
Vol.:(0123456789)1 3

Data Science and Engineering (2018) 3:293–306 
https://doi.org/10.1007/s41019-018-0078-0

K‑Connected Cores Computation in Large Dual Networks

Lizhen Cui1 · Lingxi Yue1 · Dong Wen2 · Lu Qin2

Received: 31 July 2018 / Accepted: 20 October 2018 / Published online: 12 November 2018 
© The Author(s) 2018

Abstract
Computing k-core s is a fundamental and important graph problem, which can be applied in many areas, such as community 
detection, network visualization, and network topology analysis. Due to the complex relationship between different entities, 
dual graph widely exists in the applications. A dual graph contains a physical graph and a conceptual graph, both of which 
have the same vertex set. Given that there exist no previous studies on the k-core in dual graphs, we formulate a k-connected 
core ( k-CCO ) model in dual graphs. A k-CCO is a k-core in the conceptual graph, and also connected in the physical graph. 
Given a dual graph and an integer k, we propose a polynomial time algorithm for computing all k-CCO s. We also propose 
three algorithms for computing all maximum-connected cores ( MCCO ), which are the existing k-CCO s such that a (k + 1)

-CCO does not exist. We further study a subgraph search problem, which is computing a k-CCO that contains a set of query 
vertices. We propose an index-based approach to efficiently answer the query for any given parameter k. We conduct extensive 
experiments on six real-world datasets and four synthetic datasets. The experimental results demonstrate the effectiveness 
and efficiency of our proposed algorithms.

Keywords  Dual graph · k-core · Connectivity · Search

1  Introduction

Graph model has been used to represent the relationship 
of entities in many real-world applications, such as social 
networks, web graphs, collaboration networks, and biologi-
cal networks. Given a graph G(V, E), vertices in V represent 
the interested entities and edges in E represent the relation-
ship between entities. Significant research efforts have been 
devoted toward many fundamental problems in managing 
and analyzing graph data. Among them, cohesive subgraph 

detection has been extensively studied recently [5, 9, 13, 
17, 31].

Given a graph G and an integer k, a k-core of G is a max-
imal-connected subgraph in which each vertex has degree 
at least k [29]. The problem of computing k-core s draws a 
lot of attention [7, 17, 28, 32] due to the elegant structural 
properties of k-core [29] and the linear time solution [3]. It 
can be applied in many areas including but not limited to 
community detection [11], dense subgraph discovery [2, 6], 
graph visualization [1], and system analysis [10].

Motivations In many real-world applications, a single 
simple graph is hard to express the complex relationship 
between entities. [33] models a dual graph containing two 
complementary graphs with the same vertex set, one of 
which represents the physical interaction between vertices, 
and the other represents the conceptual interaction. They 
study the problem of computing the subgraph, namely DCS , 
which is the densest in the conceptual graph and also con-
nected in the physical graph. However, computing the DCS 
in dual graphs is NP-hard. Even though an approximate 
solution is proposed and a relatively poorer result quality is 
endured in [33], the time consuming for this problem is still 
large and not scalable to big graphs. Additionally, they do 
not restrict the connectivity of DCS in the conceptual graph. 

 *	 Lizhen Cui 
	 clz@sdu.edu.cn; zhengyongqing@dareway.com.cn

	 Lingxi Yue 
	 yuelingxi@mail.sdu.edu.cn

	 Dong Wen 
	 dong.wen@uts.edu.au

	 Lu Qin 
	 lu.qin@uts.edu.au

1	 School of Software Engineering, Shandong University, Jian, 
China

2	 Centre for Artificial Intelligence, University of Technology 
Sydney, Sydney, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-018-0078-0&domain=pdf


294	 L. Cui et al.

1 3

The result subgraph is probably disconnected and obviously 
not cohesive.

Given that there exists no any research on the k-core com-
putation in dual graphs, in this paper, we adopt the classic 
k-core definition to model a k-Connected COre ( k-CCO ) in 
dual graphs. Given a dual graph and an integer k, a k-CCO 
is a dual subgraph g satisfying the following three condi-
tions: (1) the minimum degree of g is not less than k in the 
conceptual graph; (2) g is connected in the conceptual graph; 
and (3) g is connected in the physical graph.

An example of a dual graph is given in Fig. 1. Figure 1a 
shows a physical graph, and Fig. 1b shows a conceptual 
graph. Given an integer k = 3 , there exists only one 3-CCO , 
that is the induced dual subgraph of {v2, v3, v4, v5} . The mini-
mum degree is not < 3 , and the subgraph is connected in 
both two graphs.

Our k-CCO model restricts the connectivity for both 
two graphs and guarantees the cohesiveness of the result 
graph by given integer parameter k. Based on this model, 
we formulate two global detection problems. Given a dual 
graph G and an integer k, the first problem is computing all 
k-CCO s in G. It offers a flexible selection for the degree 
constraint k and returns a subjective result for users. Simi-
lar to the DCS problem in [33], we also study a parameter-
free problem, that is computing the Maximum-Connected 
COres ( MCCO s) in a given dual graph G. Here, a MCCO 
is a k-CCO in G such that there does not exist any (k + 1)

-CCO in G. The 3-CCO in the dual graph G in Fig. 1 is also 
a MCCO , since there does not exist any 4-CCO in G.

We further study a subgraph search problem for the pur-
pose of personalized query. Specifically, given an integer 
k and a set of query vertices, we aim to compute a k-CCO 
containing these vertices. In Fig. 1, given an integer k = 3 
and a set of vertices {v2, v5} , the 3-CCO containing {v2, v5} 
is the induced dual subgraph of {v2, v3, v4, v5}.

Applications Computing k-CCO s and MCCO s can be 
applied in many areas. For example, to mine a research 
group, the researchers in the group should be connected in 
their collaboration network (physical graph), in which each 
edge represents two researchers have co-authored a paper. 
Simultaneously, each researcher should have enough neigh-
bors in a similarity network (conceptual graph), in which 

each edge represents two researchers have similar research 
interests. In social networks, each user may have many inter-
est labels, such as soccer, basketball, cartoon. A concep-
tual graph can be built by computing the interest similarity 
between any two users. A physical graph can be built by 
checking whether any two users follow each other. A social 
community should be connected in the physical graph, and 
each user in the group should have enough neighbors with 
similar interest.

Challenges It is nontrivial to compute all k-CCO s. A 
k-core in conceptual graph may be disconnected in the physi-
cal graph, and a connected component in the physical graph 
may conversely violate the degree constraint and connec-
tivity constraint in the conceptual graph. For the problem 
of computing the MCCO s, let kmax be the maximum k in 
a dual graph such that a k-CCO exists. Given the solution 
for computing k-CCO s, the MCCO s can be obtained if kmax 
is known. Therefore, a main challenge in computing the 
MCCO s is computing kmax . About the k-CCO search prob-
lem, a straightforward idea is invoking the k-CCO detection 
procedure as a preprocessing step and returning the one that 
contains all query vertices. It is costly to start by processing 
the whole graph, given that the size of the result subgraph 
is normally quite small.

Our Approaches and Contributions We propose a poly-
nomial algorithm to compute all k-CCO s in dual graphs. 
It performs by recursively removing the vertex which vio-
lates the k-CCO definition. For the problem of computing 
MCCO s, we first follow the similar idea in computing all 
k-CCO s, and give a bottom-up solution. More specifically, 
we compute the MCCO s by iteratively removing all unsatis-
fied vertices. We also propose a top-down algorithm, which 
selects kmax following a top-down strategy and returns the 
k-CCO s if exist. To further improve the algorithmic effi-
ciency, we propose a binary search algorithm for computing 
all MCCO s. We propose an index-based solution to com-
pute the k-CCO containing the query vertices. Based on the 
proposed index, we well bounded the index size and process 
the query in the complexity only related to the result sub-
graph. The experimental results show the excellent perfor-
mance of our optimized algorithms. More details are given 
in Sect. 6. We summarize the main contributions in this 
paper as follows.

–	 A k-connected core model in dual graphs We design a 
k-connected core model, which inherits the properties 
of classic k-core model in dual graphs. To the best of our 
knowledge, this is the first work that studies the k-core 
concept in dual graphs.

–	 A polynomial time algorithm for computing all k-con-
nected cores. Given a dual graph G and an integer k, we 
propose a polynomial peeling-style algorithm, named 

v1
v7

v5v2

v4v3

v8

v9

v10

v6

v11

v0

(a) Physical Graph Ga

v1
v7

v5v2

v4v3

v8

v9

v10

v6

v11

v0

(b) Conceptual Graph Gb

Fig. 1   An example of dual graphs G(V,Ea,Eb)



295K‑Connected Cores Computation in Large Dual Networks﻿	

1 3

���� , to compute all k-CCO s in G. We prove the time 
complexity of ���� is O(h × m) . Here, m is the number 
of edges in the conceptual graph, and h is a value theo-
retically roughly bounded by but practically much less 
than the number of vertices in G.

–	 Three algorithms for computing the maximum-connected 
cores We give a bottom-up and a top-down algorithms 
for the MCCO computation. An optimized binary search 
algorithm is finally proposed to achieve significant 
speedup.

–	 An index-based solution for searching the k-connected 
core We design an elegant index structure to compute 
a k-CCO containing a set of query vertices. Based on 
the proposed index structure, we give an efficient query-
processing algorithm and a polynomial time index con-
struction algorithm. The size of index is bounded by O(n) 
and the time complexity of index-based query algorithm 
is O(mb) . Here, n is the number of vertices in G and mb is 
the number of physical edges in the result subgraph.

–	 Extensive performance studies We conduct extensive per-
formance studies on four synthetic graphs and six real 
large graphs. We also present a case study. The results 
demonstrate the effectiveness and efficiency of our pro-
posed model and algorithms.

Organization The rest of this paper is organized as follows. 
Section 2 introduces preliminary concept and defines the 
problem. Section 3 proposes an algorithm for computing 
all k-CCO s. Section 4 studies the problem of computing all 
MCCO s. Section 5 studies the k-CCO search problem and 
proposes an index-based solution. Section 6 evaluates our 
proposed algorithms in extensive experiments. Section 7 
introduces the related works, and Sect. 8 concludes the 
paper.

A short version of this paper is published in [34]. The 
current version extends the original paper by studying the 
k-CCO search problem, which is computing a k-CCO that 
contains a set of query vertices. We propose an index-based 
solution and conduct extensive experiments to show the high 
efficiency of our method.

2 � Preliminaries

Cores in Simple Graphs Before studying the dual graphs, 
we briefly introduce several definitions and recall the 
problem of k-core computation in simple graphs. Let 
G(V,  E) be an undirected graph, where V is the set of 
vertices and E is the set of edges. Given a vertex u in G, 
we use NG(u) to denote the neighbor set of u in G, i.e., 

NG(u) = {v ∈ V|(u, v) ∈ E} . The degree of a vertex u in G is 
denoted by degG(u) , i.e., degG(u) = |NG(u)| . Given a vertex 
set S, the induced subgraph of S in G is denoted by G[S], i.e., 
G[s] = (S, {(u, v) ∈ E|u ∈ S ∧ v ∈ S}) . The formal definition 
of k-core is given below.

Definition 1  (K-Core) A k-core of graph G(V, E) is a max-
imal-connected subgraph in which each vertex has degree 
at least k. [29]

Definition 2  (Core Number) The core number of a vertex 
u in G, denoted by core(u) , is the maximal number of k such 
that u is contained in a k-core.

Definition 3  (Degeneracy) The degeneracy of a graph G, 
denoted by (G) , is the maximal number of k such that a 
k-core exists, i.e., (G) = maxu∈V core(u).

We denote the k-core containing a given vertex u by 
Gk(u) , and have the following lemma.

Lemma 1  ∀1 ≤ k < (G),Gk+1(u) ⊆ Gk(u).

Let Vk(u) be the set of vertices in which each vertex v can 
be reached from u via a path that every vertex w in the path 
satisfies core(w) ≥ k . Following lemma holds:

Lemma 2  Gk(u) = G[Vk(u)]

Given the core numbers of all vertices, all k-core s can be 
easily found based on Lemma 2. The algorithm for comput-
ing all core numbers [3] is given in Algorithm 1 . It performs 
by iteratively removing the vertex with minimum degree 
and its incident edges. The time complexity of Algorithm 1 
is O(m).

Cores in Dual Graphs In this paper, we focus on an 
undirected dual graph G(V ,Ea,Eb) , where Ea and Eb rep-
resent the edge sets in physical graph Ga and conceptual 
graph Gb , respectively. The example of the dual graph 
is shown in Fig. 1. Based on the aforementioned classic 
k-core concept, we define the k-Connected COre ( k-CCO ) 
in dual graphs.

Algorithm 1 Core-Decomposition[3]
Input: A graph G(V,E)
Output: The core numbers of all vertices in G

1: G′(V ′, E′) ← G(V,E);
2: while V ′ �= ∅ do
3: k ← minu∈V ′ degG′ (u);
4: while ∃u ∈ V ′, degG′ (u) < k + 1 do
5: core(u) ← k;
6: remove u and its incident edges from G′;
7: return core(u) for all u ∈ V ;



296	 L. Cui et al.

1 3

Definition 4  Given a dual graph G(V ,Ea,Eb) , a dual 
subgraph G[C] is a k-connected core ( k-CCO ) if: 
(1) Ga[C] is connected; (2) Gb[C] is connected; (3) 
∀u ∈ C, degGb[C]

(u) ≥ k ; and 4) G[C] is maximal.

Note that in the existing work [33] for computing the dens-
est connected subgraph in dual graphs, only the connectivity 
in physical graph is required. This condition is insufficient 
to support the cohesiveness of result subgraphs, since the 
subgraph may be disconnected in the conceptual graph. To 
conquer this drawback, our k-CCO definition guarantees the 
connectivity for both physical and conceptual graphs. Based 
on Definition 4, we further define the Maximum-Connected 
COre ( MCCO ) below.

Definition 5  Given a dual graph G(V ,Ea,Eb) , a dual sub-
graph G[C] is a maximum-connected core ( MCCO ) if G[C] 
is a k-CCO , and (k + 1)-CCO does not exist.

Definition 6  (Maximum CCO Number) Given a dual graph 
G, the maximum CCO number of G, denoted by kmax(G) , is 
the maximum value of k such that a k-CCO exists.

Based on Definitions 4 and 5, we formally define the two 
problems studied in this paper as follows.

Problem 1  Given a dual graph G(V ,Ea,Eb) and an integer 
k, find all k-CCO s in G.

Problem  2  Given a dual graph G(V ,Ea,Eb) , find all 
MCCO s in G.

Example 1  We give an example of k-CCO and MCCO . The 
k-CCO s of the dual graph G in Fig. 1 are presented in Fig. 2 
(b). The k-core s of Gb are also reported as comparisons in 
Fig. 2a. There does not exist a 4-CCO in G, and the MCCO 
of G is the 3-CCO containing v2, v3, v4, and v5 . The degen-
eracy of Gb is 4, and the 4-core is the induced subgraph of 
v1, v2, v3, v4, and v5 . It is not a 4-CCO in G, since v1 does not 
connect to other vertices in Ga.

3 � Computing K‑Connected Cores

Given an integer k, we study the problem of computing 
all k-CCO s in this section. We first give several lemmas 
about k-CCO based on Definition 4. Given a dual graph 
G(V ,Ea,Eb) and a k-CCO G[C] ⊂ G , following lemmas 
hold.

Lemma 3  There exists a k-core Gb[S] in Gb , such that C ⊂ S.

Lemma 4  There exists a connected component Ga[H] in Ga , 
such that C ⊂ H.

Based on Lemmas 3 and 4, we propose a peeling algo-
rithm for computing all k-CCO s. The pseudocode is given 
in Algorithm 2.

Algorithm 2 Computing K-Connected COres (KCCO)
Input: A graph G(V,Ea, Eb), and a parameter k
Output: The set C containing all k-CCOs in G

1: C ← ∅;
2: for each connected component Ga[C] in Ga do
3: if ∀u ∈ C, degGb[C](u) ≥ k and Gb[C] is connected then
4: C ← C ∪Gb[C];
5: else
6: while ∃u ∈ C, degGb[C](u) < k do
7: C ← C − {u};
8: for each connected component Gb[H] in Gb[C] do
9: C ← C ∪ KCCO(Gb[H], k);
10: return C;

The algorithm performs by recursively removing the 
vertex that does not satisfy the degree constraint and the 
connectivity constraint in Definition 4. We compute all con-
nected components of Ga in line 2. Lemma 4 guarantees that 
we will not lose any k-CCO in this step. We add Gb[C] to 
the result set if Gb[C] is connected and satisfies the degree 
constraint (line 3–4). Otherwise, the algorithm from line 6 
to line 8 computes a k-core Gb[H] of Gb[C] . All vertices that 
violate the degree constraint in Gb[C] are iteratively removed 
from C; and for each connected component Gb[H] , we recur-
sively invoke ���� to find k-CCO s in Gb[H] (line 8–9). The 
correctness of this step is guaranteed by Lemma 3.

The process of Algorithm  2 can be represented by 
a DFS tree as depicted in Fig. 3. Each node in the tree 
demonstrates an input dual graph G for the invocation of 

3-core 2-core4-core

v1
v7

v5v2

v4v3

v8

v9

v10

v6

v11

v0

(a) k-cores in Gb

3-connected core 2-connected core

v1
v7

v5v2

v4v3

v8

v9

v10

v6

v11

v0

(b) k-CCOs in Gb

Fig. 2   An example of k-CCOs

G

G1, nG1, iG1, 1

G2, k G2, jG2, 1 G2, k+1 G2, m

h

Fig. 3   DFS Tree



297K‑Connected Cores Computation in Large Dual Networks﻿	

1 3

���� . Let h be the height of the tree. The time complexity 
of Algorithm 2 is given as follows.

Theorem 1  Given a graph G(V ,Ea,Eb) and an integer k, 
the time complexity of Algorithm 2 is O(h|Eb|).

Proof  Obtaining all connected components in line 2 of 
Algorithm 2 costs O(|Ea|) time. Checking the degree con-
straint and connectivity of Gb in line 3 costs O(|Eb|) time. 
From line 6 to line 8, Algorithm 2 also costs O(|Eb|) time 
to remove all vertices whose degree is less than k and com-
pute the connected components Gb[H] . Normally, we have 
|Ea| < |Eb| , and the time cost for each node in the DFS tree is 
O(|Eb|) , where Eb is the edge set of input conceptual graph.

Let �l be the set of all input graphs on height l of DFS 
tree, where the height of a node is the distance from root to 
that node. We can find that there does not exist any vertex or 
edge overlap between different connected components in 
l ine   8 .  Given the  t ree  he ight  h ,  we have 
∀0 ≤ l ≤ h,

∑
G�(V �,E�

a
,E�

b
)∈�l

�E�
b
� ≤ �Eb� , where |Eb| is the num-

ber of edges in the original conceptual graph. Therefore, the 
total time complexity of Algorithm 2 is O(h|Eb|) . 	�  □

Discussion The time complexity of Algorithm 2 is the 
product of two parts:

–	 The first part is the tree height h. Note that in the DFS 
tree, the size of input graph in each node must be less than 
that in its parent node. Therefore, h is roughly bounded 
by |V|. However, h is much smaller than |V| in practice. In 
our experiments, h is not larger than 5 on all datasets.

–	 The second part is the graph size |Eb| . Given that verti-
ces violating the degree constraint are removed in line 7 
of Algorithm 2, the graph size becomes small when the 
tree height increases. The practical performance of Algo-
rithm 2 is given in Sect. 6.

4 � Computing Maximal‑Connected Cores

We study the problem of computing all MCCO s in this sec-
tion. A straightforward bottom-up solution ��-���� is first 
given in Sect. 4.1. Then, we propose a top-down solution 
��-���� in Sect. 4.2. To further improve the algorith-
mic efficiency, we give a binary search algorithm, namely 
���-���� , in Sect. 4.3. Our experiments demonstrate 
���-���� outperforms ��-���� and ��-���� . The 
details are given in Sect. 6.

Algorithm 3 BU-MCCO
Input: A graph G(V,Ea, Eb)
Output: The set containing all MCCOs in G

1: C ← ∅;
2: T ← KCCO(G, 1);
3: k ← 1;
4: while T �= ∅ do
5: C ← T;
6: k ← k + 1;
7: T ← ∅;
8: for each G[C] ∈ C do
9: T ← T ∪ KCCO(G[C], k);
10: return C;

4.1 � A Bottom‑Up Approach

We give a straightforward algorithm for computing all 
MCCO s in this section. Similar to the concept of k-core , a 
nest property of k-CCO can be also easily obtained accord-
ing to Definition 4.

Lemma 5  Given an integer 1 < k ≤ kmax and a k-CCO C, 
there exists a (k − 1)-CCO C′ such that C′ ⊇ C.

Inspired by the lemma above, we propose a bottom-
up algorithm, namely ��-���� . More specifically, 
we iteratively compute the k-CCO s based on computed 
(k − 1)-CCO s when increasing k. The detailed pseudocode 
is given in Algorithm 3. We first compute all 1-CCO s in 
G (line 2). Then we iteratively increase k (line 6), and 
compute k-CCO s in ℂ , where ℂ is the set of the previous 
computed (k − 1)-CCO s (line 9). The algorithm terminates 
once no any k-CCO is found. The time complexity of Algo-
rithm 3 is given as follows.

Theorem 2  Given an input dual graph G(V ,Ea,Eb) , the 
time complexity of Algorithm 3 is O((Gb) × h|Eb|).

Proof ���� costs O(h|Eb|) time in line 2. The number of 
iterations in line 4 is at most (G) . Since there does not exist 
any overlap between any two components in ℂ (line 8), the 
time complexity from line 4 to line 9 is O((Gb) × h|Eb|) . 
The total time complexity of Algorithm 4 is obtained. 	
� □

4.2 � A Top‑Down Approach

A bottom-up solution is given in the previous section. 
Given that kmax may be very large, the time consuming 
in ��-���� may be very large. To handle this problem, 
we propose a top-down algorithm, namely ��-���� , in 
this section.

Given a dual graph G, computing all MCCO s is equiva-
lent to computing all kmax(G)-CCO s. We adopt a top-down 



298	 L. Cui et al.

1 3

strategy to select the kmax . An upper bound for kmax(G) can 
be easily obtained according to Lemma 3:

Lemma 6   Given  a  dua l  graph  G(V ,Ea,Eb) , 
kmax(G) ≤ (Gb).

Based on Lemma 6, we propose the algorithm ��-���� 
in Algorithm 4. ����-������������� is invoked in line 2, 
and we initialize kmax by the graph degeneracy in line 3. For 
each kmax , the vertex set of k-core s of Gb is obtained in line 5 
based on Lemma 3. ���� is invoked to compute all kmax
-CCO s in G[C] (line 6). We terminate the algorithm if any 
kmax-CCO is found.

Theorem 3  Given an input dual graph G(V ,Ea,Eb) , the 
time complexity of Algorithm 4 is O((Gb) × h|Eb|).

Proof  The proof is similar to that for Theorem 2 and is omit-
ted here. 	�  □

4.3 � Binary Searching MCCOs

We propose ��-���� and ��-���� in Sects. 4.1 and 4.2, 
respectively. Even though they can successfully compute all 
MCCO s in the given dual graph G, both of them endure (Gb) 
times of ���� invocation in the time complexity. To con-
quer this drawback, we propose a binary search algorithm, 
namely ���-���� , in this section. Similar to the conven-
tional binary search, we maintain a lower bound k and an upper 
bound k of k, and attempt to find all k-CCO s in each iteration, 
where k = ⌊(k + k)∕2⌋ . If no any k-CCO is found, we know 
there does not exist any k′-CCO for k < k′ < k according to 
Lemma 5. In this case, we assign the upper bound by k, and 
continue the search. Otherwise, we assign the lower bound 
by k. The procedure terminates once we find all k-CCO s and 
(k + 1)-CCO does not exist. The initial lower bound for k is 
assigned by 1, and the upper bound is assigned by (Gb) based 
on Lemma 6. The detailed pseudocode of ���-���� is given 
in Algorithm 5.

Algorithm 4 TD-MCCO
Input: A graph G(V,Ea, Eb)
Output: The set containing all MCCOs in G

1: C ← ∅;
2: Core-Decomposition(Gb);
3: kmax ← maxu∈V (core(u));
4: while C = ∅ and kmax > 0 do
5: C ← {u ∈ V |core(u) ≥ kmax}
6: C ← KCCO(G[C], kmax);
7: kmax ← kmax − 1;
8: return C;

Algorithm 5 BIN-MCCO
Input: A graph G(V,Ea, Eb)
Output: The set containing all MCCOs in G

1: Core-Decomposition(Gb);
2: d ← maxu∈V (core(u)) + 1;
3: C ← KCCO(G, 1);
4: return BIN-Search(C, 1, d);

Procedure BIN-Search(C, k, k)
5: if k − k ≤ 1 then
6: return C;
7: k ← k + (k − k)/2;
8: T ← ∅;
9: for each G[C] ∈ C do
10: S ← {u ∈ C|core(u) ≥ k};
11: T ← T ∪ KCCO(G[S], k);
12: if T = ∅ then
13: return BIN-Search(C, k, k);
14: else
15: return BIN-Search(T, k, k);

The core numbers for each vertex in Gb are first computed 
in line 1. In line 2, we set the upper bound d by (G) + 1 . This 
guarantees no any d-CCO exists. The subroutine ���-������ 
is invoked recursively to find the MCCO s (line 4). The first 
parameter of ���-������ is the set of all k-CCO s in G. Recall 
that a k-CCO must be contained in a (k − 1)-CCO accord-
ing to Lemma 5. An optimization here is that we maintain 
all k-CCO s in ���-������ . Instead of computing k-CCO s in 
the original graph, we compute k-CCO s in a smaller graph 
induced by k-CCO s (line 9), and never lose any result. For 
each induced subgraph of k-CCO (line 9), we prune all vertices 
whose core number is less than k in line 10 based on Lemma 3. 
Then ���� is invoked to compute all k-CCO s. If there does 
not exist any k-CCO s (line 12), we decrease k to k and continue 
searching (line 13). Otherwise, we increase k to k, and change 
the first parameter to the set of all k-CCO s (line 15).

Theorem 4  Given an input dual graph G(V ,Ea,Eb) , the 
time complexity of Algorithm 5 is O(log(Gb) × h|Eb|).

Proof  Given that there does not exist any between different 
G[C]s (line 9), the time complexity of line 9 to line 11 is 
O(h|Eb|) . Given the upper bound (Gb) , the total invocation 
of ���-������ is bounded by O(log(Gb)) , and the total 
time complexity of Algorithm 5 is O(log(Gb) × h|Eb|) . 	
� □

5 � Efficient K‑Connected Cores Search

In this section, we study the k-connected core search prob-
lem. That is computing a k-connected core containing a set 
of given vertices. Note that for the ease of presentation, we 
mainly study the problem for only one query vertex, while 
we will show that the solution can be naturally extended to 



299K‑Connected Cores Computation in Large Dual Networks﻿	

1 3

handle the case of over one query vertices. The problem is 
formally defined as follows.

Problem 3  Given a dual network G(V ,Ea,Eb) , an integer 
k and an vertex u ∈ V  , computing a k-CCO in G that con-
tains u.

5.1 � Online Search Algorithm

To solve the Problem  3, we can naturally extend the 
Algorithm 2 and get an online search algorithm, namely 
���-������ . Specifically, we compute all k-CCO s in the 
dual graph and return the one that contains the query 
vertex. Note that we can directly return an empty set if 
the query vertex is removed due to the degree constraint 
(line 7 of Algorithm 2), as there is no k-CCO containing 
the query vertex. The search algorithm has the same time 
complexity as Algorithm 2. The detailed pseudocode of 
���-������ is given in Algorithm 6.

For the query with several vertices, we only need to check 
whether there is a k-CCO containing all query vertices.

Algorithm 6 Online Query Processing Algorithm (CCO-Online)
Input: A graph G(V,Ea, Eb), k, v
Output: k-CCO containing v

1: C = KCCO(C, k);
2: if v /∈ C then
3: return ∅;
4: return C;

5.2 � Index‑Based Search Algorithm

Even though the online algorithm successfully computes 
the k-CCO containing the query vertex, there are several 
drawbacks. First, the algorithm is inefficient. The result 
k-CCO is normally much smaller than the original graph, 
while the online algorithm still need to scan the whole 
graph at least to get the result. Additionally, in certain 
special case, we cannot find the result k-CCO for a query 
vertex, and the algorithm may be still costly in computing 
the k-CCO s. To address these drawbacks, we propose an 
index-based search algorithm in this section.

5.2.1 � The Index Structure

Before giving the detailed index structure, we first give the 
following observation based on Lemma 5.

Observation 1  Given a dual network G(V ,Ea,Eb) , and a 
vertex v ∈ V  , if G[C] is a k-CCO and v ∈ C , there exists a 
(k − 1)-CCO C′ ⊇ C such that v ∈ C� , where 1 < k ≤ kmax .

According to the above observation, we save the maximum 
k for each vertex u that will be in a k-CCO . We call such a 
value the connected-core number and it is formally defined 
as follows.

Definition 7  (Connected Core Number) Given a dual graph 
G(V ,Ea,Eb) and a vertex v ∈ V, The connected-core number 
of v, denoted by ccn(v) , is the maximal number of k such that 
v is contained in the k-CCO.

We have the following lemma based on Definition 7.

Lemma 7  Given a dual graph G(V ,Ea,Eb) and a vertex 
v ∈ V, there exists a k-CCO G[S], where 1 ≤ k ≤ ccn(v) and 
S ⊆ V  , such that v ∈ S.

We compute the connected-core number for all verti-
ces as the proposed index, named Connected COre-Index 
( CCO-Index ). An example is given as follows.

Example 2  We give an example of CCO-Index in Fig. 4. 
The connected-core number is shown over each vertex. The 
MCCO of G is 3-CCO containing v2, v3, v4 and v5 , and the 
connected-core number s of these nodes are 3. For nodes 
v6, v7, v8, v9 and v10 , they are not contained in 3-CCO and 
the maximum k-CCO containing them is 2-CCO , thus 
the connected-core number s of them are 2. Similarly, the 
connected-core number s of v0, v1 and v11 are 1.

Theorem 5  Given a dual graph G(V ,Ea,Eb) , the space 
complexity of CCO-Index is O(V).

Proof  The proof is omitted here. 	�  □

5.2.2 � The Query‑Processing Algorithm

Based on CCO-Index , we propose a query-processing algo-
rithm. The idea of this algorithm is based on the following 
theorem:

Theorem 6  Given a dual network G(V ,Ea,Eb) , a vertex 
u ∈ V and an integer 1 ≤ k ≤ ccn(u) , G[Ak(u)] is a k-CCO , 

(a) Physical Graph Ga

1
1

3

3
1

3

2

2

2

2

2

3

(b) Conceptual Graph Gb

Fig. 4   An example of CCO-Index



300	 L. Cui et al.

1 3

where Ak(u) is the set of vertices in which each vertex v can 
be reached from u via a path in Gb that every vertex w in the 
path satisfies ccn(w) ≥ k.

Proof  Firstly, we proof Gb[Ak(u)] is a k-core . We define the 
degree of vertex v� ∈ Ak(u) in Gb[Ak(u)] , which denoted by 
degGb[Ak(u)]

(v�) = k� as the minimum degree in Gb[Ak(u)] . 
Suppose that Gb[Ak(u)] is not a k-core , we have k < k′ , and 
Gb[Ak(u)] is a k′-CCO . Obviously, Ga[Ak(u)] is connected 
and G[Ak(u)] is maximal. Therefore, G[Ak(u)] is a k′-CCO , 
where k′ < k.

Given that 1 ≤ k ≤ ccn(u) , based on Lemma 7, there exists 
S ⊆ V  such that G[S] is a k-CCO and u ∈ S. In addition, 
according to Lemma 5, S ⊇ Ak(u) . Thus, ∀v ∈ S , degS(v) ≥ k . 
Obviously, v� ∉ S because degGb[Ak(u)]

(v�) = k� < k . Thus, the 
maximal-connected core containing v′ is k′-CCO . However, 
this contradicts the precondition that ccn(v�) ≥ k . Therefore, 
Gb[Ak(u)] is a k-core . Obviously, Gb[Ak(u)] is connected and 
for any ∀v ∈ Ak(u) , degGb[Ak(u)]

(v) ≥ k.
Given the definition of Ak(u) , it is easy to know Ga[Ak(u)] 

is connected.
G[Ak(u)] is maximal, because once we add a vertex v 

into G[Ak(u)] , either Gb[Ak(u) ∪ {v}] is disconnected, or 
ccn(V) < k , i.e., there is no k-CCO containing v. Therefore, 
G[Ak(u)] is a maximal k-CCO . According to Definition 4, we 
have that G[Ak(u)] is a k-CCO . 	�  □

Based on the Theorem 6, we propose an algorithm for 
k-CCO search. The pseudocode is given in Algorithm 7.

In line 2, the algorithm firstly checks whether ccn(v) lower 
than k. If it is, the algorithm terminates. Otherwise, in line 
6, the algorithm recursively invokes a depth-first search sub-
routine ���-��� to find the vertex set ℂ . Each vertex v in ℂ 
can be reached from u via a path in Gb , and every vertex w in 
the path satisfies ccn(w) ≥ k (line 8–9). The first parameter of 
���-��� is the set of vertices in the k-CCO containing v. We 
terminate the algorithm if all vertices in k-CCO are found. The 
correctness of ���-����� can be guaranteed by Theorem 6.

Algorithm 7 Query Processing Algorithm (CCO-Query)
Input: A graph G(V,Ea, Eb), k, v
Output: k-CCO containing v

1: C ← ∅;
2: if ccn(v) < k then
3: return C;
4: else
5: C ← CCO-DFS(C, v, k);
6: return C;

Procedure CCO-DFS(C, v, k)
7: C ← {u} ∪ C;
8: if ∃u ∈ NGa (v), ccn(u) ≥ k then
9: C ← CCO-DFS(C, u, k);
10: return C;

Example 3  We give an example of ���-����� . Consider the 
graph G in Fig. 2. Given k = 3 and the query vertex v3 , the 
CCO-Index of G is shown in Fig. 4. ���-����� depth-first 
searches the physical graph with v3 as the source. {v2, v4} are 
the vertices whose connected-core number is greater than 
or equal to 3 in NGb

(v3) . Suppose ���-����� first visits v2 , 
and v5 is the vertex which connected-core number is greater 
than or equal to 3 in NGb

(v2) . ���-����� expands to v5 and 
finds no vertex to be expanded. ���-����� next visits v4 , 
and the only qualified neighbor v5 has been visited. Then the 
depth-first search terminates. Finally, we get the result vertex 
set {v2, v3, v4, v5}.

Theorem 7  Given a graph G(V ,Ea,Eb) , a vertex v ∈ V and 
an integer k, the time complexity of Algorithm 7 is O(mb) , 
where mb is the number of physical edges in the result 
subgraph.

Proof  The theorem is obvious and the proof is omitted 
here. 	�  □

5.3 � The Index Construction Algorithm

In order to construct CCO-Index , we propose a peeling 
algorithm as follows. The detailed pseudocode is given 
in Algorithm 8. The idea of Algorithm 8 is similar to that 
of Algorithm 3. If Gb[C] is connected and satisfies the 
degree constraint (line 3–4), we iteratively increase k, and 
recursively invoke Algorithm 8 to label the node v in C 
(line 4). Otherwise, the algorithm from line 5 to line 6 
computes a k-core Gb[H] of Gb[C] . All vertices that violate 
the degree constraint in Gb[C] are iteratively removed from 
C and labeled as ccn(v) = k − 1(line 7). For each connected 
component Gb[H] , we recursively invoke Algorithm 8 to 
label nodes in Gb[H] (line 9). The algorithm terminates 
once all nodes are labeled.

Algorithm 8 The Index Construction Algorithm (CCO-Construct)
Input: A graph G(V,Ea, Eb), k
Output: The CCO-Index N
1: N ← ∅;
2: for each connected component Ga[C] in Ga do
3: if ∀u ∈ C, degGb[C](u) ≥ k and Gb[C] is connected then
4: CCO-Construct(Gb[H], k + 1);
5: else
6: while ∃u ∈ C, degGb[C](u) < k do
7: C ← C − {u};
8: ccn(u) = k − 1;
9: N ← ccn(u);
10: for each connected component Gb[H] in Gb[C] do
11: CCO-Construct(Gb[H], k);
12: return N;

The time complexity of Algorithm 8 is given as follows.



301K‑Connected Cores Computation in Large Dual Networks﻿	

1 3

Theorem 8  Given an input dual graph G(V ,Ea,Eb) . Let 
h be the height of the DFS tree of Algorithm 8 and  be 
the degeneracy of Gb , the time complexity of Algorithm 8 is 
O((Gb) × h|Eb|).

Proof  The proof is similar to that for Algorithm 3 and is 
omitted here. 	�  □

6 � Experiments

We conduct extensive experiments to evaluate the per-
formance of our proposed solutions. We obtain the code 
for ��� from the author as a comparison. All other algo-
rithms are implemented in C++. All the experiments are 
conducted on a Windows Server operating system running 
on a machine with an Intel Xeon 2.0 GHz CPU, 32 GB 
1333 MHz DDR3-RAM. The time cost for algorithms is 
measured as the amount of wall-clock time elapsed during 
the program execution.

Real-World Datasets We evaluate the algorithms on six 
real graphs. The detailed statistics of these graphs are sum-
marized in Table 1. db is the average degree in the concep-
tual graph.

We adopt a similar idea in [33] to construct the dual 
graphs. DBLP[30] is constructed based on the computer 
science bibliography DBLP. We select several conferences 
and journals in database research area. The vertices repre-
sent the authors of the published papers. An edge exists if 
two authors have a common paper in the physical graph, and 
edges in the conceptual graph are constructed by measur-
ing the similarity between the abstracts of papers published 
by any two authors. Hep-TH[18] is a theory collaboration 
network in high energy physics area. The construction for 
Hep-THis same as that for DBLP.

Epinions[23] and CiaoDVD1 are recommendation net-
works. Each vertex represents a user. A physical edge exists 
if a user expresses a positive trust statement on the other 
user. To construct the conceptual graph, we calculate the 
correlation coefficient[22] of the common ratings between 
users, and connected two users by a conceptual edge if their 
coefficient value is larger than a threshold.

Brightkite [8] and Gowalla [8] are geosocial networks. 
Each vertex represents a user. The physical edges represent 
the friend relationship between users, and the conceptual 
edges are constructed based on the Euclidean distance 
between the locations of users.

Synthetic Datasets We adopt the same method in [33] to 
generate several synthetic graphs. In specific, we use the 

graph generator GTgraph2 to construct both physical graphs 
and conceptual graphs. The statistics of generated graphs are 
summarized in Table 2.

Algorithms The experiment involved 1 algorithm for com-
puting all k-CCO s, 3 algorithms for computing MCCO s, 2 
algorithms for searching k-CCO and 1 algorithm for index 
construction. Algorithms that appeared in the experiments 
are summarized as follows:

–	 ���� : The algorithm that computes all k-CCOs.
–	 ��-���� : The bottom-up algorithm that computes 

MCCOs.
–	 ��-���� : The top-down algorithm that computes 

MCCOs.
–	 ���-���� : The algorithm that binary-searches MCCO

s.
–	 ���-����� : The optimized algorithm that searches 

k-CCOs.
–	 ���-������ : The naive algorithm that searches k-CCOs.
–	 ���-��������� : The algorithm that constructs our pro-

posed index CCO-Index in Sect. 5.

6.1 � Performance Studies of the Algorithm 
for Computing all k-CCOs

Eval-I: Evaluating the algorithm for computing all k-CCO
s. The time consuming for algorithm ���� on six real-
world graphs is reported in Fig. 5. For each dataset, we select 
20% × kmax, 40% × kmax, 60% × kmax, 80% × kmax and kmax as 
the input integer k, and present a line chart. We can find that 
the time cost of ���� decreases when increasing k. This is 

Table 1   Statistics of real-world datasets

Datasets |V| |E
a
| |E

b
| |E

b
|∕|E

a
| d

b

DBLP 40,490 203,670 400,448 1.97 9.89
Hep-TH 29,381 352,807 886,791 2.51 30.18
Epinions 49,290 487,002 729,403 1.50 14.80
CiaoDVD 14,811 40,133 124,533 3.10 8.41
Brightkite 58,228 214,078 602,836 2.82 10.35
Gowalla 196,591 950,327 1,458,456 1.53 7.42

Table 2   Statistics of synthetic datasets

GT1 GT2 GT3 GT4

|V| 1 × 2
20

2 × 2
20

4 × 2
20

6 × 2
20

|E
a
|, |E

b
| 1 × 10

7
2 × 10

7
4 × 10

7
8 × 10

7

1  https​://www.libre​c.net/datas​ets.html. 2  http://www.cse.psu.edu/~kxm85​/softw​are/GTgra​ph/.

https://www.librec.net/datasets.html
http://www.cse.psu.edu/%7ekxm85/software/GTgraph/


302	 L. Cui et al.

1 3

mainly because a large number of vertices are removed when 
the degree constraint k is large, and the result subgraph is 
small.

6.2 � Performance Studies of the Algorithm 
for Computing MCCOs

Eval-II: Evaluating the algorithms on real-world graphs 
The time consuming for algorithms ��-���� , ��-���� 
and ���-���� on six real-world graphs is reported in 
Fig. 6a. Given that there exists no previous work on this 
problem, we give the time cost for computing DCS [33], 
namely ��� , as a comparison in the figure. Note that the 
time cost for ��� is not given in some datasets, since the 
procedure cannot terminate in 4 hours.

As we can see from the figure, ���-���� is the fast-
est algorithm. It costs about 13 s in Gowallaand < 4 s in 

all other datasets. ��-���� is the second fastest algo-
rithm in all datasets, while ��-���� is slightly slower 
than ��-���� . For example, in Brightkite, ��-���� 
and ��-���� cost about 77  s and 113  s, respectively. 
���-���� costs about 2 s, which is almost two orders 
of magnitude faster than ��-���� and ��-���� . As a 
comparison, ��� costs over 3000 s and 750 s in DBLP and 
CiaoDVD, respectively, while ���-���� costs only about 
1.3 s and 0.7 s, respectively, in those two datasets. The result 
demonstrates the high efficiency of ���-����.

Eval-III: Evaluating the algorithms on synthetic graphs 
The running time for computing MCCO s in synthetic graphs 
is given in Fig. 6b. ���-���� is the fastest algorithm on 
all graph size. ��-���� has a slower increasing rate than 
��-���� , and is even faster than ��-���� finally. This 
is mainly because the gap between kmax and  is large given 
a big graph size.

e
miT

gnissecorP
(×

10
-1

s) 1.3

1.25

1.2

1.15

1.1
20% 40% 60% 80% 100%

(a) DBLP

0.3

0.4

0.5

0.6

20% 40% 60% 80% 100%

e
miT

gnissecorP
(s

)

(b) Hep-TH

1.2

1.4

1.6

1.8

2.0

2.2

20% 40% 60% 80% 100%

e
miT

gnissecorP
(s

)

(c) Epinions

e
miT

gnissecorP
(×

10
-1

s)

20% 40% 60% 80% 100%

2.6

2.5

2.4

2.3

2.2

(d) CiaoDVD

0.1

0.2

0.3

0.4

20% 40% 60% 80% 100%

e
miT

gnissecorP
(s

)

(e) Brightkite

0.2

0.3

0.4

0.5

0.6

0.7

20% 40% 60% 80% 100%

e
miT

gnissecorP
(s

)

(f) Gowalla

Fig. 5   Computing k-CCO s in real-world graphs

Fig. 6   Computing MCCO s in 
real-world graphs and synthetic 
graphs

BU-MCCO TD-MCCO
BIN-MCCO DCS

Pr
oc

es
si

ng
 T

im
e

(s
)

104

103

102

101

100

10-1

(a) Real-world graphs

Pr
oc

es
si

ng
 T

im
e

(s
)

102

101

100

10-1

1 2 3 4

(b) Synthetic graphs



303K‑Connected Cores Computation in Large Dual Networks﻿	

1 3

6.3 � Scalability Testing of the Algorithm 
for Computing MCCOs

We test the scalability of our proposed algorithms in this 
section. For each real-world dual graph, we randomly sam-
ple physical edges, conceptual edges and vertices, respec-
tively, from 20 to 100%. When sampling physical edges, we 
get the incident vertices of the edges as the vertex set, and 
preserve the induced subgraph of this vertex set in the con-
ceptual graph. The sampling strategy for conceptual edges is 
same as that for physical edges. When sampling vertices, we 
get the induced dual subgraph of the sampled vertices. Due 
to the space limitation, we only report the charts for DBLP, 

Epinions and Brightkite, while the results in other datasets 
show the similar trends.

Eval-IV: Sampling physical edges The running time 
of ��-���� , ��-���� and ���-���� is reported in 
Fig. 7a–c when sampling physical edges. We can see that 
���-���� is the fastest, and the time cost of all algorithms 
performs a slightly downward trend in all datasets. This is 
mainly due to the speedup of performing ���� . In specific, 
when the physical edge size is large, a k-core in the concep-
tual graph is more likely to be connected in the physical 
graph, which means the depth of the invocation tree depicted 
in Fig. 3 is small.

BU-MCCO TD-MCCO BIN-MCCO

20% 40% 60% 80% 100%

e
miT

gnissecorP
(s

)

103

102

101

100

(a) DBLP(Vary |Ea|)
20% 40% 60% 80% 100%

e
miT

gnissecorP
(s

)

103

102

101

100

(b) Epinions(Vary |Ea|)
20% 40% 60% 80% 100%

e
miT

gnissecorP
(s

)

103

102

101

100

(c) Brightkite(Vary |Ea|)

20% 40% 60% 80% 100%

e
miT

gnissecorP
(s

)

103

102

101

100

(d) DBLP(Vary |Eb|)
20% 40% 60% 80% 100%

e
miT

gnissecorP
(s

)

102

101

100

(e) Epinions(Vary |Eb|)
20% 40% 60% 80% 100%

e
miT

gnissecorP
(s

)

103

102

101

100

(f) Brightkite(Vary |Eb|)

20% 40% 60% 80% 100%

e
miT

gnissecorP
(s

)

102

101

100

10-1

(g) DBLP(Vary |V |)
20% 40% 60% 80% 100%

e
miT

gnissecorP
(s

)

102

101

100

10-1

(h) Epinions(Vary |V |)
20% 40% 60% 80% 100%

e
miT

gnissecorP
(s

)

103

102

101

100

10-1

(i) Brightkite(Vary |V |)

Fig. 7   Scalability testing



304	 L. Cui et al.

1 3

Eval-V: Sampling conceptual edges The running time 
of ��-���� , ��-���� and ���-���� is reported in 
Fig. 7d–f when sampling conceptual edges. ���-���� is 
the fastest algorithm, and the lines for ���-���� in all 
datasets are stable. ��-���� is the second fastest algo-
rithm. The time cost of ��-���� presents a relatively obvi-
ous increase from 20 to 100% in all datasets, and the gap 
between ��-���� and ��-���� decreases when edge 
size increases. This is mainly because the graph degener-
acy  of Gb increases when increasing |Eb| , and the gap 
between  and kmax increases. Therefore, more iterations in 
��-���� are performed, and the efficiency of ��-���� 
declines.

Eval-VI: Sampling vertices The running time of 
��-���� , ��-���� and ���-���� is reported 
in Fig.  7g–i when sampling vertices. We can see that 
���-���� is still the fastest in all scenarios. The chart 
for ���-���� presents a slight increase when increasing 
the vertex size. ��-���� is faster than ��-���� , and 
in some datasets, the gap between them decreases when 
increasing vertex size. For example, in Epinions, ��-���� 
costs about 0.5 s on 20% and reaches about 25 s on 100% . By 
contrast, ��-���� costs about 5.3 s on 20% and reaches 
about 29 s on 100% . The main reason is similar to that in 
sampling conceptual edges. From the three scalability 
experiments, we can see that high efficiency and stability 
of ���-���� . The top-down solution ��-���� is the 

second fastest, while the efficiency of ��-���� highly 
depends on the graph structure, and the gap between kmax 
and  . The bottom-up solution ��-���� is the slowest but 
performs more stable than ��-����.

6.4 � Performance Studies of the Search Algorithm

Eval-VII: Query processing (Vary k) We vary k from 5 to 
25 and evaluate the efficiency of our two proposed subgraph 
search algorithms ( ���-������ , ���-����� ). For each 
dataset, we select 5, 10, 15, 20 and 25 as the input integer k, 
and present a line chart. To assess query performance, we 
randomly generate 1000 queries in each dataset (each query 
contains one query vertex) and compute the average query 
time. Due to the space limitation, we only report the charts 
for three real-world graphs (DBLP, Hep-TH, and Brightkite) 
and three synthetic graphs, while the results in other datasets 
show the similar trends.

The results are reported in Fig.  8. We can see that 
���-����� is around two orders of magnitude faster than 
���-������ . When k increases, the change for ���-������ 
is not obvious in all datasets, while the processing time of 
���-����� performs a downward trend in all graphs. This 
is because the running time of ���-����� is only related 
to the size of result subgraph, which becomes small when 
k is large.

Basic IBS

5 10 15 20 25

Pr
oc

es
si

ng
 T

im
e

(s
)

100

10-1

10-2

10-3

10-4

(a) DBLP(Vary k)
5 10 15 20 25

Pr
oc

es
si

ng
 T

im
e

(s
)

100

10-1

10-2

10-3

10-4

10-5

(b) Hep-TH(Vary k)
5 10 15 20 25

Pr
oc

es
si

ng
 T

im
e

(s
)

100

10-1

10-2

10-3

10-4

10-5

(c) Brightkite(Vary k)

5 10 15 20 25

Pr
oc

es
si

ng
 T

im
e

(s
)

100

10-1

10-2

10-3

10-4

(d) Synthetic 1 (Vary k)
5 10 15 20 25

Pr
oc

es
si

ng
 T

im
e

(s
)

100

10-1

10-2

10-3

10-4

(e) Synthetic 2 (Vary k)
5 10 15 20 25

Pr
oc

es
si

ng
 T

im
e

(s
)

100

10-1

10-2

10-3

10-4

(f) Synthetic 3 (Vary k)

Fig. 8   Query Processing (Vary k)



305K‑Connected Cores Computation in Large Dual Networks﻿	

1 3

Eval-VIII: Index size We report the size of the our pro-
posed index for all datasets. The size of original graph is also 
given as a comparison. The results are depicted in Fig. 9. 
Over all the datasets, the sizes of CCO-Index is equal to the 
size of the vertices and much less than the size of the origi-
nal graph. For example, the index size of Gowalla is about 
0.8 GB, while the size of the whole graph is > 22 GB.

Eval-IX: Index construction We report the running time 
of index construction algorithm for all datasets. The result 

is shown in Fig. 10. ���-��������� takes about 231 s in 
the Gowalla dataset, and takes about only 14 s in CiaoDVD 
dataset.

6.5 � Effectiveness Evaluation

Eval-X: Case study in Gowalla We conduct a case study to 
present the effectiveness of our solution. Due to the space 
limitation, we select a subgraph of Gowalla, and com-
pute the MCCO in this subgraph. The result is reported in 
Fig. 11b. As a comparison, we also give the result of DCS 
in the same subgraph in Fig. 11a. We can see that there exist 
several vertices whose degree less than three in the DCS . 
This demonstrates the approximate solution for DCS may 
generate a result with a sparse subgraph. By contrast, the 
degree of each vertex is not less than kmax in Fig. 11b, and 
the result of MCCO is cohesive.

7 � Related Works

Computing k-core k-core is first introduced in [3, 29] pro-
poses a linear time solution for core decomposition. k-core 
in directed graph and weighted graphs is studied in [14, 
15], respectively. [7] proposes a partition-based external 
memory algorithm for computing k-core s. [17, 32] apply a 
semi-external model and further speed up the core decompo-
sition algorithm for big graphs. [25] gives a distributed algo-
rithm for core decomposition. Given that real-world graphs 
are highly dynamic, core number maintenance is studied in 
[20, 28]. Locally estimating core number is studied in [26]. 

Index Size Graph Size

In
de

x 
Si

ze
(M

B
)

106

103

100

10-3

Fig. 9   Index size

Pr
oc

es
si

ng
 T

im
e

(s
)

103

102

101

100

Fig. 10   Index time

418

2641

514

515

552

553

927

928

1056

1409

1500 1650 1881

1930

1935
1963

1986

1987

2014

2048 2596

2818
2823

2824

2825

2826

2827

2835

2856
2912

3509

3512

3636

3756

3758

4083

4202

4468

4471
4481

517

1759

1960

1988

3466

4521
452255414121411

1854

1937

(a) DCS

3152

3280

3367

337933803382

3383

3384

3385

3386
3399

3407

3408

3409

3411

3424

3449

3498

3500

4190
4191

4192

4193

4194

4503

4869

5022 5032 5034

5090

5099

5135

5563

(b) MCCO

Fig. 11   The DCS and MCCO in a conceptual subgraph of Gowalla



306	 L. Cui et al.

1 3

Several work studies k-core in different graph models, such 
as uncertain graphs [4], random graphs [16, 21, 24, 27], and 
attribute graphs [12]. [11, 19] use k-core to detect communi-
ties in the graph.

Cohesive subgraph detection in dual networks [33] stud-
ies the cohesive subgraph problem in dual networks. An 
approximate algorithm is proposed for computing the dens-
est connected subgraph in the input dual graph.

8 � Conclusion

Computing k-core s is a fundamental and important graph 
problem. In this paper, we define the k-connected core in 
dual graphs. A subgraph g is a k-connected core if the mini-
mum degree of g is at least k in the conceptual graph, and g 
is connected in both conceptual graph and physical graph. 
We propose a polynomial time algorithm for computing all 
k-connected cores in the dual graph. We also propose three 
algorithms for computing all maximum-connected cores, 
which are the maximum k-connected cores such that a (k + 1)

-connected core does not exist. Given a set of query vertices, 
we study the k-CCO search problem and propose an index-
based solution. We do extensive experiments to demonstrate 
the effectiveness and efficiency of our propose algorithms.

Acknowledgements  The work is supported by the National Key R&D 
Program (Nos. 2017YFB1400102, 2016YFB1000602), NSFC (No. 
61572295), and SDNSF (No. ZR2017ZB0420).

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

	 1.	 Alvarez-Hamelin JI, Dall’Asta L, Barrat A, Vespignani A (2006) 
Large scale networks fingerprinting and visualization using the 
k-core decomposition. In: NIPS, pp 41–50

	 2.	 Asahiro Y, Iwama K, Tamaki H, Tokuyama T (2000) Greedily 
finding a dense subgraph. J Algorithms 34(2):203–221

	 3.	 Batagelj V, Zaversnik M (2003) An o(m) algorithm for cores 
decomposition of networks. arXiv preprint cs/0310049

	 4.	 Bonchi F, Gullo F, Kaltenbrunner A, Volkovich Y (2014) Core 
decomposition of uncertain graphs. In: KDD, pp 1316–1325

	 5.	 Chang L, Yu JX, Qin L, Lin X, Liu C, Liang W (2013) Efficiently 
computing k-edge connected components via graph decomposi-
tion. In: SIGMOD, pp 205–216

	 6.	 Charikar M (2000) Greedy approximation algorithms for finding 
dense components in a graph. In: APPROX, pp 84–95

	 7.	 Cheng J, Ke Y, Chu S, Tamer Özsu M (2011) Efficient core 
decomposition in massive networks. In: ICDE, pp 51–62

	 8.	 Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: 
user movement in location-based social networks. In: KDD, pp 
1082–1090

	 9.	 Conte A, Firmani D, Mordente C, Patrignani M, Torlone R (2017) 
Fast enumeration of large k-plexes. In: KDD, pp 115–124

	10.	 da Fontoura Costa L, Oliveira ON Jr, Travieso G, Rodrigues FA, 
Villas Boas PR, Antiqueira L, Viana MP, Correa Rocha LE (2011) 
Analyzing and modeling real-world phenomena with complex net-
works: a survey of applications. Adv Phys 60(3):329–412

	11.	 Cui W, Xiao Y, Wang H, Wang W (2014) Local search of com-
munities in large graphs. In: SIGMOD, pp 991–1002

	12.	 Fang Y, Cheng R, Luo S, Hu J (2016) Effective community 
search for large attributed graphs. PVLDB 9(12):1233–1244

	13.	 Gallo G, Grigoriadis MD, Tarjan RE (1989) A fast parametric 
maximum flow algorithm and applications. SIAM J Comput 
18(1):30–55

	14.	 Giatsidis C, Thilikos DM, Vazirgiannis M (2011) D-cores: 
measuring collaboration of directed graphs based on degen-
eracy. In: ICDM, pp 201–210

	15.	 Giatsidis C, Thilikos DM, Vazirgiannis M (2011) Evaluat-
ing cooperation in communities with the k-core structure. In: 
ASONAM, pp 87–93

	16.	 Janson S, Luczak MJ (2007) A simple solution to the k-core 
problem. Random Struct Algorithms 30(1–2):50–62

	17.	 Khaouid W, Barsky M, Srinivasan V, Thomo A (2015) K-core 
decomposition of large networks on a single pc. PVLDB 
9(1):13–23

	18.	 Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: 
densification and shrinking diameters. TKDD 1(1):2

	19.	 Li R-H, Qin L, Yu JX, Mao R (2015) Influential community 
search in large networks. PVLDB 8(5):509–520

	20.	 Li R-H, Yu JX, Mao R (2014) Efficient core maintenance in 
large dynamic graphs. TKDE 26(10):2453–2465

	21.	 Łuczak T (1991) Size and connectivity of the k-core of a ran-
dom graph. Discrete Math 91(1):61–68

	22.	 Ma H, Zhou D, Liu C, Lyu MR, King I (2011) Recommender 
systems with social regularization. In: Proceedings of the fourth 
ACM international conference on Web search and data mining, 
pp 287–296

	23.	 Massa P, Avesani P (2007) Trust-aware recommender systems. 
In: RecSys, pp 17–24

	24.	 Molloy M (2005) Cores in random hypergraphs and boolean 
formulas. Random Struct Algorithms 27(1):124–135

	25.	 Montresor A, De Pellegrini F, Miorandi D (2013) Distributed 
k-core decomposition. TPDS 24(2):288–300

	26.	 OBrien MP, Sullivan BD (2014) Locally estimating core num-
bers. In: ICDM, pp 460–469

	27.	 Pittel B, Spencer J, Wormald N (1996) Sudden emergence 
of a giantk-core in a random graph. J Combin Theory Ser B 
67(1):111–151

	28.	 Saríyüce AE, Gedik B, Jacques-Silva G, Wu K-L, Çatalyürek ÜV 
(2013) Streaming algorithms for k-core decomposition. PVLDB 
6(6):433–444

	29.	 Seidman SB (1983) Network structure and minimum degree. Soc 
Netw 5(3):269–287

	30.	 Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z (2008) Arnetminer: 
extraction and mining of academic social networks. In: KDD, pp 
990–998

	31.	 Wang J, Cheng J (2012) Truss decomposition in massive net-
works. PVLDB 5(9):812–823

	32.	 Wen D, Qin L, Zhang Y, Lin X, Yu JX (2016) I/o efficient core 
graph decomposition at web scale. In: ICDE, pp 133–144. IEEE

	33.	 Wu Y, Jin R, Zhu X, Zhang X (2015) Finding dense and connected 
subgraphs in dual networks. In: ICDE, pp 915–926

	34.	 Yue L, Wen D, Cui L, Qin L, Zheng Y (2018) K-connected cores 
computation in large dual networks. In: Pei J, Manolopoulos Y, 
Sadiq S, Li J (eds) Database systems for advanced applications. 
Springer, Cham, pp 169–186

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	K-Connected Cores Computation in Large Dual Networks
	Abstract
	1 Introduction
	2 Preliminaries
	3 Computing K-Connected Cores
	4 Computing Maximal-Connected Cores
	4.1 A Bottom-Up Approach
	4.2 A Top-Down Approach
	4.3 Binary Searching s

	5 Efficient K-Connected Cores Search
	5.1 Online Search Algorithm
	5.2 Index-Based Search Algorithm
	5.2.1 The Index Structure
	5.2.2 The Query-Processing Algorithm

	5.3 The Index Construction Algorithm

	6 Experiments
	6.1 Performance Studies of the Algorithm for Computing all s
	6.2 Performance Studies of the Algorithm for Computing s
	6.3 Scalability Testing of the Algorithm for Computing s
	6.4 Performance Studies of the Search Algorithm
	6.5 Effectiveness Evaluation

	7 Related Works
	8 Conclusion
	Acknowledgements 
	References




