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Smoothing and filtering with a class of outer measures

Jeremie Houssineau and Adrian N. Bishop

Abstract. Filtering and smoothing with a generalised representation of uncertainty is considered. Here, un-
certainty is represented using a class of outer measures. It is shown how this representation of
uncertainty can be propagated using outer-measure-type versions of Markov kernels and generalised
Bayesian-like update equations. This leads to a system of generalised smoothing and filtering equa-
tions where integrals are replaced by supremums and probability density functions are replaced
by positive functions with supremum equal to one. Interestingly, these equations retain most of
the structure found in the classical Bayesian filtering framework. It is additionally shown that the
Kalman filter recursion can be recovered from weaker assumptions on the available information on
the corresponding hidden Markov model.

Key words. Outer measure, Information assimilation, Hidden Markov models

AMS subject classifications. 60A10, 60J05, 62L12

1. Introduction. The question of how to represent uncertainty is central when formulat-
ing any estimation, inference, or learning problem. This question has also long stirred debate
among practitioners. Firstly, there was the frequentist versus Bayesian debate in early sta-
tistical estimation theory. Later, numerous attempts at “generalising” probabilistic concepts
were derived and debated, such as fuzzy logic, imprecise probabilities, possibility theory, fuzzy
random sets, and Dempster-Shafer theory [21, 19, 6, 17, 7, 20, 10]. The proposed approach is
closer in spirit to these latter methods, and assumes a specific structure that is general enough
to cover most modelling needs and restrictive enough to enable the derivation of practical es-
timation algorithms. This approach is based on the fundamental measure-theoretic concept of
an outer measure, which provides for a more relaxed manner of distributing probability mass.
As explained in [9]: The idea of the outer measure of a set A is that it acts as an upper bound
for the possible measure of A. This structure can in some sense capture standard probability
theory, since a given outer measure can bound the probability mass of each measurable subset
so finely that it collapses identically to a probability measure. By encompassing a broader
spectrum of uncertainty, e.g. from pure randomness to totally non-random uncertainty, the
presented estimation principle brings together the Bayesian and frequentist interpretation by
simultaneously allowing for fixed randomness and evolving uncertainty based on the received
information.

Practically, the proposed filtering/smoothing framework naturally accommodates a more
relaxed model of the system dynamics, as well as the observed and prior information. This
is achieved via the use of outer measures, and yields potentially more robust estimation
algorithms that do not require all sources of uncertainty to be perfectly (and solely) described
by strict probability distributions; e.g. Markov transition kernels in the case of the system
dynamics. The language and nature of uncertainty may be important in certain applications.
Closed-form recursive algorithms will be derived under this framework of outer measures for
both filtering and smoothing, and using both forward and backward recursions (in time). An
analogue of the classical Kalman filter recursion will also be derived under non-classical, and
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weaker, assumptions on the prior, dynamic, and observation models.

2. Representation of uncertainty. The objective in this section is to introduce a general
representation of uncertainty based on [11, 12], that relaxes the standard approach of defining
probability distributions over the state space. The proposed approach will build on [11, 12]
to enable filtering and smoothing recursions to be derived. The time is discrete and assumed
to take integer values between 0 and T so that the set T of all time steps is defined as
{0, . . . , T}. The state space at time t ∈ T is denoted Xt and is assumed to be a subset of Rd

for some d > 0. We first consider the problem of representing uncertainty on a single state
space E, which might be Xt at any time t ∈ T, before tackling the case of the product space
X0:T = X0 × · · · ×XT . The sets E and X0, . . . ,XT are endowed with their respective Borel
σ-algebra B(E) and B(X0), . . . ,B(XT ).

2.1. On a single state space. Instead of considering a probability distribution on E, we
consider a probability measure1 P on the set L(E) of measurable functions2 from E to R

+

with supremum equal to 1, describing some knowledge about the system of interest in the
following way: the underlying probability distribution p on E, if any, is dominated by P̄ , i.e.
it satisfies

(2.1) p(ϕ) ≤ P̄ (ϕ) =

∫

‖ϕ · f‖∞P (df),

for any ϕ in the set L
∞(E) of positive bounded measurable functions on E, where ‖ · ‖∞ is

the supremum norm and where ϕ · f denotes the point-wise product between ϕ and f , i.e.
(ϕ · f)(x) = ϕ(x)f(x) for any x ∈ E. The reason for cautioning the existence of p, captured
by the “if any” in the previous sentence, will be clarified later in this section. In particular,
it follows from considering ϕ = 1B in (2.1) for some B ∈ B(E) that

(2.2) p(B) ≤

∫

sup
x∈B

f(x)P (df).

The set function B 7→ P̄ (1B) is a type of outer probability measure, that is a set function that
gives value 0 to the empty set, value 1 to the whole space and that is monotone and countably
sub-additive. The main difference with a probability measure being that the usual additivity
assumption is replaced by sub-additivity. In the right hand side (r.h.s.) of (2.2), the integral
is additive by definition so it is the supremum that is responsible for the sub-additivity. For
the sake of simplicity, we say that P̄ is an outer measure.

Defining measures on measurable subsets as in (2.2) or on measurable functions as in (2.1)
is equivalent [16], however it is not the case for outer measures because of their sub-additivity.
Defining outer measures on measurable functions is then preferred since it is more general.
Results with subsets can be recovered by considering an indicator function as in (2.2).

1Measure-theoretic questions associated with the introduction of a measure on a set of functions are dis-
cussed in [11].

2The following convention is considered: the term mapping or map is used whatever the domain and co-
domain while the term function is reserved for real-valued maps, i.e. for maps whose co-domain is a subset of
R.
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The following examples aim at providing insight into the functions in L(E) as well as
into the difference between having one or several such functions in the support of P (that is,
informally, in the subset of L(E) of functions to which P gives positive probability).

Example 1. If P = δf for some function f ∈ L(E) then it holds that

p(B) ≤ P̄ (1B) = sup
x∈B

f(x)

so that f can be interpreted as a possibility function3 since it gives, through the supremum,
an upper bound for the probability mass that p can possibly give to B.

Example 2. Let A and A′ be disjoint subsets of E and consider the two following modelling
choices:

1. P = δ1A∪A′ which only implies that p(B) = 0 if B is disjoint from both A and A′, i.e. all the
probability mass of p is within A ∪A′ but it could as well be all in A or all in A′.

2. P = aδ1A
+ (1 − a)δ1A′ for some a ∈ (0, 1) which implies p(A) = a and p(A′) = (1 − a), i.e.

the probability can be distributed in any way within A and A′ as long as the total mass in A
is equal to a.

Example 3. If the space E is discrete, say equal to N, then p can be characterised by its
probability mass function m via

m(n) ≤

∫

f(n)P (df)

for any n ∈ N. In particular, if P is of the form

P =
∑

i∈I

wiδfi

for indexed family {(wi, fi)}i∈I of positively-weighted functions in L(E) then

m(n) ≤
∑

i∈I

wifi(n).

We can notice that if I = N and if fi = 1n then it holds that m(n) ≤ wn for any n ∈ N.
However, since both m(n) and wn sum to 1 by definition, it follows that m(n) = wn; in
other words P is equivalent to the probability measure p. The same approach can be used for
uncountable spaces at the cost of measure theoretic notations.

Many distributions that are commonly used in statistics have an analogous possibility
function. The interpretation of the two is however different since one fully characterises
randomness while the other only suggests a given shape for the uncertainty. Notice that, as
opposed to probability density functions on continuous spaces, possibility functions do not
require a reference measure to be defined in order to be written as a function.

3Possibility functions are called “possibility distributions” in the context of possibility theory [8] and the
associated outer measures are called “possibility measures”.
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Definition 2.1. A function f in L(Rd) is said to be a Gaussian possibility function if it
takes the form

f(x) = N̄ (x;m,P )
.
= exp

(

−
1

2
(x−m)TP−1(x−m)

)

,

for some m ∈ R
d and for some d× d positive-definite matrix P with real coefficients.

We refer to the parameters m and P of N̄ (·;m,P ) as the “mean” and the “spread” of the
Gaussian possibility function. In this context, referring to m as the mean may be viewed as
a slight, but useful, abuse of terminology.

The distribution P on L(E) can encode information in a Bayesian and/or a frequentist way.
If the embedded information relates to a non-random phenomenon, either as a realisation of a
random variable or as a fully non-random parameter, then there is no underlying probability
measure and P describes the uncertainty in a Bayesian sense. However, if the embedded
information relates to a random variable (an actual one, not a realisation of it), then the
underlying probability measure exists and is unique, and P describes (partially-unknown)
randomness as in the frequentist interpretation.

In this context, it is better to understand random variables as solely describing randomness
with another concept needed to describe uncertainty in general. The concept of uncertain
variable is therefore introduced in order to describe a variable about which P gives information.
Two sample spaces are required, the first, denoted (Ωr,F), describes randomness and the
second, denoted Ωu, describes non-random uncertainty. Only the former is endowed with a
σ-algebra F since non-random events (subsets of Ωu) do not need to be assigned a probability
mass, it is just unknown whether or not they have happened. The sample space (Ωr,F) is
endowed with a probability measure P(· |ωu) conditioned on the state ωu ∈ Ωu of all non-
random phenomenon. The sample space Ωu can be seen as a space Θ describing (possibly
unknown) parameters, so that the probability measure P(· | θ) with θ ∈ Θ can simply be seen
as a parametrised distribution. This separation of random and non-random phenomena imply
that degenerate random variables are not considered as random variables but as parameters.
Uncertain variables can now be defined straightforwardly by using the sample spaces (Ωr,F ,P)
and Ωu.

Definition 2.2. An uncertain variable X on a measurable space (E, E) is a mapping between
the product sample space Ω = Ωr × Ωu and E such that the mapping ωr 7→ X(ωr, ωu) is
measurable for every ωu ∈ Ωu.

An uncertain variable X reduces to a random variable when the mapping ωu 7→ X(ωr, ωu)
is constant. Alternatively, if the mapping ωr 7→ X(ωr, ωu) is constant then X is a non-random
uncertain variable and the measurability condition in Definition 2.2 is always satisfied.

If an uncertain variable is not a random variable, then there is no underlying probability
measure on E that would be dominated by the outer measure P̄ , instead, the latter describes
the uncertain variable directly, e.g. the scalar P̄ (1B) gauges how likely the event X ∈ B is
for any B ∈ B(E). However, it is sometimes useful to consider a (non-unique) probability
measure p dominated by P̄ in order to understand how operations on the state space E affect
the outer measure P̄ , as in subsection 2.2 below.

There is a natural transfer from randomness to non-random uncertainty as random phe-
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nomena take place and induce uncertainty about the corresponding realisations. For instance,
if a coin is being flipped then it is usual to consider the output as random, however there is
no more randomness once the coin has landed, and only uncertainty is left (at least until the
outcome is observed).

Note that an outer measure P̄ on E describing what is known about an uncertain variable
X : Ω → E can be pulled back [12] onto Ω (see also section 3 below for the concept of pullback
measure). The resulting outer measure P can be seen as an extrinsic description of the
uncertainty whereas P is an intrinsic characterisation of the randomness, the former changes
when more information is acquired while the latter never changes. The whole sample space
could then be seen as (Ω,P), where P is a “generalised” probability which does not satisfy
Kolmogorov’s third axiom (σ-additivity). However, we do not emphasize this interpretation.

Modelling single-variate/unconditional uncertainty as in this section can be sufficient for
many applications, e.g. in expert systems [22] or to derive data-association formulas [11] for
multi-object representations [14]. However, conditioning is key to express smoothing and
filtering equations so that the proposed modelling has to be extended further.

2.2. On a joint state space. The focus is now on the product space X0:T and most of the
results will be stated accordingly. Yet, when introducing notations and concepts that apply
more broadly, the set E will be reused together with another set F, also endowed with its
Borel σ-algebra. Equation (2.1) can be extended to the product space X0:T as

(2.3) p0:T (ϕ) ≤ P̄0:T (ϕ) =

∫

‖ϕ · f‖∞P0:T (df),

for any function ϕ in L
∞(X0:T ), where p0:T and P0:T are probability measures on X0:T and

L(X0:T ) respectively. The possibility f can be thought of as a joint possibility since it jointly
applies throughout the different state spaces X0 to XT . However, the outer measure P̄0:T will
prove to be insufficient in practice. For instance, information at t = 1 might be conditional
on the state at t = 0, information at t = 2 might be conditional at both the states at t = 0
and t = 1, etc. In this case, we have to introduce a more general type of outer measure. For
this purpose, let Pt(· |x0:t−1) be the conditional distribution on L(Xt) at time t ∈ T given
the states4 x0:t−1 at all previous times and let pt(· |x0:t−1) be a probability distribution on Xt

verifying

pt(ϕ |x0:t−1) ≤

∫

‖ϕ · f‖∞Pt(df |x0:t−1),

for any ϕ ∈ L
∞(Xt). Now, let P̄t(ϕ) be a conditional outer measure defined for any ϕ ∈

L
∞(X0:t) as

P̄t(ϕ)(x0:t−1) =

∫

sup
xt∈Xt

(f(xt)ϕ(x0:t))Pt(df |x0:t−1),

for all x0:t−1 ∈ X0:t−1, then we have the result of the following theorem about the joint
probability p0:T , in which P̄ P̄ ′(ϕ) denotes P̄ (P̄ ′(ϕ)) for any outer measures P̄ on E, any
conditional outer measure P̄ ′(·)(x) on F defined for all x ∈ E and for any ϕ ∈ L

∞(E× F).

4The term x0:t−1 stands for the sequence (x0, . . . , xt−1), which is the empty sequence when t = 0.
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Theorem 2.3. The outer measure P̄0:T induced by the family {Pt(· |x0:t−1)}t∈T of probability
distributions is characterised by

(2.4) P̄0:T (ϕ) = P̄0 . . . P̄T (ϕ),

for any ϕ ∈ L
∞(X0:T ).

Before proving Theorem 2.3, it is useful to note that the way in which the conditioning
is defined in the family {Pt(· |x0:t−1)}t∈T matters for the corresponding outer measure. If we
consider another family of distributions of the form {P ′

t (· |xt+1:T )}t∈T, then the associated
outer measure would be

P̄T :0(ϕ) = P̄ ′
T . . . P̄ ′

0(ϕ),

which differs from P̄0:T (ϕ) in general. This is one of the properties of probability measures that
does not transfer to outer probability measures. In the context of filtering, we will be mostly
interested in conditioning with respect to the past so that P̄0:T will be used predominantly.

Proof. The result is obvious for T = 0. Let p0:T denote a probability distribution on
X0:T that is induced by a family {pt(· |x0:t−1)}t∈T of probability distribution dominated by
{P̄t(· |x0:t−1)}t∈T and assume that the results holds for the set {0, . . . , T − 1}, then the infor-
mation can be summed up through the two following inequalities:

p0:T−1(ϕ) ≤ P̄0:T−1(ϕ),

pT (ϕ |x0:T−1) ≤

∫

‖ϕ · fT ‖∞PT (dfT |x0:T−1),

which hold for any ϕ ∈ L
∞(X0:T−1), any ϕ ∈ L

∞(XT ) and any x0:T−1 ∈ X0:T−1. It follows
that

p0:T (ϕ
′) =

∫

ϕ′(x0:T )pT (dxT |x0:T−1)p0:T−1(dx0:T−1)

≤ P̄0:T−1

(

pT
(

ϕ′ | ·
))

for any ϕ′ ∈ L
∞(X0:T ), so that

p0:T (ϕ
′) ≤ P̄0:T−1

(
∫

sup
xT∈XT

(

ϕ′(·, xT )f(xT )
)

PT (df | ·)

)

= P̄0:T−1(P̄T (ϕ
′)) = P̄0:T (ϕ

′).

This concludes the proof of the theorem.

Remark 1. If for any t ∈ T, the distribution Pt(· |x0:t−1) does not actually depend on x0:t−1

and if a subset B of the form B = B0 × · · · ×BT is considered then (2.4) collapses to

(2.8) P̄0:T (1B) = P̄0(1B0
) . . . P̄T (1BT

).

In this case, for any separable function ϕ(x) = ϕ1(x1) . . .ϕT (xT ) in L
∞(Xt), it holds that

P̄0:T (ϕ) = P̄T :0(ϕ) since the individual terms in (2.4) can now be commuted.
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Definition 2.4. Let X and X ′ be two uncertain variables on the respective spaces E and F

and let P̄ be an outer measure describing information about the joint (X,X ′) on the product
space E×F. If there exist outer measures P̄X and P̄X′ such that for every separable function
ϕ = ϕ× ϕ′ in L

∞(E× F) it holds that

P̄ (ϕ) = P̄X(ϕ)P̄X′(ϕ′),

then X and X ′ are said to be weakly independent.

If two uncertain variables are at least partially random then their weak independence is
unrelated to their statistical independence. Weak independence only means that the relation
between the two uncertain variables is unknown. It is therefore meaningful to introduce a
third concept, strong independence, to describe the case where two possibly-random uncertain
variables are (statistically) independent as well as weakly independent. To sum up, in terms
of independence

strongly ⇐⇒ statistically and weakly,

however neither does statistical independence imply weak independence nor the other way
around.

Example 4. If for any time t ∈ T, it holds that Pt(· |x0:t−1) = δft(· |x0:t−1) where ft is a
conditional possibility, i.e. it is such that ft(· |x0:t−1) ∈ L(Xt) for any x0:t−1 ∈ X0:t−1, then

P̄0:T (ϕ) = ‖ϕ · f0:T (x)‖∞

for any ϕ ∈ L
∞(X0:T ), where f0:T is a joint possibility in L(X0:T ) defined as

f0:T : x0:T 7→ f0(x0)f1(x1 |x0) . . . fT (xT |x0:T−1).

2.3. Hidden Markov models and outer measures. Hidden Markov models are often
considered when dealing with estimation for dynamical systems [4]. It is therefore of interest
to generalise the concept of Markov chain to outer measures describing collections of uncertain
variables. We propose the following approach: the uncertainty about a collection {Xt}t∈N of
uncertain variables has the Markov property if for any t ∈ N it holds that

P̄t(ϕ)(x0:t−1) = P̄t(ϕ)(xt−1)

for all x0:t−1 ∈ X0:t−1 and for all ϕ ∈ Xt. Note that in this case, the property is more about
the available knowledge than about the uncertain variables themselves. For instance, at the
final time T , we might be given information that the physical system has never been twice in
the same state, in which case the uncertainty would cease to have the Markov property.

Principle. It is assumed that the system of interest can be characterised by a collection
{Xt}t∈T of uncertain states and its observation is described by a collection {Yt}t∈T of obser-
vations on the space Yt. This can be summed up by

(2.9)

{

Xt = Ft(Xt−1, Vt)

Yt = Ot(Xt)7



where Ft and Ot are respectively the state transition and the observation function at time t and
where {Vt}t∈T is a sequence of strongly independent uncertain variables. In some cases, the
uncertain variable Vt will be equivalent to a random variable, e.g. when describing the motion
of particle in turbulent water, however, in many other cases, it will represent an unknown but
non-random change in the model, e.g. a plane manoeuvring or a pedestrian changing direction.

The mechanism behind the acquisition of information through the observation process is
different. We assume that the observation is non-random5 but the usual assumption that Yt is
received directly is not considered. Instead, it is assumed that what is received is information
about Yt rather than Yt itself. Information about Yt is given under the form of an outer measure
on Yt (this representation will be formalised subsequently). For example, the observation Yt

may be known to be in some subset of the observation space (e.g. Yt ∈ A where A is one or
several pixels of a camera) or information about Yt may be given more indirectly under the
form of a natural language statement. Numerous other modelling examples can be considered.

Since we have assumed that all the information that will be available about the collection
{Xt, Yt}t∈T will have the Markov property, the overall choice of model is still referred to as a
hidden Markov model.

Formalisation. The uncertainty about the collection {Xt}t∈T has the Markov property
by construction since Xt only depends on Xt−1 and since the uncertainty induced by Vt is
independent of the one at previous times. The transition can therefore be encoded into a
Markov kernel Qt(xt−1, ·) on L(Xt), which contains information on Xt conditional on the
state in xt−1 ∈ Xt−1 but not directly on Xt−1 or any previous state space.

The information about the observation Yt at time t is assumed to be weakly independent
of the information at other times and is given under the form of a probability measure Rt

on L(Yt), whose projection onto L(Xt) by Ot is the pullback measure O∗
tRt (it can also be

assumed for simplicity that Yt = Xt and Ot is the identity).
The initial state X0 is an uncertain variable described by the outer measure P̄0 induced

by the distribution P0 on L(X0).

3. Translating operations of probability theory to outer measures. The equivalent of
the standard operations of probability theory have to be derived for the considered class of
outer measures in order to generalise the usual filtering and smoothing algorithms. Other
useful operations that do not exist under the usual framework are also introduced. We start
with the equivalent of the push-forward ξ∗p = p(ξ−1(·)) of a probability measure p on E by a
measurable mapping ξ from E to another set F. For a given outer measure P̄ , the objective
is to characterise the outer measure P̄ ′ verifying

(3.1) P̄ ′(1B) = P̄ (1ξ−1[B]),

for any appropriate subset B of F, where the use of square brackets in the expression ξ−1[B]
of the inverse image of the subset B by ξ emphasizes that the result is a set. The solution is
given in the next proposition.

5This assumption is not crucial, it is only used to simplify the following statements. Alternatively, an addi-
tional Markov kernel St(xt, ·) on L(Yt) can be defined for any xt ∈ Xt in order to model the knowledge about
a perturbed observation function Ot(·,Wt) where {Wt}t∈T is a sequences of strongly independent uncertain
variables that are independent of {Vt}t∈T.
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Proposition 3.1 (From [12, Proposition 3]). Let P be a distribution on L(E) and let ξ be a
measurable mapping from (E,B(E)) to (F,B(F)), then the probability distribution P ′ which
implies that (3.1) holds is equal to the push-forward ~ξ∗P where ~ξ is a mapping from L(E) to
L(F) defined as

~ξ(f) : x 7→ sup
ξ−1[x]

f

for any f ∈ L(E).

The term ξ−1[x], which is shorthand for ξ−1[{x}], is a set which is a singleton if ξ is
bijective. As a consequence, the simplest examples of this equivalent of push-forward are
found when ξ is bijective as explained in the following remark.

Remark 2. If ξ is bijective then the expression of ~ξ simplifies to ~ξ(f) = f ◦ ξ−1 for any
f ∈ L(E). Therefore, P ′ gives mass P (df) to the function f ◦ξ−1, so that, for instance, if ξ is
the transformation from Cartesian coordinates in E = R

2\{(0, 0)} to polar coordinates systems
in F = [0, 2π)× (0,∞) and if f is the indicator of the disk {(x, y) ∈ E :

√

x2 + y2 ≤ 1} then
f ◦ ξ−1 is simply the indicator of the set {(a, r) ∈ F : r ≤ 1}.

Very often, the interest lies in non-bijective mappings with the simple case of a projection
being studied in the following example.

Example 5. If E = Xt−1 × Xt and F = Xt for some time t ∈ {1, . . . , T} and if ξ is the
canonical projection (xt−1, xt) 7→ xt, then

~ξ(f) : xt 7→ sup
x∈Xt−1

f(x, xt)

for any f ∈ L(Xt−1 × Xt). This operation can be seen as marginalisation for possibility
functions. As will be practically verified later, operations for possibility functions are the
same as for probability density functions except that integrals are replaced by supremums. The
consequence for the outer measures P̄ ′ is that, for any ϕ ∈ L

∞(Xt), it holds that

P̄ ′(ϕ) =

∫

sup
(x′,x)∈Xt−1×Xt

(

ϕ(x)f(x′, x)
)

P (df),

which can be written as P̄ ′(ϕ) = P̄ (ϕ) by seeing ϕ as the function on Xt−1 × Xt such that
ϕ : (x′, x) 7→ ϕ(x) in the r.h.s. of the equality. This abuse of notations will be used when there
is no possible confusion. If P̄ is the single-possibility outer measure verifying P = δft−1,t

for
some ft−1,t ∈ L(Xt−1 ×Xt) then, using obvious notational choices, it can be written that

ft(xt) = sup
xt−1∈Xt−1

ft−1,t(xt−1, xt),

where ft is the possibility function such that P ′ = δft. This result motivates the choice of
performing operations directly on possibility functions in the case of single-possibility outer
measures.
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In standard probability theory, the inverse of the push-forward operation by ξ applied to a
probability measure p is ill-defined since there might be several pullback measures p′ verifying
the identity ξ∗p

′ = p. However, all these probability measures are dominated by a given outer
measure, so that the operation is meaningful for the latter. For a given outer measure P̄ , the
objective is to characterise the outer measure P̄ ′ verifying

(3.2) P̄ ′(1B) = P̄ (1ξ[B]),

for any appropriate subset B. Note that although ξ[B] might not be measurable even if B
is, outer measures are not limited to measurable subsets. The solution is given in the next
proposition.

Proposition 3.2 (From [12, Proposition 4]). Let P be a distribution on L(F) and let ξ be a
measurable mapping from (E,B(E)) to (F,B(F)), then the probability distribution P ′ which
implies that (3.2) holds is equal to the push-forward ~ξ∗P where ~ξ is the mapping

~ξ : L(F) → L(E)

f 7→ f ◦ ξ.

For the sake of compactness, the push-forward ~ξ∗P can be denoted ξ∗P since there is no
possible confusion with existing notations. The distribution ξ∗P is called the pullback of P
by ξ. The case of a bijective ξ is not so interesting here since the pullback is the same of the
push-forward by the inverse in this case. The projection studied in Example 5 is however of
central interest since there is no equivalent for probability measures in this case. The following
example is in the continuation of Example 5.

Example 6. If E = Xt−1 × Xt and F = Xt for some time t ∈ {1, . . . , T} and if ξ is the
canonical projection (xt−1, xt) 7→ xt, then

~ξ(f) : (xt−1, xt) 7→ f(ξ(xt−1, xt)) = f(xt)

for any f ∈ L(Xt). This operation is indeed the inverse of marginalisation where no knowledge
on the added state space is assumed. The consequence for the outer measures P̄ ′ is that

P̄ ′(ϕ) =

∫

sup
(x′,x)∈Xt−1×Xt

(

ϕ(x′, x)f(x)
)

P (df),

for any ϕ ∈ L
∞(Xt−1 ×Xt). If P̄ is the single-possibility outer measure verifying P = δft for

some ft ∈ L(Xt) then, using obvious notational choices, it can be written that

ft−1,t(xt−1, xt) = ft(xt),

where ft−1,t is the possibility function such that P ′ = δft−1,t
. It follows that sup ft−1,t(xt−1, ·) =

1 for any xt−1 ∈ Xt−1, which means that nothing is known on Xt−1 as expected.

Continuing in the spirit of examples 5 and 6, it can be verified that if f is a possibility
function on Xt−1×Xt then there exists a function ft−1 ∈ L(Xt−1) and a function ft|t−1(· |x

′)
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on L(Xt) for every x′ ∈ Xt−1 such that

f(xt−1, xt) = ft|t−1(xt |xt−1)ft−1(xt−1),

for any (xt−1, xt) ∈ Xt−1 ×Xt, so that

ft|t−1(xt |xt−1) =
f(xt−1, xt)

ft−1(xt−1)
=

f(xt−1, xt)

sup
x′∈Xt−1

f(x′, xt)

Once again, the usual operations of probability theory can be seen to hold for possibility
functions with integrals replaces by supremums. The analogue of Bayes’ theorem on the state
space for the considered class of outer measures, however, will be seen to take a different form
in the next section.

4. Information assimilation. In order to describe the result of the combination of two
strongly independent pieces of information, an additional notation has to be introduced: if
f ∈ L

∞(E) then f † = f/‖f‖∞ ∈ L(E) is the rescaled version of f which has supremum 1.

Theorem 4.1 (From [12, Theorem 1]). Let P and P ′ be two probability measures on L(E)
describing respectively the uncertain variables X and X ′. If X and X ′ are strongly indepen-
dent, then the posterior distribution P ⋆ P ′ based on P and P ′ can be expressed as

(4.1) P ⋆ P ′(F )
.
=

∫

1F ((f · f ′)†)‖f · f ′‖∞P (df)P ′(df ′)
∫

‖f · f ′‖∞P (df)P ′(df ′)

for any measurable subset F of L(E) as long as P and P ′ are compatible, i.e. as long as the
denominator is strictly positive.

The strong independence considered in Theorem 4.1 is analogous to the statistical inde-
pendence assumed in the standard Bayes’ theorem. The denominator of (4.1) is a scalar in
the interval (0, 1] and quantifies how likely it is that P and P ′ represent the same system. The
rescaling ·† ensures that P ⋆ P ′ is a probability measure supported by possibility functions
rather than an arbitrary measure supported by arbitrary functions of the form f · f ′ for some
f, f ′ ∈ L(E). Rescaling is not necessary if the outer measure P ⋆ P ′ induced by P ⋆ P ′ is
considered instead, since it can simply be written that

(4.2) P ⋆ P ′(ϕ) ∝

∫

‖ϕ · f · f ′‖∞P (df)P ′(df ′)

for any ϕ ∈ L
∞(E). Several special cases of the use of the operation ⋆ are given in [12].

Example 7. If X and X ′ are uncertain variables that (at least partially) characterise the
same random phenomenon, i.e. they have some statistical dependence, then the associated
outer measures P and P ′ cannot be fused together using Theorem 4.1. For instance, if two
observers study a biased coin and independently determine that the probability of heads is 3/4
then it is erroneous to combine these information and conclude that the probability of heads
must be (3/4 × 3/4)/(1/4 × 1/4 + 3/4 × 3/4) = 9/10. However, if the coin is tossed and two
observers witness the experiment but are unsure of the outcome, e.g. they are both 75% sure
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that the result was tails, then it is possible to combine these independent pieces of information
and claim that the outcome was tails with a likelihood of 9/10. This result also holds if one
observer has studied the coin and the other has independently witnessed the experiment.

Both P and P ′ can be seen as priors and the probability measure P ⋆ P ′ can be seen as a
Bayesian posterior given that P and P ′ represent the same system. This can be highlighted by
assuming that the system of interest is fully characterised by its state in E, so that the event
“P and P ′ represent the same system” corresponds to the diagonal ∆ of E×E. In this case,
we can define a joint probability measure P̆ = P ×P ′ and a likelihood ℓ(∆ | f, f ′) = ‖f · f ′‖∞
giving the compatibility between f and f ′, e.g. ℓ(∆ |1A,1A′) = 0 if A and A′ are disjoint
subsets. With these notations, we can compute the posterior distribution

P̂ (F̂ |∆)
.
=

∫

F̂
ℓ(∆ |f)P̆ (df)

∫

ℓ(∆ |f)P̆ (df)

for any measurable subset F̂ of L(E)×L(E). However, since we are only interested in the value
of the function f = (f, f ′) on the diagonal ∆, i.e. the values of the function f̂(x) = f(x)f ′(x),
we introduce a kernel K((f, f ′), F ) = δ(f ·f ′)†(F ) which projects compatible possibilities to a
single posterior possibility, and the distribution P ⋆ P ′ on L(E) is found to be equal to the
projection of P̂ (· |∆) in the following way:

P ⋆ P ′(F ) =

∫

K(f , F )P̂ (df |∆)

for any measurable subset F of L(E). The presence of the kernel K is not usual, but it is
just a projection, and the usual ingredients of Bayes theorem such as the prior P̆ and the
likelihood ℓ(∆ | ·) can be identified.

If P̄0:T and P̄ ′
0:T are two joint outer measures induced by {Pt(· |x0:t−1)}t∈T and

{P ′
t (· |x0:t−1)}t∈T then the operation ⋆ can be applied component-wise and gives the posterior

joint outer measure P̄ ⋆
0:T characterised by

P̄ ⋆
0:T (ϕ) = P̄ ⋆

0 . . . P̄ ⋆
T (ϕ),

for any ϕ ∈ L
∞(X0:T ), with P̄ ⋆

t (·)(x0:t−1) the outer measure on Xt induced by Pt(· |x0:t−1) ⋆
P ′
t(· |x0:t−1) for any t ∈ T. Note that in general, P̄0:T can also be combined with an outer

measure of the form P̄ ′
0:T but not with one of the form P̄ ′

T :0.

5. Smoothing. The objective in this section is to derive an expression of the posterior
outer measure on the joint space X0:T induced by the combination of all the information
available up to time T . The Markov property is not sufficient to simplify the predicted outer
measure P̄0:T on X0:T which takes the form

P̄0:T (ϕ) = P̄0Q̄1 . . . Q̄T (ϕ),

for any ϕ ∈ L
∞(X0:T ). The observed information across time can be expressed as another

outer measure R̄0:T on Y0:T characterised by

R̄0:T (ϕ) = R̄0(ϕ0) . . . R̄T (ϕT ),
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for any separable function ϕ(y) = ϕ0(y0) . . . ϕT (yT ) in L
∞(Y0:T ). This can also be expressed

through a single probability distribution R0:T on L(Y0:T ) defined as the product R0:T =
R0 × · · · × RT . The smoothed outer measure P̄0:T |T is the posterior outer measure based on
P̄0:T and R̄0:T , that is

P̄0:T |T (ϕ) = P̄0|0Q̄1|1 . . . Q̄T |T (ϕ),

for any ϕ ∈ L
∞(X0:T ), where P̄0|0 is the outer measure induced by P0 ⋆ (O∗

0R0) and where
Q̄t|t(·)(xt−1) is the conditional outer measure induced by Qt(xt−1, ·) ⋆ (O

∗
tRt) for any xt−1 ∈

Xt−1 and for all t ∈ {1, . . . , T}.
One way of simplifying the form of P̄0:T |T is to make the composition of “

∫

sup(·)P (df)”
collapse by retaining a single term in each integral as in the following theorem. The other
natural way is to cancel out the supremums, but this requires P0 to be equivalent to a proba-
bility measure on X0 and all the Markov kernels Qt to be equivalent to Markov kernels on Xt,
which leads back to a formulation that resemble the classical Bayesian formulation (except
for the observed information).

Theorem 5.1. If for any t ∈ {1, . . . , T} there exists a function gt(x, ·) ∈ L(Xt) such that
Qt(x, ·) = δgt(x,·) for any x ∈ Xt−1, then the smoothed outer measure P̄0:T |T is characterised
by

P̄0:T |T (ϕ) ∝

∫

‖ϕ · u0:T |T ‖∞P0(df0)R0(dh0) . . . RT (dhT ),

for any ϕ ∈ L
∞(X0:T ), where u0:T |T ∈ L

∞(X0:T ) depends implicitly on f0 and h0, . . . , hT and
is characterised by

u0:T |T (x) = f0(x0)
T
∏

t=1

gt(xt−1,xt)
T
∏

t=0

ht(Ot(xt)).

for every x ∈ X0:T .

The statement of Theorem 5.1 involves the function u0:T |T that is not a possibility function
in general as in (4.2). This is only for the sake of compactness as the rescaled version of u0:T |T

could be used instead if compensating by its supremum norm ‖u0:T |T ‖∞.

Proof. It follows from the assumption of the theorem that Q̄t(ϕ)(x
′) = ‖ϕ · gt(x

′, ·)‖∞ for
any ϕ ∈ L(Xt) and

P̄0:T (ϕ) =

∫

sup
x∈X0:T

(

ϕ(x)f(x0)

T
∏

t=1

gt(xt−1,xt)

)

P0(df),

for any ϕ ∈ L(X0:T ). The associated distribution P0:T on L(X0:T ) is the push-forward measure
ζ∗P0 with ζ the mapping from L(X0) to L(X0:T ) characterised by

ζ(f)(x) = f(x0)
T
∏

t=1

gt(xt−1,xt)
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for any f ∈ L(X0) and any x ∈ X0:T . The mapping ζ is implicitly assumed to be measurable.
Since both P̄0:T and R̄0:T take unconditional forms, the posterior distribution P0:T |T which
integrates all the observed information can be stated simply as

P0:T |T (F ) =
(

P0:T ⋆ (O∗R0:T )
)

(F )

∝

∫

1F

(

(f · (h ◦O))†
)

‖f · (h ◦O)‖∞P0:T (df)R0:T (dh),

for any measurable subset F of L(X0:T ), where O = O0 × · · · ×OT : X0:T → Y0:T and where
the pointwise product f · (h ◦O) can be expressed for any f and any h in the support of P0:T

and R0:T respectively as

(f · (h ◦O))(x) = f0(x0)
T
∏

t=1

gt(xt−1,xt)
T
∏

t=0

ht(Ot(xt)),

for any x ∈ X0:T and for some f0 ∈ L(X0) and some {ht}t∈T such that ζ(f0) = f and
h(y) = h0(y0) . . . hT (yT ). The form taken by the smoothed outer measure P̄0:T |T can then be
easily deduced.

Example 8. If the prior knowledge P0 and the observed information {Rt}t∈T are further
simplified to P0 = δf0 and Rt = δht

for all t ∈ T, then P̄0:T |T (ϕ) = ‖ϕ · f0:T |T‖∞ for any
ϕ ∈ L

∞(X0:T ), with

f0:T |T (x) ∝ f0(x0)

T
∏

t=1

gt(xt−1,xt)

T
∏

t=0

ht(Ot(xt))

which has the exact same form as the usual smoothing distribution [3]

p0:T |T (x) ∝ p0(x0)

T
∏

t=1

qt(xt−1,xt)

T
∏

t=0

ℓt(yt |xt),

with ℓt(yt |x) = ht(Ot(x)) the likelihood of a standard observation yt at time t ∈ T, and
where probability density functions are written with the same notation as their corresponding
measure. The only difference between these two expressions is that possibility functions replace
probability distributions. The expression p0:T |T can also be recovered from P̄0:T |T by assuming
that Pt and Qt are equivalent to the distribution pt and Markov kernel qt at each time t. This
does not however limit the modelling options of the observed information.

6. Filtering. The objective is now to compute the information at successive times in a
recursive fashion. The predicted and updated filtering outer measures P̄t|t−1 and P̄t|t at time
t ∈ T could be simply expressed as the marginals of predicted smoothing outer measure P̄0:t|t−1

and the updated smoothing outer measure P̄0:t|t, that is as

P̄t|t−1(ϕ) = P̄0:t|t−1(ϕ) and P̄t|t(ϕ) = P̄0:t|t(ϕ)

with ϕ ∈ L
∞(Xt). However, as in the standard approach, this gives little insight into how to

actually compute these terms. Instead, the predicted outer measure P̄t|t−1 at time t has to
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be expressed as a function of the updated outer measure P̄t−1|t−1 at the previous time and,
similarly, the updated outer measure P̄t|t at time t has to be expressed as a function of the
predicted one.

We assume that at a given time t− 1, P̄t−1|t−1 is in the single-variate form

P̄t−1|t−1(ϕ) =

∫

‖ϕ · f‖∞Pt−1|t−1(df),

with ϕ ∈ L
∞(Xt−1). The predicted outer measure P̄t|t−1 is the marginal on Xt of the outer

measure P̄t−1|t−1Q̄t on the joint space Xt−1 ×Xt, which can be expressed as

P̄t|t−1(ϕ) = P̄t−1|t−1Q̄t(ϕ)(6.1a)

=

∫

‖f · Q̄t(ϕ)‖∞Pt−1|t−1(df),(6.1b)

for any ϕ ∈ L
∞(Xt). As with smoothing, this expression does not reduce to a single-variate

outer measure in general so that special cases are considered in the following sections. We
proceed as in section 5 to obtain a closed-form expression of the filtering equations.

Theorem 6.1. If for any t ∈ {1, . . . , T} there exists a function gt(x, ·) ∈ L(Xt) such that
Qt(x, ·) = δgt(x,·) for any x ∈ Xt−1 then the predicted and updated distributions Pt|t−1 and Pt|t

are characterised by

(6.2)

{

Pt|t−1 = (ξt)∗Pt−1|t−1

Pt|t = Pt|t−1 ⋆ (O
∗
tRt),

where the mapping ξt from L(Xt−1) to L(Xt) is characterised by

ξt(f) : Xt → [0, 1]

x 7→ sup
x′∈Xt−1

f(x′)gt(x
′, x).

for any f ∈ L(Xt−1).

Proof. With the considered assumption, (6.1) simplifies to

P̄t|t−1(ϕ) =

∫

‖ϕ · ξt(f
′)‖∞Pt−1|t−1(df

′)(6.4a)

=

∫

‖ϕ · f‖∞(ξt)∗Pt−1|t−1(df).(6.4b)

The outer measure P̄t|t−1 is now single-variate and the corresponding distribution on L(Xt)
is Pt|t−1

.
= (ξt)∗Pt−1|t−1. The next step is to incorporate the observed information Rt in the

predicted distribution Pt|t−1. Since the operation ⋆ defined in (4.1) can be directly applied to
these single-variate distributions, we find that Pt|t = Pt|t−1 ⋆ (O

∗
tRt). To sum up, the filtering

equations can be expressed in terms of probability distributions on L(Xt−1) and L(Xt) since
all the outer measures involved are single-variate under the considered assumptions.
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Example 9. To understand the mapping ξt, assume that gt(x
′, ·) = 1Gx′

for some subset
Gx′ of Xt, i.e. if the considered system is in state x′ at time t− 1 then it is only known that
its state at time t is within the subset Gx′ . It follows that

ξt(1A′)(x) = sup
x′∈Xt−1

1A′(x′)1Gx′
(x)

=

{

1 if there exists x′ ∈ Xt−1 s.t. x ∈ Gx′ and x′ ∈ A′

0 otherwise.

This can be written as ξt(1A′) = 1A with

A =
⋃

x′∈A′

Gx′ .

If Gx′ is translation invariant, i.e. the extent of the set Gx′ does not depend on x′, then, in
the language of mathematical morphology, A is a dilatation of A′ by Gx′. If Pt−1|t−1 = δ1A′

then

Pt−1|t−1(ξ
−1
t (F )) =

{

1 if 1A′ ∈ ξ−1
t (F )

0 otherwise,

where the condition 1A′ ∈ ξ−1
t (F ) is equivalent to ξt(1A′) = 1A ∈ F so that (ξt)∗Pt−1|t−1 = δ1A

as expected.

Remark 3. If the initial information P0 is equivalent to a probability measure p0 then a
particle representation {xi}

N
i=1 of p0 can be used to approximate P0 as P0 ≈ N−1

∑N
i=1 δ1xi

.
The recursion (6.2) can then be more easily applied.

Example 10. The filtering equations (6.2) imply that if the information provided at time
t via Rt takes the form of a probability measure rt on the state space, then Pt|t will also
be equivalent to some probability measure pt|t on Xt. The predicted information Pt+1|t will
however tend to take a slightly more complicated form: it will give probability mass pt|t(dx

′) to
the function gt+1(x

′, ·) on Xt+1. If at time t+1, the observation Rt+1 is once again equivalent
to a probability measure rt+1 on Xt+1, then the distribution Pt+1|t+1 = Pt+1|t ⋆Rt+1 will be of
the form

Pt+1|t+1(F ) ∝

∫

1F (1x)‖1x · gt+1(x
′, ·)‖∞rt+1(dx)pt|t(dx

′),

that is Pt+1|t+1 will be equivalent to a probability measure on Xt+1. If, additionally,
pt|t and rt are Gaussian distributions and gt+1(x

′, x) is the Gaussian possibility function
N̄ (x;Ft+1x

′,Qt+1) for some matrices Ft+1 and Qt+1 then Pt+1|t+1 is equivalent to the corre-
sponding posterior Gaussian distribution of the Kalman filter.

7. Special cases and related results. We first detail two special cases of the approach
introduced in section 6 where the filtering recursion is expressed without measure-theoretic
notations by reducing the functional integrals to finite sums. The second case restricts the
system to be linear and based on Gaussian possibility functions.
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7.1. Filtering with finite sum of possibility functions. Assume that the predicted distri-
bution Pt−1|t−1 and the observed information Rt take the form of a finite sum of functions as
follows:

Pt−1|t−1 =
∑

i∈It−1

wi
t−1δf i

t−1|t−1

and Rt =
∑

l∈Lt

vltδhl
t

for some indexed families {(wi
t−1, f

i
t−1|t−1)}i∈It−1

and {(vlt, h
l
t)}l∈Lt

of pairs of weights and
functions, then the predicted and updated distributions Pt|t−1 and Pt|t can be expressed as

Pt|t−1 =
∑

i∈It−1

wi
t|t−1δf i

t|t−1

and Pt|t =
∑

i∈It

wi
tδf i

t|t

where It = It−1 × Lt and where



















































(

wi
t|t−1, f

i
t|t−1

)

=

(

wi
t−1, sup

x′∈Xt−1

f i
t−1|t−1(x

′)gt(x
′, ·)

)

for any i ∈ It−1

(

wi
t, f

i
t|t

)

=

(

‖f j,l
t,t−1‖∞wj

t−1v
l
t

∑

(k,m)∈It
‖f j,l

t,t−1‖∞wk
t−1v

m
t

, (f j,l
t,t−1)

†

)

for any i = (j, l) ∈ It,

with f j,l
t,t−1 = f j

t|t−1 · (h
l
t ◦Ot) for any (j, l) ∈ It.

This recursion could be easily computed if the considered possibility functions are part of
a parametric family of functions such as indicator functions or Gaussian possibility functions.

In the simplest case where Pt−1|t−1 = δft−1|t−1
and Rt = δht

, the filtering equations can be
expressed in standard notations as

(7.1)



















ft|t−1(x) = sup
x′∈Xt−1

ft−1|t−1(x
′)gt(x

′, x)

ft|t(x) =
ft|t−1(x)ht(Ot(x))

supx′∈Xt
ft|t−1(x′)ht(Ot(x′))

.

As in Example 8, these filtering equations are similar to the ones of the standard formulation
but with integrals replaced by supremums and distributions replaced with possibility functions.
It is interesting to study (7.1) under Kalman-like assumptions of Gaussianity and linearity as
in the following section.

7.2. Filtering for linear system with Gaussian possibility function. A natural question
that arises from the simple form of the filtering equations (7.1) is: how would such a recursion
perform under assumptions of linearity and when only Gaussian possibility functions are
involved? Since the information that is given to the algorithm is weaker when compared to
the one given to the standard Kalman filter [2], one might expect that the algorithm based
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on possibilities will be more robust to modelling discrepancies. However, it might also be
expected to be less accurate than the standard Kalman filter when dynamics and observation
are indeed generated according to the assumed Gaussian distributions. The following theorem
shows that, interestingly, both algorithms are equivalent when characterised by their respective
means and variance/spread.

Theorem 7.1. Assume that the transition function Ft(·, Vt) and the observation function
Ot are linear. Also, assume that the noise Vt is additive and described by a Gaussian possi-
bility function. If the prior possibility function ft−1|t−1 and the observed-information ht are
Gaussian, then the mean and spread of the possibility functions in (7.1) follow the standard
Kalman filter recursion.

Proof. The assumptions on the transition, observation and prior possibility function can
be expressed as

ft−1|t−1(x
′) = N̄ (x′;mt−1,Pt−1)

gt(x
′, x) = N̄ (x;Ftx

′,Qt)

ht(y) = N̄ (yt; y,Rt)

Ot(x) = Otx,

for some yt ∈ Yt representing the observation in the usual way, some mt−1 ∈ Xt−1 and
some matrices Pt−1, Ft, Qt, Rt and Ot of appropriate size. Using an equivalent formulation
to the standard Kalman filter identity (easily obtained by Sylvester’s determinant theorem),
expressed as

N̄ (x;Fx′,Q)N̄ (x′;m,P ) = N̄
(

x;Fm,Q+ FPF T
)

N̄
(

x′;m+K(x− Fm), (I −KF )P
)

with K = PF T (FPF T +Q)−1, it follows that

ft|t−1(x) = N̄
(

x;Ftmt−1,Qt + FtPt−1F
T
t

)

sup
x′∈Xt−1

N̄
(

x′;m′,P ′
)

,

for some state m′ and some matrix P ′. The supremum in the r.h.s. of this expression is equal
to 1 so that the Kalman filter time-prediction is recovered:

ft|t−1(x) = N̄ (x;mt|t−1,Pt|t−1)
.
= N̄

(

x;Ftmt−1,Qt + FtPt−1F
T
t

)

.

The Kalman-filter observation update can be recovered in a similar fashion and is found to be

ft|t(x) = N̄
(

x;mt|t−1 +Kt(yt −Otmt|t−1), (I −KtOt)Pt|t−1

)

with Kt = Pt|t−1O
T
t (OtPt|t−1O

T
t +R)−1. The Kalman filter recursions are then recovered in

spite of the presence of supremums instead of integrals in (7.1).

A related result, named the Kalman evidential filter [15], has been proved in the context of
fuzzy Dempster-Shafer theory with a fully-known Markov transition. This assumption however
does not allow for recovering the Kalman filter exactly, but yields a recursive algorithm that
bears some similarities.
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7.3. Backward smoothing recursion. Obtaining the expression of the distribution Pt|T

on L(Xt) representing the uncertainty at time t given all the observed information up to time
T is useful for recovering the smoothed distribution after one filtering pass on the set T of all
time steps.

Theorem 7.2. If for any t ∈ {1, . . . , T} there exists gt(x, ·) ∈ L(Xt) such that Qt(x, ·) =
δgt(x,·) for any x ∈ Xt−1, then the smoothed outer measure P̄0:T |T can be expressed as

(7.4) P̄T :0|T (ϕ) = P̄T |T P̄
′
T−1|T−1 . . . P̄

′
0|0(ϕ)

for any ϕ ∈ L
∞(X0:T ), where the conditional outer measure P̄ ′

t|t(ϕ)(xt+1) is defined for any

ϕ ∈ L
∞(Xt) and any xt+1 ∈ Xt+1 as

(7.5) P̄ ′
t|t(ϕ)(xt+1) =

P̄t|t(ϕ · gt+1(·, xt+1))

P̄t|t(gt+1(·, xt+1))
.

Proof. The probability distribution P0:T |T on L(X0:T ) defined in Theorem 5.1 is supported
by possibility functions of the form

f0:T |T (x) =
f0(x0)

∏T
t=1 gt(xt−1,xt)

∏T
t=0 ht(Ot(xt))

sup
x
′ f0(x

′
0)
∏T

t=1 gt(x
′
t−1,xt)

∏T
t=0 ht(Ot(x

′
t))

= fT |T (xT )

T−1
∏

t=0

f ′
t|t(xt |xt+1)

with

f ′
t|t(xt |xt+1) =

gt+1(xt, xt+1)ft|t(xt)

supx gt(x, xt+1)ft|t(x)
.

The outer measure P̄T :0|T can then expressed as in (7.4) where, for any t ∈ {0, . . . , T − 1},
P̄ ′
t|t is induced by a distribution P ′

t|t(· |xt+1) supported by possibility functions of the form

f ′
t|t(· |xt+1) for any xt+1 ∈ Xt+1. However, the possibility function f ′

t|t can be recognised as

the one yielded by the combination of Qt+1 and Pt|t, which implies that P̄ ′
t|t can be equally

expressed as (7.5), hence proving the theorem.

7.4. Filtering with known transition. The general recursion (6.1) can also be made closed-
form by following an approach that is the exact opposite of the one considered in section 6, that
is by making the Markov kernel extremely informative: it is assumed that for any x ∈ Xt−1 the
transition Qt(x, ·) is equivalent to a Markov kernel qt(x, ·) from Xt−1 to Xt, that is Qt(x, ·)
gives mass qt(x,dx

′) to the degenerate possibility function 1x′ . From this assumption, the
outer measure Q̄t verifies

Q̄(1B)(x) =

∫

1B(x
′)qt(x,dx

′) = qt(x,B),
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for any B ∈ B(Xt). However, this assumption is not sufficient for (6.1) to simplify unless
Pt−1|t−1 is also equivalent to a probability measure pt−1|t−1 on Xt−1, in which case (6.1)
becomes the standard time prediction

(7.7) pt|t−1(B) =

∫

qt(x,B)pt−1|t−1(dx),

for any B ∈ B(Xt). The update requires Rt to be restricted to non-random uncertainty,
otherwise the observed information would be incompatible with the predicted information.
The observation update becomes

pt|t(B) =

∫

1B(x)h(x)Rt(dh)pt|t−1(dx)
∫

h(x)Rt(dh)pt|t−1(dx)
,

for any B ∈ B(Xt), so that both the predicted and the updated uncertainties take the form
of probability measures on the state space and only the observed information takes a more
general form. This approach has been previously proposed in the context of random set theory
[15] and has also been used for multi-target tracking within the proposed framework in [13, 5].

As an example, if we assume that Rt takes the form Rt =
∑

l∈Lt
vltδhl

t
for some index set

Lt and some collections of weights {vlt}l∈Lt
and functions {hlt}l∈Lt

, then it holds that

pt(dx) =

∑

l∈Lt
vlth

l
t(x)pt|t−1(dx)

∑

l∈Lt
vlt
∫

hlt(x)pt|t−1(dx)
.

The recursion based on the standard prediction (7.7) and this update can be computed using
sequential Monte Carlo methods where the likelihood is replaced by a potential

∑

l∈Lt
vlth

l
t.

8. Concluding Remarks. Building on a recently introduced framework for the representa-
tion of uncertainty [11, 12], it has been demonstrated that filtering and smoothing algorithms
can be generalised to outer measures belonging to a specific class based on functional integrals
of supremums. An important observation was that the structure of the usual filtering and
smoothing equations reappears in the generalised recursion under the form of possibility func-
tions upon which the outer measures were defined. Simplifications to finite sums of possibility
functions as well as single possibility functions have been studied and gave results that were
not only intuitive but also implementable. The recursion in terms of mean and spread of the
Kalman filter has been recovered by considering appropriately defined Gaussian possibility
functions, giving yet another setting in which the Kalman filter appears naturally.

Future work may include the application of Monte Carlo-like methods to the proposed
estimation framework. The results obtained in this article raise numerous other questions,
both of a practical and theoretical nature. For example:

1. Given the result of Theorem 7.1, it is natural to inquire about inference in the non-
Gaussian case. In the standard approach, the most straightforward generalisation is
based on Gaussian mixtures [18, 1] of the form

N
∑

i=1

w̃iN (x;mi,Pi)
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for some integer N and some collections {w̃i}
N
i=1, {mi}

N
i=1, {Pi}

N
i=1 of [0, 1]-valued

scalars, states in R
d and d× d positive definite matrices respectively. In particular, it

holds that
∑N

i=1 w̃i = 1. In the considered framework, mixtures become max-mixtures
and take the form

max
1≤i≤N

wiN̄ (x;mi,Pi)

with {wi}
N
i=1 a collection of [0, 1]-valued scalars such that max1≤i≤N wi = 1. Inference

for these max-mixtures requires adequate mixture reduction techniques.
2. As mentioned shortly after Definition 2.1, the parameters m and P in the Gaussian

possibility function N̄ (·;m,P ) are referred to as mean and spread only as a useful
abuse of language. It would however be important, both from the theoretical and
practical viewpoints, to formally introduce these concepts. In particular, the law
of large numbers and central limit theorem, assuming they can be reformulated to
suit outer measures, would provide insight and theoretical backup for a meaningful
generalised definition of the concepts of mean and variance.
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