasingly recognised with person-centred care being given predilection as a favourable model of care provision in public health^{1,2}, situating individuals as active participants at the centre of their health management. Patient autonomy and preference are important features of person-centred care² to be considered by medical providers alongside safety and treatment outcomes in their patient management. Amidst this context, complementary medicine (CM) - a broad, varied field of health care practices and products customarily excluded from conventional medical practice and dominant health care systems³ – is often the focus of relatively hidden patient health seeking yet is making its presence felt in primary care, chronic disease management and other areas⁴. Despite appreciable gaps in evidence of effectiveness⁵, CM use remains prevalent amongst the general population⁶. While there is controversy amongst medical providers around the role and value of CM⁷, the vast majority of CM use is concurrent to conventional medicine⁸ with CM users visiting a GP more frequently than non-CM users⁹. Serious adverse effects and harm from CM appear relatively rare but substantial associated direct and indirect risks remain ^{10,11}, particularly regarding ingestive biologically-based CM (such as herbal medicines or supplements)¹²⁻¹⁴, which may be obtained from unreliable sources, self-prescribed or consumed without professional supervision^{11,15}. Exacerbating such risks is an absence of both awareness of concurrent CM and conventional medicine use, and of procedures ensuring appropriate oversight of concurrent use¹¹. Furthermore, patients often approach CM as inherently safe and may not perceive a need to communicate their CM use to medical providers^{16,17}. Addressing the risks associated with concurrent use is the responsibility of both patients and their medical providers¹⁸, and arguably essential for general practitioners in their capacity as primary care gatekeepers¹⁹. A previous review of the literature pertaining to CM use disclosure to medical providers published in 2004 identified twelve papers published between 1997–2002 reporting a CM disclosure rate of 23–90% alongside key factors - patient concern about possible negative response from their medical provider, patient perception that ¹Faculty of Health, University of Technology Sydney, Ultimo, Australia. ²Department of Internal and Integrative Medicine, Kliniken Essen-Mitte, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany. Correspondence and requests for materials should be addressed to H.F. (email: hope.m.foley@student.uts.edu.au) the medical provider was not sufficiently knowledgeable in CM and therefore unable to contribute useful information, and the absence of medical provider inquiry about the patient's CM use – fuelling non-disclosure²⁰. Disclosure has been increasingly identified as a central challenge facing patient management amidst concurrent use over the last 13 years^{21,22} but no systematic review or meta-analysis has been conducted on this topic over this recent period. In direct response, this paper provides an update to the previous review, assessing research findings regarding CM use disclosure to medical providers since 2003. Our review employs a qualitative synthesis to explore disclosure rates, patient attitudes to disclosure, reasons for disclosing and not disclosing, and the role of patient-provider communication in disclosure. In addition, to gain further insight into the extent of this important health services issue across settings, we undertook a meta-analysis of disclosure rates among patients using ingestive biologically-based CM. ### Methods A review protocol was developed in accordance with the PRISMA-P (Preferred Reporting Items for Systematic review and Meta-Analysis Protocols) 2015 checklist²³ and MOOSE (Meta-analysis of Observational Studies in Epidemiology) guidelines (see Supplementary Methods S1)²⁴. We developed the protocol for the systematic review before initiating the literature search. The protocol was not registered on a systematic review protocol database. The strategy for the meta-analysis was developed after all articles had been selected for the systematic review based upon the trend we observed in the rates of disclosure among individuals using biologically-based CM products. Prior to initiating the meta-analysis the protocol was modified to define the statistical methods we would employ for the quantitative synthesis. The final manuscript was prepared in accordance with AMSTAR guidelines²⁵ where appropriate with respect to the observational nature of the review aim. **Review aim.** This review aims to describe the prevalence and characteristics of disclosure of CM use to medical providers. **Search strategy.** The search strategy was informed by the review published by Robinson & McGrail²⁰. A search was conducted on 13–14 February 2017 on the EBSCOhost platform of the following databases: AMED, CINAHL, MEDLINE, and PsycINFO. Three search strings were combined to identify studies which assessed the use of CM, patient-provider communication, and conventional medicine clinical settings. CM search terms were chosen on the basis of CM modalities identified as common in use among the general population in recent literature²⁶. Truncation symbols were applied where appropriate to capture related terms. The full search string was as follows: S1 (complementary medicine OR complementary therap* OR alternative medicine OR alternative therap* OR natural medicine OR natural therap* OR acupunctur* OR aromatherap* OR ayurved* OR chiropract* OR herbal* OR phytotherap* OR homeopath* OR hypnosis OR hypnotherap* OR massage OR naturopath* OR nutrition* OR diet therap* OR vitamin therap* OR supplement OR osteopath* OR reflexology* OR traditional Chinese medicine OR yoga) AND S2 (disclos* OR communicat* OR patient use OR reasons for use OR discuss*) AND S3 (medical practi* OR general practi* OR health care provider OR primary care provider OR physician). The full search strategy is outlined in Table 1. In order to provide an update on the review by Robinson & McGrail²⁰, a date range of January 2003 to December 2016 was set. The reference and bibliographic lists of all studies included in the review were searched to minimise the likelihood of missed citations. In addition, any systematic reviews identified during the literature search which presented data on topics related to the primary research aim were also searched manually. The authors contributed their own content expertise in clinical practice, health services research and primary care to ensure important known articles were not overlooked. **Selection criteria.** Our review included cross-sectional data from observational studies as this research design was deemed the most appropriate for determining prevalence of health behaviours, determinants and outcomes²⁷. All observational study designs constituting original, peer-reviewed research were considered for the qualitative synthesis if they reported on rates of, or reasons for, disclosure/non-disclosure of CM use to conventional medicine providers by a broad range of members from the general population. CM use was defined as the use of any practice or product falling outside of those considered part of conventional medicine²⁸, whether administered as self-treatment or by a CM practitioner. We excluded experimental study designs, which may have impacted on natural communication patterns between patients and providers, alongside studies assessing specific populations which could not reasonably be considered to represent a broad range of individuals (e.g. disease-specific populations). Studies were not excluded on the basis of language. During selection of studies for meta-analysis, additional criteria were applied with respect to homogeneity, in order to ensure the central estimate of disclosure frequency would provide external validity. This additional criteria required that participants were adults, the study reported a true and well-defined rate of
disclosure occurring within the previous twelve months, and involved participants who used biologically-based CM (herbs/plant-based medicines, vitamins, minerals and other oral supplements). Of those papers reporting studies sharing a common data source (e.g. if multiple papers reported on data from the same survey study), we included only one of those publications in order not to artificially inflate our sample size. In such cases, the risk of bias was evaluated for all such publications and only included that publication deemed to have the lowest risk of bias. **Study selection.** Citations were exported into EndNote X8 (Clarivate Analytics 2017) reference management software for assessment. Following removal of duplicates, the initial citations were screened against inclusion/exclusion criteria by title and abstract. Review and commentary articles were set aside for a manual search of their included studies. Remaining citations were screened by full-text perusal and those found to adhere to all selection criteria were selected for review. The reference lists of the selected studies were manually searched for | Protocol title | Disclosure of complementary medicine use to medical providers: An update and systematic review | | | | | | | | |-------------------------------------|--|--|--|--|--|--|--|--| | Date | Jan 2003–Dec 2016 | | | | | | | | | Database
Platform | Search String | Expanders | | | | | | | | AMED
EBSCOhost | S1 (complementary medicine OR complementary therap* OR alternative medicine OR alternative therap* OR natural medicine OR natural therap* OR acupunctur* | | | | | | | | | CINAHL
EBSCOhost | OR aromatherap* OR ayurved* OR chiropract* OR herbal* OR phytotherap* OR homeopath* OR hypnosis OR hypnotherap* OR massage OR naturopath* OR nutrition* OR diet therap* OR vitamin therapy OR supplement OR osteopath* OR reflexolog* OR | Apply related words,
Apply equivalent | | | | | | | | MEDLINE with full text
EBSCOhost | traditional Chinese medicine OR yoga) AND \$2 (disclos* OR communicat* OR patient use OR reasons for use OR discuss*) | subjects. | | | | | | | | PsycINFO
EBSCOhost | AND S3 (medical practi* OR general practi* OR health care provider OR primary care provider OR physician) | | | | | | | | **Table 1.** Search strategy. additional articles. Full review of all eligible citations was conducted by the lead author (HF). A selected sample of eligible studies (10%) were reviewed at each stage of screening by a second reviewer (AS), as were any studies under question, and discrepancies were addressed through discussion until consensus was reached. The justification for excluding articles following screening the full text was recorded. **Data extraction and risk of bias assessment.** Papers selected for review were re-read thoroughly with data extracted into pre-prepared tables outlining study characteristics, outcomes of interest (disclosure/non-disclosure rates and reasons) and parameters of those outcomes (CM type disclosed, how disclosure was defined). Further to this, papers were read in full-text once more to identify other notable findings relating to disclosure, which were categorised and tabulated heuristically. The template for data extraction was drafted during the pre-review protocol development phase with agreement from all authors. Data extraction was conducted by one reviewer (HF) with a selected sample (10% alongside any data under question) checked by another reviewer (AS). Any discrepancies were addressed through discussion until consensus was reached. The resulting tables were examined to identify studies meeting the criteria for meta-analysis. These identified studies were subjected to risk of bias assessment using Hoy *et al*.'s tool for prevalence studies, which assesses ten items across four domains (sample selection, non-response bias, measurement bias, analysis bias) alongside a summary score²⁹. Studies identified as high risk of bias were excluded from the final selection for meta-analysis. Risk of bias was considered high if four or more items were not adequately addressed, if the first three items indicated an unacceptable level of sampling bias, or if item ten was not adequately addressed as this item affected calculation of disclosure rates. Data synthesis and statistical analysis. Due to the expected heterogeneity of each study's parameters of disclosure, no average disclosure rate was calculated for the full review; instead a meta-analysis was conducted on those studies demonstrating sufficient homogeneity in study design and a low risk of bias. The principal summary measure used for meta-analysis was disclosure rate of CM use to medical providers. Meta-analysis was conducted using events (number of disclosers) and subset of sample size (number of CM users) to determine event rates of disclosure. Where studies reported disclosure rates only as percentages, events were calculated using figures for the number of participants who responded to the disclosure question. Where these figures were unavailable, the study was considered to fail to address item 10 on the risk of bias assessment tool and was excluded from meta-analysis. Statistical heterogeneity between studies was explored using I^2 and chi-square statistics. I^2 values greater than 25%, greater than 50%, and greater than 75% indicate moderate, substantial, and considerable heterogeneity, respectively³⁰. Due to the relatively low power of this test, a P value of 0.10 or less from the chi-square test was regarded to indicate significant heterogeneity³⁰. Analysis was completed using Comprehensive Meta-Analysis V3 software (Biostat Inc. 2017). ### Results From an initial 5,071 non-duplicate citations, eighty-six studies were selected for review. The reasons for exclusion at full-text screening are provided in Table 2. **Risk of bias assessment.** Twenty studies met the initial inclusion criteria for meta-analysis and were subjected to assessment of reporting quality and risk of bias using Hoy *et al*.'s tool for prevalence studies²⁹. Collectively, studies performed poorly across most domains relating to external validity, either due to poor methodological conduct or inadequate reporting on methods relating to target population (item 1), random selection (item 3) and response bias (item 4). However, sampling frame representation was well conducted and reported (item 2). Domains relating to internal validity were addressed well, with the exception of instrument validity (item 7). Of the twenty studies, four were found to exhibit a high risk of bias due to poorly defined parameters for disclosure rate definition or analysis 31-34 and were consequently excluded from meta-analysis. The remaining sixty-six studies which did not meet the initial inclusion criteria for meta-analysis represented a heterogeneous range of study designs in which disclosure was not reported as a primary outcome, but as a secondary outcome or qualitative finding, and thus the resulting data underwent narrative synthesis without risk of bias appraisal. Table 3 displays full details of risk of bias assessment. | First Author | Year | Title | Reason for Exclusion | |-----------------------------|------|---|---| | Anbari ¹³³ | 2015 | Evaluation of Trends in the Use of Complementary and Alternative
Medicine in Health Centers in Khorramabad (West of Iran) | Did not report on disclosure of CM use | | Avogo ¹³⁴ | 2008 | The effects of health status on the utilization of complementary and alternative medicine | Did not report on disclosure of CM use | | Ben-Arye ¹³¹ | 2014 | Asking patients the right questions about herbal and dietary supplements: Cross cultural perspectives | Experimental study, used intervention to deliberately increase disclosure rates | | Desai ¹³⁵ | 2015 | Health care use amongst online buyers of medications and vitamins | Did not report on disclosure of CM use | | Emmerton ¹³⁶ | 2012 | Consumers' experiences and values in conventional and alternative medicine paradigms: a problem detection study (PDS) | Did not report on disclosure of CM use | | Featherstone ¹³⁷ | 2003 | Characteristics associated with reported CAM use in patients attending six GP practices in the Tayside and Grampian regions of Scotland: a survey | Did not report on disclosure of CM use | | Harnack ¹³⁸ | 2003 | Results of a population-based survey of adults' attitudes and beliefs about herbal products | Did not report on disclosure of CM use | | Hunt ¹³⁹ | 2010 | Complementary and alternative medicine use in England: results from a national survey | Did not report on disclosure of CM use | | Zhang ¹⁴⁰ | 2008 | Complementary and alternative medicine use among primary care patients in west Texas | Did not report on disclosure of CM use | **Table 2.** Studies excluded at full text appraisal with reasons for exclusion. **Study characteristics.** Of the eighty-six studies reviewed, seventy-nine provided quantitative data^{31-33,35-110}, three qualitative data¹¹¹⁻¹¹³, and four mixed-method data^{34,114-116} relevant to CM disclosure rates and/or reasons for disclosure/non-disclosure (selection process summarised in Fig. 1). Nine studies were excluded following review of the full text. A vast majority of the selected studies (n = 83) used a cross-sectional survey design^{31,32,34-110,114-116}, two employed a multistage qualitative approach^{111,112}, and one an ethnographic interview design¹¹³. While the final selection of research spanned twenty countries,
just under half of the studies (n = 40) were conducted in the United States (US)^{31-35,37,40,41,43-54,56,57,60,76,79,80,87-91,94,100,101,105,107,108,112-114}. Settings were diverse with data collection occurring primarily in general practice or hospital clinics^{34-38,41,43,55,58,61-64,66,68,69,74,76-79,81,82,86,87,92,97,98,101,103,106,107,109,111,112,114-116}, face-to-face in participants' households^{33,39,46-50,52-54,67,70,72,84,85,88-91,93,94,100,102,104}, or by telephone and/or mail^{31,40,45,51,56,57,59,65,73,75,95,96,108,110}. Less common settings included CM clinics^{34,42,68}, retail outlets^{60,71,99,105}, community meal sites^{44,113}, seminars^{78,80}, and online platforms^{32,83}. While some samples consisted entirely of CM users 45,50,51,54,83,89,98 , most involved a subset of CM users within a larger sample. Full samples ranged from 35 to 34,525 with an average of 4,144. Amongst those studies reporting figures for the subset of CM users, samples ranged from 28 to 16,784 with an average of 1,268 and a total of 101,417. Participants were predominantly adults with a small number of studies focussed on older adults 44,57,65,94,95,105,110,113,114 , children 45,58,63,68,73,97,103,106,115,116 , adolescents 41,97 , or all age groups 61,99,112 . More than half of the studies included users of various types of CM (n = 45) $^{31,35,36,38,41-43,50,51,54,57-59,61-63,65,66,68,72,73,75,76,80-82,85,88,89,96,97,102-113,115,116}$, while others were limited to users of specific types of CM such as herbs and/or supplements $^{32-34,37,44-47,52,53,55,56,60,64,67,69-71,74,77-79,83,86,87,92-95,98-101,109,114}$, yoga 48,91 , tai chi 49,90 , mind-body medicine 40 , practitioner-provided CM 39 , or local traditional medicine 84 . Almost half of the selected studies (n = 40) used a convenience sampling met hod $^{32,34-37,41-44,55,58,60-64,66,68,69,74,76-82,86,87,92,97,101,103,106,107,109,111,114-116}$. However, twenty-two studies used a nationally representative sample $^{31,39,40,46-54,59,73,85,89-91,94,96,100,110}$, while others applied some method of probability randomisation 38,56,65,75,84,88,99 , stratification 33,45,57,67,70,72,93,108 , weighting 71,104,113 , or purposiveness 95,98,102,105,112 during sampling. Table 4 provides full details of the study characteristics identified from the reviewed literature. Following risk of bias assessment, sixteen studies were considered suitable for meta-analysis of CM disclosure rates. Two were excluded from analysis ^{46,52} on the basis that they used data from an earlier version of the same national survey as reported in another included manuscript⁵⁴. Studies selected for meta-analysis represented a wide geographical spread including North America^{35,54,87}, Central America⁸⁸, Continental Europe^{69,77,82}, the United Kingdom³⁹, the Middle East^{38,67,85}, West Africa⁸⁴, and Asia^{62,81}. Sample sizes included in the meta-analysis ranged from 35 to 7,493 with an average of 840 and a total of 11,754 CM users. Papers excluded due to a high risk of reporting bias represented an additional 3,222 CM users. **Prevalence and parameters of disclosure.** Rates of disclosure varied substantially across studies, ranging from $7\%^{114}$ to $80\%^{40}$. Studies including biologically-based CM fell within a range of $7\%^{114}$ to $77\%^{44}$, while the highest rate of disclosure (80%) was reported by researchers assessing the use of mind-body medicine exclusively⁴⁰. Parameters used for defining and measuring disclosure also varied, with the most common parameters outlined as participant disclosure of their use of CM within the last twelve months to a medical provider (n = $30)^{31-33,36,38,40,45-50,52,54,57,62,65,67,68,70,71,73,81,82,84,85,87,88,95,100,115,116}$. Others studies examined participants' disclosure to a medical provider of their current CM use^{35,74,77-79,83,98,109,111}, use within the last month^{34,53,69,86}, use within the last 24 months^{50,51}, had always/usually/sometimes/never disclosed^{39,59,60,66,72,110}, had ever discussed their CM use with a conventional provider^{37,43,64,75,76}, had partially or fully disclosed their CM use^{56,114}, had disclosed when asked⁴¹, had discussed before use⁹², reported rates of disclosure per episode of use⁸⁹, or how the patient felt about disclosing^{80,112}. A number of papers did not explicitly define their parameters for measuring disclosure^{42,44,55,58,61,63,90,91,93,94,96,97,99,101-108,113}. | | External Vali | idity | | | Internal Val | idity | | | | | Summary | |----------------------------------|----------------------|-----------------------------|-------------------------------|------------------------------------|---|------------------------------|----------------------------------|---|--------------------------------|-------------------------------------|----------------------------| | Paper | Item 1
Population | Item 2
Sampling
frame | Item 3
Sample
selection | Item 4
Non-
response
bias | Item 5
Method
of data
collection | Item 6
Case
definition | Item 7
Instrument
validity | Item 8
Mode
of data
collection | Item 9
Prevalence
period | Item 10
Parameter of
interest | Item 11
Overall
risk | | Djuv 2013 ⁷⁷ | N | Y | N | N | Y | Y | N | Y | Y | Y | Moderate | | Faith 2015 ³¹ | Y | Y | Y | Y | Y | Y | Y | N | Y | N | High | | Gyasi 2015 ⁸⁴ | N | Y | Y | N | Y | Y | Y | Y | Y | Y | Low | | Herron 2003 ³⁵ | N | Y | N | N | Y | Y | N | Y | Y | Y | Moderate | | Hori 2008 ⁶² | N | Y | N | Y | Y | Y | N | Y | Y | Y | Low | | Hsu 2016 ⁸⁷ | N | Y | N | N | Y | Y | N | Y | Y | Y | Moderate | | Jou 2016 ⁵⁴ | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Low | | Kennedy 2005 ⁴⁶ | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Low | | Wu 2011 ⁵² | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Low | | McCrea 2011 ³² | N | N | N | N | Y | N | N | Y | Y | Y | High | | Mileva-Peceva 2011 ⁶⁹ | N | Y | Y | N | Y | Y | N | Y | Y | Y | Moderate | | Naja 2015 ⁸⁵ | Y | Y | Y | N | Y | Y | N | Y | Y | Y | Moderate | | Nur 2010 ⁶⁷ | N | Y | Y | Y | Y | Y | N | Y | Y | Y | Low | | Rivera 2007 ³³ | N | Y | Y | N | Y | Y | N | Y | Y | N | High | | Shumer 2014 ⁸¹ | N | Y | N | Y | Y | N | Y | Y | Y | Y | Moderate | | Tan 2004 ³⁸ | N | N | Y | N | Y | Y | N | Y | Y | Y | Moderate | | Tarn 2015 ³⁴ | N | Y | N | N | Y | Y | N | Y | Y | N | High | | Thomas 2004 ³⁹ | Y | Y | Y | N | Y | Y | N | Y | Y | Y | Low | | Torres-Zeno 2016 ⁸⁸ | N | Y | Y | N | Y | Y | Y | Y | Y | Y | Low | | Vitale 2014 ⁸² | N | Y | N | N | Y | Y | N | Y | Y | Y | Moderate | **Table 3.** Risk of bias assessment for meta-analysis selection (selected papers in bold). N = criterion not adequately met; Y = criterion adequately met. **Figure 1.** Literature search and study selection flow chart. Prisma flowchart outlining process of literature search and selection of articles for review. The outcomes of the meta-analysis of the rate of disclosure of CM use by individuals using biologically-based CM is presented in Fig. 2. The measure of central tendency provided an overall disclosure rate of 33% (95% CI $24\cdot1\%$ to $42\cdot8\%$, $I^2=98\cdot6\%$). Between the fourteen included studies, the lowest reported disclosure rate was 12% and the highest was 59%. Heterogeneity was assessed across the fourteen samples (Q-value 904.955, p < 0.001, $I^2=98.563$). Although homogeneity was affected by the substantially larger sample size in Jou *et al*.'s 2016 study⁵⁴, the paper was not excluded as it used a strong, internationally recognised dataset with very low risk of bias. The employment of a random effects model accounted for the impact of this study on homogeneity and its inclusion was not found to impact significantly on the measure of consistency within this model. Reasons for non-disclosure and disclosure. Twenty-five studies reported participant reasons for non-disclosure^{36,37,42,54-57,59,67,76-79,83-85,90,92,98,105,107,110-113}, and four reported reasons for disclosure of CM use to medical providers^{56,111-113}. The most commonly cited reasons patients gave for non-disclosure were fear of the provider's disapproval^{36,42,54-56,67,76-78,83-85,90,92,105,107,110-113}, followed by the provider not asking^{37,42,54-57,59,67,76-78,83,84,90,98,110-113}, the patient perceiving disclosure as unimportant^{42,54-57,59,67,76,78,79,84,85,90,92,98,105,107,110}, belief the physician would not have relevant knowledge of CM^{36,42,54,56,67,76-78,107,113}, lack of time during consultation or forgetting^{36,42,54,56,57,76,78,92,105}, belief that CM was safe and would not interfere with conventional treatment^{42,78,83,85}, and previous experiences of a negative response from conventional providers^{54,78,83,85}, and previous experiences of a negative response from conventional providers^{54,84,90,112}. The most commonly cited reason for disclosure was that the provider asked about CM use^{56,111,112}, followed by the patient expecting the provider to be supportive of their CM use^{112,113}, believing disclosure was important for safety^{56,113}, belief the provider would have relevant knowledge or advice about CM⁵⁶, and belief that disclosing CM use may help other patients with the same condition⁵⁶. Full details of reasons are shown in Table 5. When participants were asked whether they thought disclosure was important, more than 67% agreed it was 36,63,68,80,110. This percentage was highest (93%) among participants who were surveyed in CM clinics 8, which was consistent with other studies reporting higher disclosure rates among users of practitioner-provided CM compared with self-administered CM 50,51,81,89. Conversely, one study found lower disclosure rates among those using practitioner-provided CM, specifically where participants were consulting a CM practitioner and a medical provider for the same condition 65. Impact of provider response on
decisions to disclose. In a qualitative analysis, Shelley *et al.* found patients' perceptions of how their medical provider might respond to their CM use was an important factor in the decision of whether or not to disclose¹¹². A perception of the medical provider as accepting and non-judgemental encouraged disclosure while fear of a negative response from their medical provider led to non-disclosure¹¹². One paper reported 59% of participants wanted to discuss CM with their medical provider (despite only 49% having done so), and 37% of non-disclosers wished it were easier to have such discussions³⁵. In another study, the percentage of participants who wanted to discuss CM with their provider represented a substantial majority at 82% (despite only 60% having done so)⁶¹. When the actual response of the provider to disclosure of CM use was explored by researchers, negative or discouraging responses were reported by a minority of respondents representing less than 20% of disclosers (65,71,77,85,105), or were not reported at all 111. However, in five papers positive or encouraging responses to disclosure of CM use by a medical doctor were reported by a substantial proportion of respondents representing 32–91% of disclosers (63,65,77,79,85,105). Neutral responses from medical providers were also common, reported by 8–32% of disclosers in three studies (77,85,111). # Discussion This review and meta-analysis provides a detailed overview and update of CM use disclosure to medical providers. Regarding the update to the 2004 paper²⁰ afforded by this review, a substantially larger volume of literature reporting on CM disclosure was identified in our search, suggesting an increase in researcher interest in this aspect of patient-provider communication. Our analysis reveals little discernible improvement to disclosure rates over the last thirteen years. Consistent with the findings of the previous review, we found reports of disclosure vary widely. However, our additional meta-analysis on selected papers shows approximately two in three CM users do not disclose their CM use to medical providers. In view of the potential risks associated with unmanaged concomitant use of conventional and complementary medicine^{11,14}, the value of increasing this rate of disclosure is accentuated. Furthermore, our narrative review identified three distinct yet interrelated findings relating to patient-practitioner communication. Firstly, disclosure of CM use to medical providers is influenced by the nature of providers' communication style; secondly, perceived provider knowledge of CM use is a barrier to discussions of CM use in clinical consultation; and thirdly, such discussions and subsequent disclosure of CM use may be facilitated by direct inquiry about CM use by providers. We consider this in the context of contemporary person-centred health care models. Communication style was a repeated factor affecting disclosure rates in this review; disclosure of CM use was found to be encouraged by patient perceptions of acceptance and non-judgement from medical providers ¹¹², and inhibited by patient fears or previous experiences of discouraging responses from providers ^{36,42,54–56,67,76–78,83–85,90,92,105,107,110–113}. In practice, negative responses from medical providers appear to represent a deviation from the more commonly positive or neutral responses noted by participants of the reviewed studies as well as others ^{117,118}. However, such fears and subsequent non-disclosure of CM use could potentially be addressed by medical providers through communication with patients about CM in a direct, supportive, non-judgemental manner to build trust and communicative success ¹¹⁹. The reviewed literature shows patient perceptions of medical providers as lacking relevant knowledge about CM is a notable reason for non-disclosure. While examination of provider attitudes was not within the scope of this review, three reviewed papers included an assessment of medical providers' attitudes toward discussing CM and identified lack of CM knowledge as a cause of providers' reluctance to initiate such discussions^{76,111,112}. Providers' own perceived lack of CM knowledge as an obstacle to patient-provider CM communication also reflects other research examining provider perspectives on CM^{120,121}. While the inclusion of CM in medical school curricula does occur in some countries (e.g. the US¹²², Canada¹²³, UK¹²⁴, Germany¹²⁵, and Switzerland¹²⁶), and is of interest to medical students^{127,128}, this level of CM learning appears insufficient to equip medical providers with the confidence to address patient CM queries^{120,121}. Furthermore, the depth and scope of CM knowledge to be realistically encouraged amongst medical providers has been contested^{124,125} and may be best facilitated on a | First author | Year | Study design | Setting | Country | Population | Sample (CM users) | Disclosure rate | CM type used | Funding source | | |--------------------------|------|--|--|-----------------------------|---|-------------------|------------------|------------------------------|--|--| | Herron ³⁵ | 2003 | Cross-sectional survey | 5 teaching
physician offices | United States | Adult patients of rural physician clinics | 176 (110) | 49% | Various CM | Not reported. | | | Najm ¹⁰⁵ | 2003 | Cross-sectional survey | Senior centres
and shopping
malls | United States | Community-dwelling older adults in ethnically diverse neighbourhoods, age \geq 65 | 525 (251) | 38% | Various CM | Archstone
Foundation and
Irvine Health
Foundation. | | | Stevenson ¹¹¹ | 2003 | Semi-structured interview | 20 general
practice clinics
and homes of
clinic patients | England | Patients of participating clinics, age ≥ 16 | 35 (28) | NR | Various CM | UK Department
of Health. Sir
Siegmund
Warburg's
voluntary
settlement. | | | Canter ⁹⁵ | 2004 | Cross-sectional survey | Self-
administered,
recruited by
magazine and
website | Britain | British adults aged ≥ 50 | 271 (NR) | 33% | Herbs and nutrients | No funding received. | | | Giveon ³⁶ | 2004 | Cross-sectional survey | 25 primary care clinics | Israel | Patients of HMO clinics | 723 (261) | 55% | Various CM | Not reported. | | | Kuo ³⁷ | 2004 | Cross-sectional survey | 6 Primary
care clinics,
via SPUR-Net
PBRN | United States | Adult patients visiting clinics for routine, non-acute care, age ≥ 18 | 322 (116) | 31-67% | Herbs | Agency for
Healthcare
Research and
Quality. Bureau
of Health
Professions. | | | Rolniak ¹⁰⁷ | 2004 | Cross-sectional survey | Emergency
department
of teaching
hospital | United States | Adult patients
who were
medically stable,
age ≥ 18 | 174 (82) | 69% | Various CM | Mercy
Foundation | | | Tan ³⁸ | 2004 | Cross-sectional survey | 2 University
hospitals,
internal
& surgery
polyclinics | Turkey | Adult patients
age ≥ 18, residents
of Eastern Turkey | 714 (499) | 15% | Various CM | Not reported. | | | Thomas ³⁹ | 2004 | Cross-sectional survey | Omnibus
survey,
conducted in
households | England,
Scotland, Wales | Adults living in UK, age ≥ 16 | 1,794 (179) | 37% | Practitioner-
provided CM | UK Department of Health. | | | Wolsko ⁴⁰ | 2004 | Cross-sectional survey | Telephone,
random digit
dialling | United States | English-speaking adult residents | 2,055 (397) | 80% ^d | Mind-body
therapies | National
Institutes of
Health. | | | Braun ⁴¹ | 2005 | Cross-sectional survey | Urban
adolescent
ambulatory
clinic | United States | Adolescents
attending
ambulatory clinic,
age 12–18 | 401 (273) | 14% | Various CM | National
Institutes
of Health.
Maternal and
Child Health
Bureau. | | | Busse ⁴² | 2005 | Cross-sectional survey | Naturopathic college clinic | Canada | Patients of clinic, age ≥ 18 | 174 (161) | 59% | Natural
products | Canadian
Institutes of
Health. | | | Kim ⁴³ | 2005 | Cross-sectional survey | 4 Emergency
departments,
2 teaching, 2
community | United States | Emergency department patients age ≥ 18, not in acute/ emotional distress. | 539 (199) | 36% | Various CM | Not reported. | | | Lim ¹⁰² | 2005 | Cross-sectional survey | Homes of participants | Singapore | Adult citizens
and permanent
residents, age ≥ 18 | 468 (356) | 26% | Various CM | Not reported. | | | Shahrokh ⁴⁴ | 2005 | Cross-sectional survey | Congregate
meal sites in 4
counties | United States | Community-
dwelling older
adults | 69 (35) | 77% | Herbs and nutrients | Not reported. | | | Wheaton ⁴⁵ | 2005 | Cross-sectional survey | Computer
Assisted
Telephone
Interview | United States | American adults
and their children
who used herbs in
past 12 months | 2,982 (2,982) | 34% | Medicinal herbs | Not reported. | | | Bruno ^{a94} | 2005 | Cross-sectional survey | 2002 NHIS Alt
Med Suppl. | United States | General
population older
adults, ≥ 65 | 5,860 (NR) | 43% | Herbs | Not reported. | | | Kennedy ^{a46} | 2005 | Cross-sectional survey | 2002 NHIS Alt
Med Suppl. | United States | General
population adults,
age ≥ 18 | 30,412 (5,787) | 33% | Herbs & | No funding | | | Kennedy ^{a47} | 2008 | Secondary analys
disclosers by ethi | | nnedy 2005 (above |), describes character | ristics of | 18-37% | supplements | received. | | | First author | Year | Study design | Setting | Country | Population | Sample (CM users) | Disclosure rate | CM type used | Funding source | |---------------------------|------|------------------------|---|-----------------
---|----------------------------------|-----------------|------------------------------------|---| | Birdee ^{a48} | 2008 | Cross-sectional survey | 2002 NHIS Alt
Med Suppl. | United States | Civilian adults,
sub-population:
yoga users | 31,044 (1,593) | 25% | Yoga | National
Institutes of
Health. | | Birdee ^{a49} | 2009 | Cross-sectional survey | 2002 NHIS Alt
Med Suppl. | United States | Civilian adults,
sub-population:
t'ai chi, qigong
users | 31,044 (429) | 25% | T'ai chi &
Qigong | National
Institutes of
Health. | | Chao ^{a,b50} | 2000 | Cross-sectional survey | 2002 NHIS Alt
Med Suppl. | 11 | General | 10,759 (10,759) | 39% | Verious CM | National | | Cnao | 2008 | Cross-sectional survey | 2001 HCQS
data set | United States | population adults,
age ≥ 18 | 2,003 (2,003) | 66% | Various CM | Institutes of
Health | | Faith ^{b51} | 2013 | Cross-sectional survey | 2001 HCQS
data set | United States | General population adults, age ≥ 18 | 1,995 (1,995) | 71% | Various CM | Not reported. | | Wu ^{a,c52} | 2011 | Cross-sectional survey | 2002 NHIS Alt
Med Suppl.
2007 NHIS Alt
Med Suppl. | - United States | $\begin{array}{c} \text{General} \\ \text{population adults,} \\ \text{age} \geq 18 \end{array}$ | 30,427 (5,787)
22,657 (3,982) | 33%
46% | Herbs & supplements | Not reported. | | Gardiner ^{a100} | 2007 | Cross-sectional survey | 2002 NHIS Alt
Med Suppl. | United States | General population adults, age ≥ 18 | 31,044 (5,787) | 34% | Herbs | National
Institutes of
Health | | Laditka ^{c53} | 2012 | Cross-sectional survey | 2007 NHIS Alt
Med Suppl. | United States | General population adults, age ≥ 18 | 22,783 (16,784) | 62% | Cognitive
health
supplements | No funding received. | | Shim ^{c89} | 2014 | Cross-sectional survey | 2007 NHIS Alt
Med Suppl. | United States | General population adults, age ≥ 18 | 7,347 (7,347) | 46% | Various CM | Not reported. | | Jou ⁵⁴ | 2016 | Cross-sectional survey | 2012 NHIS Alt
Med Suppl. | United States | General population adults ≥ 18 using both CM & primary care physician | 7,493 (7,493) | 59% | Various CM | University of
Minnesota. | | Cincotta ⁹⁷ 20 | 2006 | Cross-sectional survey | University
Hospital of
Wales | Wales | Infants, children
and adolescents
(or their parent/ | 500 (206) | 34% | Various CM | Not reported. | | | | survey | Royal Children's
Hospital | Australia | carer) of any age
attending hospital | 503 (258) | 37% | | | | MacLennan ¹⁰⁴ | 2006 | Cross-sectional survey | Health
Omnibus
Survey of South
Australian
households | Australia | South Australian residents, age ≥ 15 | 3,015 (1,574) | 47% | Various CM | Not reported. | | Saw ⁵⁵ | 2006 | Cross-sectional survey | Penang
Hospital | Malaysia | Adult patients
from cardiology,
neurology,
infectious and
nephrology
wards, age ≥ 18 | 250 (106) | 9% | Herbal
medicine | Not reported. | | Shah ⁵⁶ | 2006 | Cross-sectional survey | Mail via market research co. | United States | Adult Ohio
residents age ≥ 18 | 210 (100) | 11-44% | Herbal | Not reported. | | Shive ¹⁰⁸ | 2006 | Cross-sectional survey | Telephone
interview-
administered
questionnaire | United States | General population adults with over-representation of minorities, age ≥ 18 | 6,305 (NR) | 55–72% | Various CM | National
Institutes
of Health,
National Cancer
Institute | | Cheung ⁵⁷ | 2007 | Cross-sectional survey | By mail,
random
selection by
driver's licence
date of birth | United States | Community-
dwelling older
adults, age ≥ 65 | 445 (278) | 53% | Various CM | Center for
Geronto-logical
Nursing,
University of
California.
University of
Minnesota.
College of St.
Catherine.
Minnesota
Gerontological
Society. | | Clement ⁹⁸ | 2007 | Cross-sectional survey | 16 randomly
selected
primary health
care facilities | Trinidad | Patients aged ≥ 16
who used herbal
remedies | 265 (265) | 23% | Herbal
remedies | Not reported. | | Continued | | - | | | 1 | | <u> </u> | ı | 1 | | , | 2007 | Cross-sectional survey Cross-sectional survey | University-
affiliated
hospital
Households in
border cities | French Canada | Children (parents of) attending the hospital as | 114 (61) | 47% | | No funding | |---------------------------|------|--|---|---------------------------|--|-------------|---------------------------|--------------------------|--| | Rivera ³³ 2 | 2007 | | | | outpatients | | 47 /0 | Various CM | received. | | | | | of El Paso &
Cuidad Juarez | United States &
Mexico | Residents of border cities, adults. | 1,001 (661) | 33% (USA) 14%
(Mexico) | Herbal products | Paso del
Norte Health
Foundation. | | Xue ⁵⁹ 2 | 2007 | Cross-sectional
survey | Computer
Assisted
Telephone
Interview,
random digit
dialling | Australia | Australian adults,
age≥18 | 1,067 (735) | 45% ^e | Various CM | RMIT University. Sydney Institute of Traditional Chinese Medicine. Chiropractor Association of Australia. Australian Acupuncture and Chinese Medicine. Association. Australian Research Centre for Complementary and Alternative Medicine. | | Zhang ¹¹⁰ 2 | 2007 | Cross-sectional survey | Computer-
assisted
telephone
interview | Australia | Australian general population adults age ≥ 18, subpopulation: older adults age ≥ 65 | 178 (NR) | 60% | Various CM | Not reported. | | AlBraik ⁹² 2 | 2008 | Cross-sectional survey | Primary health
care clinic in
Abu Dhabi | United Arab
Emirates | United Arab
Emirates nationals
(citizens)
attending clinic
for general health
care | 330 (250) | 32% | Herbal
medicine | Not reported. | | Archer ⁶⁰ 2 | 2008 | Cross-sectional
survey, pilot
study | Urban herb
store | United States | Store customers, age ≥ 18 | 35 (32) | 37% | Herbs & supplements | Not reported. | | Aydin ⁹³ 2 | 2008 | Cross-sectional
survey, pilot
study | Participant
households and
offices | Turkey | General population adults ≥ 18, representative of local population | 873 (484) | 26% | Herbal
medicine | Not reported. | | Cizmesija ⁶¹ 2 | 2008 | Cross-sectional survey | 14 primary care practices | Croatia | Patients in
primary
healthcare, all
ages | 941 (301) | 60% | Various CM | Not reported. | | Hori ⁶² 2 | 2008 | Cross-sectional survey | General
outpatient
clinics of
Shiseikai Daini
Hospital | Japan | Adult outpatients
of non-specialist
clinics, age ≥ 18 | 496 (246) | 42% | Various CM | Not reported. | | Low ¹⁰³ 2 | 2008 | Cross-sectional survey | Paediatric
clinics and
hospitals | Ireland | Children (parents
of) attending as
outpatients and
inpatients | 185 (105) | 40% | Various CM | Not reported. | | Ozturk ⁶³ 2 | 2008 | Cross-sectional survey | Paediatric
outpatient
clinics of 3
hospitals | Turkey | Children (parents
of) attending
paediatric
outpatient clinics | 600 (339) | 51% | Various CM | Not reported. | | Robinson ¹⁰⁶ 2 | 2008 | Cross-sectional survey | North West
London multi-
ethnic hospital | England | Children (parents
of) children
attending general
and sub-specialist
outpatient clinics | 243 (69) | 46% | Various CM | No funding received. | | Shakeel ⁶⁴ 2 | 2008 | Cross-sectional survey | Aberdeen Royal
Infirmary | Scotland | Patients admitted to general, cardiothoracic and vascular surgery wards, age ≥ 16 | 430 (196) | 40% | Herbal and
non-herbal | Not reported. | | Levine ⁶⁵ 2 | 2009 | Cross-sectional survey | Telephone,
randomly
selected | Canada | Community
dwelling older
adult Ontarians,
age ≥ 60 | 1,206 (616) | 75% ^e | Natural health products | Samuel
McLaughlin
Foundation,
Toronto. | | Einst outhor | Vaan | Study design | Catting | Country | Donulation | Sample (CM | Disclosure rete | CM tyme used | Eunding course | |-----------------------------|------|---------------------------|---|---------------|--|---------------|-----------------------|--|--| | First author | Year | Study design | Setting | Country | Population Patients of | users) | Disclosure rate | CM type used | Funding source | | Shelley ¹¹² | 2009 | Multistage
qualitative | Low-income
serving primary
care clinics and
community,
via RIOS Net
PBRN | United States | participating
clinics and
members of
predominantly
Hispanic and
Native American
communities, all
ages | 93 (NR) | NR | Various CM | National
Center for
Complementary
and Alternative
Medicine. | | Delgoda ⁹⁹ | 2010 | Cross-sectional survey | 18 pharmacies | Jamaica | Adults and
parents/carers or
children who were
using prescription
medicines | 365 (288) | 18% ° | Herbs
 International
Foundation
for Science,
University of
the West Indies,
SuperPlus Food
Stores | | Mc Kenna ⁶⁶ | 2010 | Cross-sectional survey | Urban general practice | Ireland | Adult patients attending urban GP ≥ 18 | 328 (89) | 34% | Various CM | RCSI | | Nur ⁶⁷ | 2010 | Cross-sectional survey | Households and workplaces | Turkey | Adult Sivas
residents, age ≥ 18 | 3,876 (1,518) | 38% | Herbs | Not reported. | | Shorofi ¹⁰⁹ | 2010 | Cross-sectional survey | 4 metropolitan
hospitals in
Adelaide | Australia | Hospitalised adults, age ≥ 18 | 353 (319) | 38-48% | Herbs and other
CM | Not reported | | Araz ¹¹⁶ | 2011 | Cross-sectional survey | Outpatient university clinic | Turkey | Children (parents of) and parents, age ≥ 17 | 268 (193) | 32% | Various CM | Not reported. | | Ben-Arye ⁶⁸ | 2011 | Cross-sectional survey | Conventional & CM clinics | Israel | Children (parents of) and parents, insured | 599 (NR) | 19%, 61% ^f | Various CM | No funding received. | | McCrea ³² | 2011 | Cross-sectional survey | State university, online | United States | College students
of introductory
psychology course | 305 (89) | 25% | Herbs | Not reported. | | Mileva-Peceva ⁶⁹ | 2011 | Cross-sectional survey | General practice clinics | Macedonia | Adult outpatients of GP clinics, age ≥ 18 | 256 (105) | 57% | Vitamin &
mineral food
supplements | Not reported. | | Picking ⁷⁰ | 2011 | Cross-sectional survey | Households in 3 districts | Jamaica | Adults from
urban and rural
districts | 372 (270) | 19% | Herbal
medicine | Commonwealth
Scholarship
Commission.
University of
the West Indies.
Environmental
Foundation of
Jamaica. Forest
Conservation
Fund.
International
Foundation
for Science
(Sweden). | | Alaaeddine ⁷¹ | 2012 | Cross-sectional survey | Shopping malls | Lebanon | Adults, age 18-65 | 480 (293) | 55%° | Herbal
medicine | Faculty of
Medicine,
Saint-Joseph
University. | | Elolemy ⁷² | 2012 | Cross-sectional survey | Households
within Riyadh
region (city and
surrounds) | Saudi Arabia | Residents of
Riyadh region,
age ≥ 18 | 518 (438) | 51% | Various CM | No funding received. | | Kim ⁷³ | 2012 | Cross-sectional survey | Telephone,
list-assisted
random-digit
dialling. | Korea | Children (parents
or caregivers
of), non-
institutionalised,
age ≥ 18 | 2,077 (1,365) | 29% | Various CM | Ministry for
Health, Welfare
& Family
Affairs, Korea. | | Samuels ⁷⁴ | 2012 | Cross-sectional survey | Department
of internal
medicine | Israel | Hospitalised
internal medicine
patients, not
under sedation | 280 (43) | 74% | Non-vitamin,
non-mineral
supplements | Mirsky
Foundation | | Thomson ⁷⁵ | 2012 | Cross-sectional survey | 2010 QSS
(Queensland
social survey)
data, telephone | Australia | Adults living
in Queensland,
Australia | 1,261 (778) | 60% | Various CM | School of
Nursing,
Midwifery
& Health,
University of
Stirling | | | | | | | | | 1 | i . | | | First author | Year | Study design | Setting | Country | Population | Sample (CM users) | Disclosure rate | CM type used | Funding source | |-------------------------|------|---|---|---------------|---|-------------------|-----------------|-----------------------------------|--| | Arcury ¹¹³ | 2013 | Ethnographic interview | Senior meal & housing sites | United States | Community-
dwelling older
adults, age ≥ 65 | 62 (39) | 59% | Various CM | National Center
for CAM | | Djuv ⁷⁷ | 2013 | Cross-sectional survey | General practice office | Norway | Patients visiting the GP office, age ≥ 18 | 381 (164) | 18% | Herbs | Liaison
Committee
between
Central Norway
RHA and
NTNU. | | Lorenc ¹¹⁵ | 2013 | Cross-sectional survey | 4 Primary
Care Research
Network GP
practices | England | Children (carers
of) attending GP,
age ≥ 16 | 394 (179) | 25% | Various CM | King's Fund. | | | | Cross-sectional survey | 2007 telephone
survey | | General | 1,260 (NR) | 45% | | Department of Health, | | Chang ⁹⁶ | 2014 | Cross-sectional survey | 2011 telephone
survey | Taiwan | population adults,
age ≥ 18 | 2,266 (NR) | 52% | - Various CM | Executive Yan,
ROC | | Chiba ⁷⁸ | 2014 | Cross-sectional survey | Healthfood
seminars,
pharmacies,
hospitals. | Japan | In-patients,
ambulatory
patients & healthy
subjects, age < 20
to > 80 | 2,732 (874) | 28-30% | Dietary
supplements or
food | Health and
Labour Sciences
Research
Grants. | | Chin-Lee ⁷⁹ | 2014 | Cross-sectional survey | Community
medical
practice and
community
pharmacy | United States | Patients seeking
primary health
care services, age
18–89 | 164 (49) | 41% | Probiotics | Not reported. | | Jang ¹¹⁴ | 2014 | Cross-sectional
survey and
audio analysis | Academically-
affiliated
physician offices | United States | Older adult primary care patients, ≥ 50, with new, worsening or uncontrolled problem | 256 (142) | 7–42% | Dietary
supplements | University of
California at
LA. National
Institute on
Aging. | | Nguyen ⁸⁰ | 2014 | Cross-sectional survey | Remote area
medical events
in 2 counties | United States | Patients seeking free medical care at remote area medical events, age ≥ 18 | 192 (94) | 44% | Various CM | Not reported. | | Shumer ⁸¹ | 2014 | Cross-sectional survey | 3 Rural family
medicine clinics | Japan | Adults who visit
rural Japanese
family medicine
clinics, age ≥ 20 | 519 (415) | 23% | Various CM | Shizuoka
Prefectural
Government. | | Vitale ⁸² | 2014 | Cross-sectional survey | Primary health centre | Croatia | Adult patients visiting primary health centre for any reason, age ≥ 18 | 228 (187) | 34% | Various CM | Not reported. | | Chiba ⁸³ | 2015 | Cross-sectional survey | Online via
market research
company | Japan | In-patients,
ambulatory
patients, non-
patients, using
both CM &
medication,
age < 20 to > 60 | 2,109 (2,109) | 26% | Dietary
supplements | Health and
Labour Sciences
Research
Grants. | | Faith ³¹ | 2015 | Cross-sectional survey | National Cancer
Institute's
HINTS 3
(telephone,
mail) | United States | General population adults, age ≥ 18 | 7,674 (1,729) | 52% | Various CM | Not reported. | | Gardiner ¹⁰¹ | 2015 | Cross-sectional
survey | Boston Medical
Centre | United States | Adults age ≥ 18 | 558 (333) | 18%e | Supplements
and herbs | National Center
for CAM | | Gyasi ⁸⁴ | 2015 | Cross-sectional survey | Households
within two
settlements of
Ashanti | Ghana | Adult community members, age ≥ 18 | 324 (279) | 12% | Traditional CM
of Ghana | Council for the
Development of
Social Science
Research in
Africa. Institute
for Research
in Africa and
French Embassy
in Ghana Grant
Programme. | | Naja ⁸⁵ | 2015 | Cross-sectional survey | Face to face in households | Lebanon | Lebanese adults | 1,500 (448) | 28% | Biologically-
based CM | Lebanese
National
Council for
Scientific
Research. | | First author | Year | Study design | Setting | Country | Population | Sample (CM users) | Disclosure rate | CM type used | Funding source | |---------------------------|------|---|--|---------------|--|-------------------|-----------------|------------------------|--| | Tarn ³⁴ | 2015 | Cross-sectional
survey and
audio analysis | Primary care,
integrative and
CM clinics | United States | Adult outpatients of participating clinics, age ≥ 18 | 603 (477) | 34-49% | Dietary
supplements | National Center
for CAM. Office
of Dietary
Supplements. | | Ben-Arye ⁸⁶ | 2016 | Cross-sectional survey | In-patients,
academic clinic | Israel | Adult inpatients, age ≥ 18 | 927 (458) | 70% | Herbs & supplements | No funding received. | | Cramer ⁹¹ | 2016 | Cross-sectional survey | 2012 NHIS Alt
Med Suppl. | United States | Civilian adult
sub-population:
yoga users | 34,525 (4,422) | 34% | Yoga | German Assn of
Yoga Teachers. | | Hsu ⁸⁷ | 2016 | Cross-sectional survey | Public health centre | United States | Adult patients of Chinatown public health centre, age ≥ 18 | 50 (35) | 31% | Chinese herbal | Not reported. | | Lauche ⁹⁰ | 2016 | Cross-sectional survey | 2012 NHIS Alt
Med Suppl. | United States | Civilian adult
sub-population:
t'ai chi, qigong
users | 34,525 (NR) | 42% | T'ai chi &
Qigong | Not reported. | | Torres-Zeno ⁸⁸ | 2016 | Cross-sectional survey | Household
interviews | Puerto Rico | Adults in
Bayamon
municipality,
age ≥ 18 | 203 (187) | 36% | Various CM | Not reported. | **Table 4.** Study characteristics and details of disclosure. CM = complementary medicine; NR = Not reported; Disclosure rate = % of CM users. ^aStudies conducted different analyses on sub-populations from the same 2002 NHIS data source. ^bStudies use same 2001 HCQS data, with slightly different sample size and results due to how data was handled. ^cStudies use same 2007 NHIS data, with slightly different sample size and results due to how data was handled. ^dRate is % of CM users who also saw a physician. ^eRate is % of CM users who were also taking conventional medications. ^fDisclosure of CM to physician by patients from conventional clinics (19.4%) vs CM (61.2%)
clinics. case by case basis taking into account the circumstances of both provider and patient involved. Ideally, regardless of the level of CM knowledge held, the medical provider should strive to facilitate overall coordination and continuity of care for patients covering all treatments and providers, including those of CM. Our analyses suggest there may be a vital role for medical providers in facilitating patient preference by enquiring with patients about CM in order to help improve disclosure rates. Other studies show discussions in conventional medical settings about CM use are more commonly patient rather than provider initiated ^{118,129}, a pattern reflected in the findings of some papers in this review ^{35,68,76}. This pattern suggests provider initiation of such discussions may be an avenue for improving disclosure rates, which may be achieved by means such as standard inclusion of CM use inquiry in case-taking education for medical students, as is currently the case in Switzerland ¹³⁰. Indeed, examination of the impact on disclosure rates of specific questions related to dietary supplements found medical providers' questioning more than doubled the rate of supplement use disclosure ¹³¹. This communicative success may be facilitated through employment of person-centred approaches to clinical care, which encompass patient involvement in shared decision-making, provider empathy and recognition of patients' values ¹¹⁹, encouraging a shared responsibility for communication and subsequent discussion of CM use. While this review provides insight which could be integral to improving patient care during concomitant use of CM and conventional medicine, it also reveals the complexities of patient-practitioner communication in contemporary clinical settings. Further research into the nature of prevailing communication patterns, including differences in disclosure behaviours between populations of different demographics, is needed. As research into disclosure becomes more nuanced and data collection more consistent (e.g. through development and use of standardised instruments), future research could examine changes in patterns of and influences on disclosure. Additionally, research exploring the relationship between communication and treatment outcomes is warranted to provide a richer, deeper understanding of the impact of patient care dynamics. Such understanding could arguably provide the scaffolding for robust, effective, efficient public health policy and practice guidelines. **Limitations of this review.** The findings from our review need to be considered within the context of certain limitations. The varied nature and lack of a consistent international definition of CM lend a high degree of heterogeneity to the collection of studies appraised¹³². Likewise, while the wide variation in disclosure rates is likely to be partially due to confounding factors relating to differences among target populations (e.g. age, gender), settings (e.g. hospital, community clinics), geographical location (e.g. country/region), and sample sizes, the absence of a standard, validated tool for measuring disclosure also impacts the analysis and reporting on disclosure rates. The heterogeneity produced by these limitations reduced the number of papers suitable for meta-analysis and prevented a more robust, fixed-model meta-analysis on this topic, as well as prohibiting meta-analyses of CM categories other than biologically-based CM due to insufficient data. Additionally, identifying a comprehensive selection of studies to review was difficult due to disclosure frequently being reported as a secondary outcome and thus not being mentioned in the paper's title, abstract or keywords. However, these limitations have been minimised where possible by following systematic review best practice, and while remaining mindful of the limitations of our review, the importance of the findings presented here for contemporary healthcare practice and provision should not be underestimated. **Figure 2.** Meta-analysis results: disclosure rates for biologically-based complementary medicine. Results of meta-analysis assessing rates of disclosure of biologically-based complementary medicine use to medical providers. | | No. of studies | Studies reporting reason | Studies reporting as main reason ^a | |---|----------------|--|---| | Reasons for non-disclosure | | | • | | Patient was afraid of physician's response or thought physician will disapprove | 20 | 36,42,54-56,67,76-78,83-85,90,92,105,107,110-113 | | | Physician didn't ask or wasn't interested | 19 | 37,42,54-57,59,67,76-78,83,84,90,98,110-113 | 54-57,77,84 | | Patient didn't think it was important or necessary | 18 | 42,54–57,59,67,76,78,79,84,85,90,92,98,105,107,110 | 59,67,76,78,79 | | Didn't think physician had relevant knowledge/wasn't their business to know | 10 | 36,42,54,56,67,76-78,107,113 | 36 | | No time/physician too busy/didn't think about it/forgot | 9 | 36,42,54,56,57,76,78,92,105 | 42 | | Thought CM was safe/wouldn't interfere with treatment | 4 | 78,83,85,111 | 83 | | Was not using CM at the time/not using CM regularly/not attending a physician at the time | 4 | 54,78,83,85 | 85 | | Previous negative response or bad experience with disclosing | 4 | 54,84,90,112 | | | Patient had enough knowledge about CM | 1 | 42 | | | Wanted to compare advice between conventional and CM practitioners | 1 | 113 | | | Desire to protect cultural knowledge about CM | 1 | 113 | | | Concerns physician will see patient's CM use as detracting from their income | 1 | 113 | | | Reasons for disclosure | | | | | Physician asked | 3 | 56,111,112 | | | Patient believed physician would be supportive | 2 | 112,113 | | | Patient believed it was important for safety reasons | 2 | 56,113 | 56 | | Patient believed physician would have relevant knowledge or advice about CM | 1 | 56 | | | To help someone else with the same condition | 1 | 56 | | **Table 5.** Reasons for non-disclosure and disclosure. ^aStudies in which the corresponding reason was the reason most commonly reported by participants. ## Conclusion The rate of disclosure regarding CM use to medical providers remains low and it appears that disclosure is still a major challenge facing health care providers. This review, alongside previous research, suggests that patient decision-making regarding disclosure and non-disclosure of CM use to a medical provider is impacted by the nature of patient-provider communication during consultation and perceptions of provider knowledge of CM. The initiation of conversations about CM with patients and provision of consultations characterised by person-centred, collaborative communication by medical providers may contribute towards increased disclosure rates and mitigate against the potential direct and indirect risks of un-coordinated concurrent CM and conventional medical care. This is a topic which should be treated with gravity; it is central to wider patient management and care in contemporary clinical settings, particularly for primary care providers acting as gatekeeper in their patients' care. # References - 1. Coalition for Collaborative Care. Personalised Care and Aupport Planning Handbook: The Journey to Person-centred Care (Core Information). (ed NHS England) (Medical Directorate, Leeds, 2016). - World Health Organization. WHO global strategy on people-centred and integrated health services: interim report. (WHO Press, Geneva, 2015) - 3. World Health Organization. *Traditional, complementary and integrative medicine: About us*, https://www.who.int/traditional-complementary-integrative-medicine/about/en/ (2018). - Ben-Arye, E., Frenkel, M., Klein, A. & Scharf, M. Attitudes toward integration of complementary and alternative medicine in primary care: perspectives of patients, physicians and complementary practitioners. *Patient Educ. Couns.* 70, 395–402 (2008). - Fonnebo, V. et al. Researching complementary and alternative treatments the gatekeepers are not at home. BMC Med. Res. Methodol. 7, 7, https://doi.org/10.1186/1471-2288-7-7 (2007). - Harris, P., Cooper, K., Relton, C. & Thomas, K. Prevalence of complementary and alternative medicine (CAM) use by the general population: a systematic review and update. *Int. J. Clin. Pract.* 66, 924–939 (2012). - Wahner-Roedler, D. L. et al. Physicians' attitudes toward complementary and alternative medicine and their knowledge of specific therapies: 8-Year follow-up at an academic medical center. Complement. Ther. Clin. Pract. 20, 54–60, https://doi.org/10.1016/j. ctcp.2013.09.003 (2014). - 8. NCCIH. Complementary, Alternative, or Integrative Health: What's In a Name?, https://nccih.nih.gov/health/integrative-health (2016). - 9. Reid, R., Steel, A., Wardle, J., Trubody, A. & Adams, J. Complementary medicine use by the Australian population: a critical mixed studies systematic review of utilisation, perceptions and factors associated with use. BMC Complement. Altern. Med. 16, 176 (2016). - 10. White, A. et al. Reducing the risk of complementary and alternative medicine (CAM): challenges and priorities. Eur. J. Integr. Med. 6, 404–408 (2014). - 11. Wardle, J. L. & Adams, J. Indirect and non-health risks associated with complementary and alternative medicine use: an integrative review. Eur. J. Integr. Med. 6, 409–422, https://doi.org/10.1016/j.eujim.2014.01.001 (2014). - 12. Mamindla, S., Prasad, K. V. S. R. G. & Koganti, B. Herb-drug interactions: an overview of mechanisms and clinical aspects. *Int. J. Pharm. Sci. Res.* 7, 3576–3586, https://doi.org/10.13040/IJPSR.0975-8232.7(9).3576-86 (2016). - 13. Boullata, J. I. & Hudson, L. M. Drug-nutrient interactions: a broad view with implications for practice. *J. Acad. Nutr. Diet.* 112, 506–517, https://doi.org/10.1016/j.jada.2011.09.002
(2012). - 14. Newmaster, S. G., Grguric, M., Shanmughanandhan, D., Ramalingam, S. & Ragupathy, S. DNA barcoding detects contamination and substitution in North American herbal products. *BMC Med.* 11, 222 (2013). - Wardle, J. Complementary and integrative medicine: the black market of health care? Adv. Integr. Med. 3, 77–78, https://doi. org/10.1016/j.aimed.2017.04.003 (2016). - 16. Farooqui, M. et al. Complementary and alternative medicines (CAM) disclosure to the health care providers: a qualitative insight from Malaysian cancer patients. Complement. Ther. Clin. Pract. 18, 252–256, https://doi.org/10.1016/j.ctcp.2012.06.005 (2012). - 17. Singh, V., Raidoo, D. M. & Harries, C. S. The prevalence, patterns of usage and people's attitude towards complementary and alternative medicine (CAM) among the Indian community in Chatsworth, South Africa. *BMC Complement. Altern. Med.* 4, 3 - Tilburt, J. C. & Miller, F. G. Responding to medical pluralism in practice: a principled ethical approach. J. Am. Board Fam. Med. 20, 489–494 (2007). - 19. Forrest, C. B. Primary care gatekeeping and referrals: effective filter or failed experiment? BMJ 326, 692 (2003). - Robinson, A. & McGrail, M. R. Disclosure of CAM use to medical practitioners: a review of qualitative and quantitative studies. Complement. Ther. Med. 12, 90–98 (2004). - 21. Adams, J. et al. Research capacity building in traditional, complementary and integrative medicine: grass-roots action towards a broader vision In *Traditional, Complementary and Integrative Medicine: An International Reader* 275–281 (MacMillan Education UK. 2012). - 22. Agbabiaka, T., Wider, B., Watson, L. K. & Goodman, C. Concurrent use of prescription drugs and herbal medicinal products in older adults: a systematic review protocol. Syst. Rev. 5, 65 (2016). - 23. Moher, D. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4, 1 (2015) - 24. Stroup, D. F. *et al.* Meta-analysis of observational studies in epidemiology: a proposal for reporting. *JAMA* **283**, 2008–2012 (2000). - Shea, B. J. et al. AMSTAR is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. J. Clin. Epidemiol. 62, 1013–1020, https://doi.org/10.1016/j.jclinepi.2008.10.009 (2009). - Frass, M. et al. Use and acceptance of complementary and alternative medicine among the general population and medical personnel: a systematic review. Ochsner J. 12, 45–56 (2012). - 27. Coggon, D., Barker, D. & Rose, G. Epidemiology for the Uninitiated. (John Wiley & Sons, 2009). - 28. Adams, J. Introduction in Researching Complementary and Alternative Medicine (ed. Adams, J.) xiii-xviii (Routledge, Oxon, 2007). - Hoy, D. et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J. Clin. Epidemiol. 65, 934–939, https://doi.org/10.1016/j.jclinepi.2011.11.014 (2012). - 30. Higgins, J. P. & Green, S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (John Wiley & Sons, 2011). - 31. Faith, J., Thorburn, S. & Tippens, K. M. Examining the association between patient-centered communication and provider avoidance, CAM use, and CAM-use disclosure. *Altern. Ther. Health Med.* 21, 30–35 (2015). - McCrea, C. E. & Pritchard, M. E. Concurrent herb-prescription medication use and health care provider disclosure among university students. Complement. Ther. Med. 19, 32–36, https://doi.org/10.1016/j.ctim.2010.12.005 (2011). - 33. Rivera, J. O., Ortiz, M., González-Stuart, A. & Hughes, H. Bi-national evaluation of herbal product use on the United States/México border. *J. Herb. Pharmacother.* 7, 91–106 (2007). - 34. Tarn, D. M. et al. A cross-sectional study of provider and patient characteristics associated with outpatient disclosures of dietary supplement use. Patient Educ. Couns. 98, 830–836, https://doi.org/10.1016/j.pec.2015.03.020 (2015). - 35. Herron, M. & Glasser, M. Use of and attitudes toward complementary and alternative medicine among family practice patients in small rural Illinois communities. *J. Rural Health* 19, 279–284 (2003). - Giveon, S. M., Liberman, N., Klang, S. & Kahan, E. Are people who use 'natural drugs' aware of their potentially harmful side effects and reporting to family physician? *Patient Educ. Couns.* 53, 5–11, https://doi.org/10.1016/S0738-3991(03)00241-6 (2004). - 37. Kuo, G. M., Hawley, S. T., Weiss, L. T., Balkrishnan, R. & Volk, R. J. Factors associated with herbal use among urban multiethnic primary care patients: a cross-sectional survey. *BMC Complement. Altern. Med.* 4, 18 (2004). - 38. Tan, M., Uzun, O. & Akcay, F. Trends in complementary and alternative medicine in eastern Turkey. *J. Altern. Complement. Med.* **10**, 861–865 (2004). doi:10.86110.1089/1075553042476623. - 39. Thomas, K. & Coleman, P. Use of complementary or alternative medicine in a general population in Great Britain. Results from the National Omnibus survey. *J. Public Health* 26, 152–157 (2004). - 40. Wolsko, P. M., Eisenberg, D. M., Davis, R. B. & Phillips, R. S. Use of mind-body medical therapies, I. Gen. Intern. Med. 19, 43-50 (2004). - 41. Braun, C. A., Bearinger, L. H., Halcón, L. L. & Pettingell, S. L. Adolescent use of complementary therapies. J. Adolesc. Health 37(76), e71-79 (2005). - 42. Busse, J. W., Heaton, G., Wu, P., Wilson, K. R. & Mills, E. J. Disclosure of natural product use to primary care physicians: a crosssectional survey of naturopathic clinic attendees. Mayo Clin. Proc. 80, 616–623 (2005). - Kim, S. et al. A multicenter study of complementary and alternative medicine usage among ED patients. Acad. Emerg. Med. 12, - 44. Shahrokh, L. E., Lukaszuk, J. M. & Prawitz, A. D. Elderly herbal supplement users less satisfied with medical care than nonusers. J. Am. Diet. Assoc. 105, 1138-1140 (2005). - Wheaton, A. G., Blanck, H. M., Gizlice, Z. & Reyes, M. Medicinal herb use in a population-based survey of adults: prevalence and frequency of use, reasons for use, and use among their children. Ann. Epidemiol. 15, 678-685 (2005). - 46. Kennedy, J. Herb and supplement use in the US adult population. Clin. Ther. 27, 1847-1858 (2005). - Kennedy, J., Wang, C.-C. & Wu, C.-H. Patient disclosure about herb and supplement use among adults in the US. Evid. Based Complement. Alternat. Med. 5, 451-456, https://doi.org/10.1093/ecam/nem045 (2008). - Birdee, G. S. et al. Characteristics of yoga users: results of a national survey. J. Gen. Intern. Med. 23, 1653-1658, https://doi. org/10.1007/s11606-008-0735-5 (2008). - Birdee, G. S., Wayne, P. M., Davis, R. B., Phillips, R. S. & Yeh, G. Y. T'ai chi and qigong for health: patterns of use in the United States. J. Altern. Complement. Med. 15, 969-973, https://doi.org/10.1089/acm.2009.0174 (2009). - Chao, M. T., Wade, C. & Kronenberg, F. Disclosure of complementary and alternative medicine to conventional medical providers: variation by race/ethnicity and type of CAM. J. Natl. Med. Assoc. 100, 1341–1349 (2008). - 51. Faith, J., Thorburn, S. & Tippens, K. M. Examining CAM use disclosure using the Behavioral Model of Health Services Use. Complement. Ther. Med. 21, 501-508, https://doi.org/10.1016/j.ctim.2013.08.002 (2013). - Wu, C.-H., Wang, C.-C. & Kennedy, J. Changes in herb and dietary supplement use in the U.S. adult population: a comparison of the 2002 and 2007 National Health Interview Surveys. Clin. Ther. 33, 1749-1758, https://doi.org/10.1016/j.clinthera.2011.09.024 (2011). - 53. Laditka, J. N., Laditka, S. B., Tait, E. M. & Tsulukidze, M. M. Use of dietary supplements for cognitive health: results of a national survey of adults in the United States. Am. J. Alzheimers Dis. Other Demen. 27, 55-64, https://doi.org/10.1177/1533317511435662 (2012). - 54. Jou, J. & Johnson, P. J. Nondisclosure of complementary and alternative medicine use to primary care physicians: findings from the 2012 National Health Interview Survey. JAMA Intern. Med. 176, 545-546, https://doi.org/10.1001/jamainternmed.2015.8593 (2016). - Saw, J. T., Bahari, M. B., Ang, H. H. & Lim, Y. H. Herbal use amongst multiethnic medical patients in Penang Hospital: pattern and perceptions. Med. J. Malaysia 61, 422-432 (2006). - Shah, B. K., Lively, B. T., Holiday-Goodman, M. & White, D. B. Reasons why herbal users do or do not tell their physicians about their use: a survey of adult Ohio residents. J. Pharm. Technol. 22, 148-154 (2006). - $Cheung, C.\ K.,\ Wyman, J.\ F.\ \&\ Halcon, L.\ L.\ Use\ of\ complementary\ and\ alternative\ the rapies\ in\ community-dwelling\ older\ adults.$ J. Altern. Complement. Med. 13, 997–1006, https://doi.org/10.1089/acm.2007.0527 (2007) - 58. Jean, D. & Cyr, C. Use of complementary and alternative medicine in a general pediatric clinic. Pediatrics. 120, e138-141 (2007). - 59. Xue, C. C. L., Zhang, A. L., Lin, V., Da Costa, C. & Story, D. F. Complementary and alternative medicine use in Australia: a national population-based survey. J. Altern. Complement. Med. 13, 643-650, https://doi.org/10.1089/acm.2006.6355 (2007). - 60. Archer, E. L. & Boyle, D. K. Herb and supplement use among the retail population of an independent, urban herb store. J. Holist. Nurs. 26, 27-35 (2008). - 61. Cizmesija, T. & Bergman-Markovic, B. Use of complementary and alternative medicine among the patients in primary health care. Acta Med. Croatica 62, 15-22 (2008). - 62. Hori, S., Mihaylov, I., Vasconcelos, J. C. & McCoubrie, M. Patterns of complementary and alternative medicine use amongst outpatients in Tokyo, Japan. BMC Complement. Altern. Med. 8, 14, https://doi.org/10.1186/1472-6882-8-14 (2008). - Ozturk, C. & Karayagiz, G. Exploration of the use of complementary and alternative medicine among Turkish children. J. Clin. Nurs. 17, 2558–2564, https://doi.org/10.1111/j.1365-2702.2008.02329.x (2008). - 64. Shakeel, M., Bruce, J., Jehan, S., McAdam, T. K. & Bruce, D. M. Use of complementary and alternative medicine by patients admitted to a
surgical unit in Scotland. Ann. R. Coll. Surg. Engl. 90, 571-576, https://doi.org/10.1308/003588408X301046 (2008). - 65. Levine, M. A. H. et al. Self-reported use of natural health products: a cross-sectional telephone survey in older Ontarians. Am. J. Geriatr. Pharmacother. 7, 383-392, https://doi.org/10.1016/j.amjopharm.2009.12.003 (2009). - Mc Kenna, F. & Killoury, F. An investigation into the use of complementary and alternative medicine in an urban general practice. Ir. Med. J. 103, 205-208 (2010). - 67. Nur, N. Knowledge and behaviours related to herbal remedies: a cross-sectional epidemiological study in adults in Middle Anatolia, Turkey. Health Soc. Care Community 18, 389-395, https://doi.org/10.1111/ji.1365-2524.2010.00911.x (2010). - 68. Ben-Arye, E. et al. Integrative pediatric care: parents' attitudes toward communication of physicians and CAM practitioners. Pediatrics 127, e84-e95, https://doi.org/10.1542/peds.2010-1286 (2011). - 69. Mileva-Peceva, R., Zafirova-Ivanovska, B., Milev, M., Bogdanovska, A. & Pawlak, R. Socio-demographic predictors and reasons for vitamin and/or mineral food supplement use in a group of outpatients in Skopje. Prilozi 32, 127-139 (2011). - 70. Picking, D., Younger, N., Mitchell, S. & Delgoda, R. The prevalence of herbal medicine home use and concomitant use with pharmaceutical medicines in Jamaica. J. Ethnopharmacol. 137, 305-311, https://doi.org/10.1016/j.jep.2011.05.025 (2011). - Alaaeddine, N. M. et al. Use of herbal medications and their perceived effects among adults in the Greater Beirut area. J. Med. Liban 60, 45-50 (2012). - 72. Elolemy, A. T. & Albedah, A. M. N. Public knowledge, attitude and practice of complementary and alternative medicine in Riyadh - region, Saudi Arabia. *Oman Med. J.* 27, 20–26, https://doi.org/10.5001/omj.2012.04 (2012). Kim, J.-H., Nam, C.-M., Kim, M.-Y. & Lee, D.-C. The use of complementary and alternative medicine (CAM) in children: a telephone-based survey in Korea. BMC Complement. Altern. Med. 12, 46, https://doi.org/10.1186/1472-6882-12-46 (2012). - Samuels, N. et al. Use of non-vitamin, non-mineral (NVNM) supplements by hospitalized internal medicine patients and doctorpatient communication. Patient Educ. Couns. 89, 392-398, https://doi.org/10.1016/j.pec.2012.07.005 (2012). - 75. Thomson, P., Jones, J., Evans, J. M. & Leslie, S. L. Factors influencing the use of complementary and alternative medicine and whether patients inform their primary care physician. Complement. Ther. Med. 20, 45-53 (2012). - 76. Zhang, Y., Peck, K., Spalding, M., Jones, B. G. & Cook, R. L. Discrepancy between patients' use of and health providers' familiarity with CAM. Patient Educ. Couns. 89, 399-404, https://doi.org/10.1016/j.pec.2012.02.014 (2012). - 77. Djuv, A., Nilsen, O. G. & Steinsbekk, A. The co-use of conventional drugs and herbs among patients in Norwegian general practice: a cross-sectional study. BMC Complement. Altern. Med. 13, 295, https://doi.org/10.1186/1472-6882-13-295 (2013). - Chiba, T. et al. Inappropriate usage of dietary supplements in patients by miscommunication with physicians in Japan. Nutrients 6, 5392-5404, https://doi.org/10.3390/nu6125392 (2014). - Chin-Lee, B., Curry, W. J., Fetterman, J., Graybill, M. A. & Karpa, K. Patient experience and use of probiotics in community-based health care settings. Patient Prefer. Adherence 8, 1513-1520, https://doi.org/10.2147/PPA.S72276 (2014). - Nguyen, D., Gavaza, P., Hollon, L. & Nicholas, R. Examination of the use of complementary and alternative medicine in Central Appalachia, USA. Rural Remote Health 14, 1-10 (2014). - 81. Shumer, G. et al. Complementary and alternative medicine use by visitors to rural Japanese family medicine clinics: results from the international complementary and alternative medicine survey. BMC Complement. Altern. Med. 14, 360, https://doi.org/10.1186/1472-6882-14-360 (2014). - 82. Vitale, K., Mundar, R., Sović, S., Bergman-Marković, B. & Janev Holcer, N. Use of complementary and alternative medicine among family medicine patients example of the town of Čakovec. *Acta Med. Croatica* 68, 345–351 (2014). - 83. Chiba, T., Sato, Y., Suzuki, S. & Umegaki, K. Concomitant use of dietary supplements and medicines in patients due to miscommunication with physicians in Japan. *Nutrients* 7, 2947–2960, https://doi.org/10.3390/nu7042947 (2015). - 84. Gyasi, R. M., Siaw, L. P. & Mensah, C. M. Prevalence and pattern of traditional medical therapy utilisation in Kumasi Metropolis and Sekyere South District, Ghana. *J. Ethnopharmacol.* 161, 138–146, https://doi.org/10.1016/j.jep.2014.12.004 (2015). - Naja, F. et al. The use of complementary and alternative medicine among Lebanese adults: results from a national survey. Evid. Based Complement. Alternat. Med. 2015, 682397 (2015). - 86. Ben-Arye, E., Attias, S., Levy, I., Goldstein, L. & Schiff, E. Mind the gap: Disclosure of dietary supplement use to hospital and family physicians. *Patient Educ. Couns.* 100, 98–103, https://doi.org/10.1016/j.pec.2016.07.037 (2016). - 87. Hsu, O., Tsourounis, C., Chan, L. L. S. & Dennehy, C. Chinese herb use by patients at a San Francisco Chinatown public health center. *J. Altern. Complement. Med.* 22, 751–756, https://doi.org/10.1089/acm.2015.0288 (2016). - 88. Torres-Zeno, R. E., Ríos-Motta, R., Rodríguez-Sánchez, Y., Miranda-Massari, J. R. & Marín-Centeno, H. Use of complementary and alternative medicine in Bayamón, Puerto Rico. P. R. Health Sci. J. 35, 69–75 (2016). - Shim, J.-M., Schneider, J. & Curlin, F. A. Patterns of user disclosure of complementary and alternative medicine (CAM) use. Med. Care 52, 704–708 (2014). - 90. Lauche, R., Wayne, P. M., Dobos, G. & Cramer, H. Prevalence, patterns, and predictors of T'ai Chi and qigong use in the united states: results of a nationally representative survey. J. Altern. Complement. Med. 22, 336–342 (2016). - Cramer, H. et al. Prevalence, patterns, and predictors of yoga use: results of a US nationally representative survey. Am. J. Prev. Med. 50, 230–235 (2016). - 92. AlBraik, F. A., Rutter, P. M. & Brown, D. A cross-sectional survey of herbal remedy taking by United Arab Emirate (UAE) citizens in Abu Dhabi. *Pharmacoepidemiol. Drug Saf.* 17, 725–732 (2008). - 93. Aydin, S. et al. What influences herbal medicine use?-prevalence and related factors. Turk. J. Med. Sci. 38, 455-463 (2008). - 94. Bruno, J. J. & Ellis, J. J. Herbal use among US elderly: 2002 national health interview survey. Ann. Pharmacother. 39, 643-648 (2005). - 95. Canter, P. H. & Ernst, E. Herbal supplement use by persons aged over 50 years in Britain. Drug Aging 21, 597-605 (2004). - 96. Chang, M.-Y., Liu, C.-Y. & Chen, H.-Y. Changes in the use of complementary and alternative medicine in Taiwan: a comparison study of 2007 and 2011. Complement. Ther. Med. 22, 489–499 (2014). - 97. Cincotta, D. R. et al. Comparison of complementary and alternative medicine use: reasons and motivations between two tertiary children's hospitals. Arch. Dis. Child. 91, 153–158 (2006). - Clement, Y. N. et al. Perceived efficacy of herbal remedies by users accessing primary healthcare in Trinidad. BMC Complement. Altern. Med. 7, 4 (2007). - 99. Delgoda, R., Younger, N., Barrett, C., Braithwaite, J. & Davis, D. The prevalence of herbs use in conjunction with conventional medicines in Jamaica. *Complement. Ther. Med.* 18, 13–20 (2010). - 100. Gardiner, P., Graham, R., Legedza, A. T. & Ahn, A. C. Factors associated with herbal therapy use by adults in the United States. Altern. Ther. Health Med. 13, 22 (2007). - 101. Gardiner, P., Sadikova, E., Filippelli, A. C., White, L. F. & Jack, B. W. Medical reconciliation of dietary supplements: Don't ask, don't tell. *Patient Educ. Couns.* **98**, 512–517 (2015). - 102. Lim, M., Sadarangani, P., Chan, H. & Heng, J. Complementary and alternative medicine use in multiracial Singapore. *Complement. Ther. Med.* 13, 16–24 (2005). - 103. Low, E., Murray, D., O'Mahony, O. & Hourihane, J. B. Complementary and alternative medicine use in Irish paediatric patients. *Ir. J. Med. Sci.* 177, 147–150 (2008). - 104. MacLennan, A. H., Myers, S. P. & Taylor, A. W. The continuing use of complementary and alternative medicine in South Australia: costs and beliefs in 2004. Med. J. Aust. 184, 27 (2006). - 105. Najm, W., Reinsch, S., Hoehler, F. & Tobis, J. Use of complementary and alternative medicine among the ethnic elderly. *Altern. Ther. Health Med.* **9**, 50 (2003). - 106. Robinson, N. et al. Complementary medicine use in multi-ethnic paediatric outpatients. Complement. Ther. Clin. Pract. 14, 17–24 (2008). - 107. Rolniak, S., Browning, L., MacLeod, B. A. & Cockley, P. Complementary and alternative medicine use among urban ED patients: prevalence and patterns. *J. Emerg. Nurs.* 30, 318–324 (2004). - 108. Shive, S. E. et al. Racial differences in preventive and complementary health behaviors and attitudes. J. Health Dispar. Res. Pract. 1, 6 (2007). - 109. Shorofi, S. & Arbon, P. Complementary and alternative medicine (CAM) among hospital patients: an Australian study. *Complement. Ther. Clin. Pract.* 16 https://doi.org/10.1016/j.ctcp.2009.09.009 (2010). - 110. Zhang, A. L., Xue, C. C., Lin, V. & Story, D. F. Complementary and alternative medicine use by older Australians. *Ann. N. Y. Acad. Sci.* 1114, 204–215 (2007). - 111. Stevenson, F. A., Britten, N., Barry, C. A., Bradley, C. P. & Barber, N. Self-treatment and its discussion in medical consultations: how is medical pluralism managed in practice? Soc. Sci. Med. 57, 513–527 (2003). - 112. Shelley, B. M. et al. 'They don't ask me so I don't tell them': patient-clinician communication about traditional, complementary, and alternative medicine. Ann. Fam. Med. 7, 139–147, https://doi.org/10.1370/afm.947 (2009). - 113. Arcury, T. A. et al. Attitudes of older adults regarding disclosure of complementary therapy use to physicians. J. Appl. Gerontol. 32, 627–645, https://doi.org/10.1177/0733464812443084 (2013). - 114. Jang, D. J. &
Tarn, D. M. Infrequent older adult-primary care provider discussion and documentation of dietary supplements. J. Am. Geriatr. Soc. 62, 1386–1388, https://doi.org/10.1111/jgs.12915 (2014). - Lorenc, A., Crichton, N. & Robinson, N. Traditional and complementary approaches to health for children: modelling the parental decision-making process using Andersen's Sociobehavioural Model. Complement. Ther. Med. 21, 277–285, https://doi.org/10.1016/j. ctim.2013.05.006 (2013). - 116. Araz, N. & Bulbul, S. Use of complementary and alternative medicine in a pediatric population in southern Turkey. Clin. Invest. Med. 34, E21–E29 (2011). - 117. Gottschling, S. et al. Use of complementary and alternative medicine in healthy children and children with chronic medical conditions in Germany. Complement. Ther. Med. 21, S61–69, https://doi.org/10.1016/j.ctim.2011.06.001 (2013). - 118. Roberts, C. S. et al. Patient-physician communication regarding use of complementary therapies during cancer treatment. J. Psychosoc. Oncol. 23, 35–60 (2005). - 119. Pinto, R. Z. et al. Patient-centred communication is associated with positive therapeutic alliance: a systematic review. J. Physiother. 58, 77–87, https://doi.org/10.1016/S1836-9553(12)70087-5 (2012). - 120. Xu, S. & Levine, M. Medical residents' and students' attitudes towards herbal medicines: a pilot study. *Can. J. Clin. Pharmacol.* 15, e1-e4 (2008). - 121. Winslow, L. C. & Shapiro, H. Physicians want education about complementary and alternative medicine to enhance communication with their patients. *Arch. Intern. Med.* 162, 1176–1181 (2002). - 122. Wetzel, M. S., Eisenberg, D. M. & Kaptchuk, T. J. Courses involving complementary and alternative medicine at US medical schools. *JAMA* 280, 784–787, https://doi.org/10.1001/jama.280.9.784 (1998). - 123. Ruedy, J., Kaufman, D. M. & MacLeod, H. Alternative and complementary medicine in Canadian medical schools: a survey. *Can. Med. Assoc. J.* 160, 816–817 (1999). - 124. Smith, K. R. Factors influencing the inclusion of complementary and alternative medicine (CAM) in undergraduate medical education. *BMJ Open* 1, e000074, https://doi.org/10.1136/bmjopen-2011-000074 (2011). - 125. Brinkhaus, B. et al. Integration of complementary and alternative medicine into German medical school curricula contradictions between the opinions of decision makers and the status quo. Complement. Med. Res. 12, 139–143 (2005). - 126. Frei, M., Ausfeld-Hafter, B., Fischer, L., Frey, P. & Wolf, U. Establishing a curriculum in complementary medicine within a medical school on the example of the University of Bern, Switzerland. Explore (NY) 9, 322 (2013). - 127. Oberbaum, M., Notzer, N., Abramowitz, R. & Branski, D. Attitude of medical students to the introduction of complementary medicine into the medical curriculum in Israel. *Isr. Med. Assoc. J.* 5, 139–142 (2003). - 128. Greiner, K. A., Murray, J. L. & Kallail, K. J. Medical student interest in alternative medicine. J. Altern. Complement. Med. 6, 231-234 (2000). - 129. Roter, D. L. et al. Communication predictors and consequences of complementary and alternative medicine (CAM) discussions in oncology visits. Patient Educ. Couns. 99, 1519–1525, https://doi.org/10.1016/j.pec.2016.06.002 (2016). - 130. Michaud, P., Jucker-Kupper, P. & members of the Profiles Working Group. PROFILES: Principle Objectives and Framework for Integrated Learning and Education in Switzerland (ed Joint Commission of the Swiss Medical Schools) (Joint Commission of the Swiss Medical Schools, Bern, 2017). - 131. Ben-Arye, E., Halabi, I., Attias, S., Goldstein, L. & Schiff, E. Asking patients the right questions about herbal and dietary supplements: cross cultural perspectives. Complement. Ther. Med. 22, 304–310, https://doi.org/10.1016/j.ctim.2014.01.005 (2014). - 132. Caspi, O. et al. On the definition of complementary, alternative, and integrative medicine: societal mega-stereotypes vs. the patients' perspectives. Altern. Ther. Health Med. 9, 58–62 (2003). - 133. Anbari, K. & Gholami, M. Evaluation of trends in the use of complementary and alternative medicine in health centers in Khorramabad (West of Iran). *Glob. I. Health Sci.* 8, 72–76, https://doi.org/10.5539/gjhs.v8n2p72 (2015). - 134. Avogo, W., Frimpong, J. A., Rivers, P. A. & Kim, S. S. The effects of health status on the utilization of complementary and alternative medicine. *Health Educ. J.* 67, 258–275 (2008). - 135. Desai, K., Chewning, B. & Mott, D. Health care use amongst online buyers of medications and vitamins. *Res. Social Adm. Pharm.* 11, 844–858, https://doi.org/10.1016/j.sapharm.2015.01.001 (2015). - 136. Emmerton, L., Fejzic, J. & Tett, S. E. Consumers' experiences and values in conventional and alternative medicine paradigms: a - problem detection study (PDS). BMC Complement. Altern. Med. 12, 39–39, https://doi.org/10.1186/1472-6882-12-39 (2012). 137. Featherstone, C., Godden, D., Selvaraj, S., Emslie, M. & Took-Zozaya, M. Characteristics associated with reported CAM use in patients - attending six GP practices in the Tayside and Grampian regions of Scotland: a survey. *Complement. Ther. Med.* **11**, 168–176 (2003). 138. Harnack, L. J., DeRosier, K. L. & Rydell, S. A. Results of a population-based survey of adults' attitudes and beliefs about herbal products. *J. Am. Pharm. Assoc.* **43**, 596–601 (2003). - 139. Hunt, K. J. et al. Complementary and alternative medicine use in England: results from a national survey. Int. J. Clin. Prac. 64, 1496–1502, https://doi.org/10.1111/j.1742-1241.2010.02484.x (2010). - 140. Zhang, Y. et al. Complementary and alternative medicine use among primary care patients in West Texas. South. Med. J. 101, 1232–1237, https://doi.org/10.1097/SMJ.0b013e3181840bc5 (2008). ## **Acknowledgements** The authors wish to thank Andrea Trubody and Rebecca Reid for their contributions during the initial stages of the development of this review's protocol. We also wish to thank Boyd Potts and Tess Dingle for assistance and feedback on statistics and graphics. Hope Foley was supported by an Australian Government Research Training Program Scholarship while working on this manuscript. Distinguished Professor Jon Adams was supported by an Australian Research Council Professorial Future Fellowship while working on this manuscript (Grant FT140100195). Dr Jon Wardle was supported by a National Health and Medical Research Council Translating Research into Practice Fellowship while working on this manuscript (Grant 1133136). No funding sources played any role in the study design; data collection, analysis or interpretation; drafting or editing of the manuscript; or decision to submit the article for publication. ### **Author Contributions** H.F. and A.S. conceived of the design and methodology for this review. H.F. developed the review protocol and searched the literature with input and support from A.S. H.F., A.S. and H.C. analysed the results, and interpreted the results in conjunction with J.W. and J.A. H.F. developed the initial draft of the manuscript and all authors contributed to writing, critically editing, revising, and approving the final manuscript. All authors have read and approved the final manuscript. H.F. is guarantor, held full access to all data, and takes responsibility for the integrity of the data and the accuracy of the data analysis. ### **Additional Information** Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-38279-8. **Competing Interests:** The authors declare no competing interests. **Publisher's note:** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2019