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Abstract. Accurate prediction of passenger demands for taxis is vital
for reducing the waiting time of passengers and drivers in large cities as
we move towards smart transportation systems. However, existing works
are limited in fully utilizing multi-modal features. First, these models
either include excessive data from weakly correlated regions or neglect
the correlations with similar but spatially distant regions. Second, they
incorporate the influence of external factors (e.g., weather, holidays) in
a simplistic manner by directly mapping external features to demands
through fully-connected layers and thus result in substantial bias as the
influence of external factors is not unified. To tackle these problems,
we propose an end-to-end multi-task deep learning model for passenger
demand prediction. First, we select similar regions for each target region
based on their Point-of-Interest (PoI) information or historical demand
and utilize Convolutional Neural Networks (CNN) to extract their spatial
correlations. Second, we map external factors to future demand levels as
part of the multi-task learning framework to further boost prediction
accuracy. We conduct experiments on a large-scale real-world dataset
collected from a city in China with a population of 1.5 million. The
results demonstrate that our model significantly outperforms the state-
of-the-art and a set of baseline methods.

Keywords: Demand Prediction ·Muti-Task Learning · Spatial-Temporal
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1 Introduction

Taxis are an integral mode of transportation in cities and serve a large num-
ber of passengers on a daily basis. However, traditional taxi services are slow in
adopting Information and Communication technologies (ICT) to improve their
efficiency and provide better services to commuters. In recent years, many online
peer-to-peer ridesharing services such as Uber and Didi have successfully filled
this void. These services allow customers to book a ride through their mobile
apps. Drivers are then matched with customers based on their proximity. These
services often employ dynamic pricing models and have significantly impacted
the taxi markets in most countries. Despite the sophisticated ICT technologies



adopted, these ride-sharing solutions have still not cracked the code on the rela-
tionship between passenger demand and ride supply. On the one hand, drivers
often have to drive a long way before they can find passengers due to low demand
volumes in their locations [5]; on the other hand, passengers may experience
long delays in obtaining a ride due to the high demand in their locations. This
imbalance between the demand and supply incurs excessive delays and energy
consumption, thus calling for an effective passenger demand prediction method
for efficient scheduling of taxis and shared cars.

A variety of techniques have been proposed to address this problem in the
literature. Traditional methods [6][7] utilize time series models such as Auto-
Regressive Integrated Moving Average (ARIMA) and its variants to predict traf-
fic. These methods only consider temporal correlation. However, recent studies
[2][3][8] have revealed that a region’s passenger demand is also related to other
regions demand and thus utilizing the spatial relationship between regions could
positively help predict future passenger demand. There are two ways of uti-
lizing the spatial relationships in literature: (1) Treating the whole city as an
image (a two-dimensional matrix) and applying CNN [2][12] or Convolutional
Long-Short Term Memory (ConvLSTM) [13][1] directly to this image to cap-
ture relationships among all regions. Although this method can find all possible
relationships, it may also introduce weak or negative correlations. As a result,
this method may adversely impact the prediction outcomes. Also, processing the
data in this manner for a large city requires several CNN layers, which consumes
significant resources. (2) The second focuses on discovering local relationships
[3]. This method treats the target region, and it’s surrounding regions as an im-
age. The foundation of this method is that “near things are more related than
distant things”. However, it neglects the fact that remote regions could also share
strong similarities in passenger demand patterns if they have similar properties
(for example they have similar PoIs such as schools or hospitals). Besides, both
of these two approaches can only be applied if the city is partitioned by a grid-
based method. Furthermore, the integration of ubiquitous technologies makes it
possible to collect a vast amount of multi-modal data from urban spaces (e.g.,
historical crowd flow, weather, holidays), many of which may influence taxi de-
mand and thus promote better prediction. However, previous works either don’t
take these external features into account [6][8] or directly map external features
to future passenger demand [1][4][13], which can lead to large biases because the
influence of external factors is not uniform to all regions.

In this work, we propose an end-to-end unified deep learning framework to
predict passenger demand. Our model readily scales to large urban areas and
also incorporates insights from urban data sources of different types. More specif-
ically, the model takes historical passenger demand, historical crowd outflow
data, PoI information, weather data, air quality data and time meta (time of
day, day of week, and holidays) as inputs for predicting the passenger demand
in future for all regions. We first select similar regions for each target region
by their PoI information or historical demand, then utilize CNN and LSTM to
extract their spatial-temporal relationships. Our method is more flexible than



the two approaches listed above which either consider all regions or co-located
regions, as it can both filter weakly-related adjacent regions and find similar
remote regions. Moreover, our method operates without knowledge of how the
city is partitioned, i.e., either using road networks or relying on grids. Besides,
to better utilize external features, we design an auxiliary task under the multi-
task learning framework which predicts the demand level (e.g., high, medium
or low) for each region in next time interval to further improve the passenger
demand prediction task. Besides, our framework does not need hand-crafted fea-
tures and is extensible to other datasets. The contributions of our work include
the following:

– We propose a multi-task deep learning based framework for passenger de-
mand prediction to solve the supply-demand imbalance problem in urban
transportation systems. The framework takes features from multiple urban
datasets into consideration and incorporates their joint influence on future
passenger demands.

– We propose a similarity-based CNN model to capture the spatial similarity
exclusively with similar regions. Our model emphasizes highly correlated
regions, while simultaneously filtering out the influence of weakly related
regions.

– We propose to predict and classify future passenger demand level as an
auxiliary task under the multi-task learning framework to better utilize the
power of external features and enhance the prediction accuracy of passenger
demand value. None of the above aspects have been examined thoroughly in
previous works.

– We conduct extensive experiments on a large-scale real-world dataset col-
lected from a major city in China covering 1.5 million people, and demon-
strate that our method outperforms a series of baselines and state-of-the-art
methods.

2 Proposed Approach

2.1 Problem Formulation

In this section, we will first give some notations and definitions used to formalize
the passenger demand prediction problem.

Notation 1: Region We utilize the road networks based partition [4] to divide
the entire city into blocks as it is more flexible and can integrate semantic mean-
ings into regions. The entire city is divided into N regions, represented as a set:
{r1, r2, ..., ri, ...rN}.
Notation 2: External Features These represent the following information:
weather data, air quality data, PoI information and time meta (e.g., time of day,
day of week, holidays).

Definition 1: Passenger Demand The passenger demand of region ri(i ∈
[1, N ]) in a given period t is defined as the number of taxi requests originating
in this region during this time period, which can be represented as Dt(ri).



Definition 2: Crowd Outflow [11] We use PT (ri) to denote the set of people
in region ri at time T. The crowd outflow of region ri during time interval t can
be defined as Ct(ri) = PT (ri) \ PT+∆T (ri).
Passenger Demand Prediction Let St(ri) denotes all the historically ob-
served data (passenger demand, crowd outflow) for region ri in time period t,
Et+1(ri) denotes all external features in time interval t+ 1 (since the weather in
time interval t+ 1 is unknown, we can use the predicted weather or the weather
in time t), passenger demand prediction aims to to predict:

Dt+1(ri) = F(St(ri), St−1(ri), St−2(ri), ..., St−h(ri), Et+1(ri))

where Dt+1(ri) is the passenger demand for region ri in time interval t+ 1, h is
the historical window of time that is used for prediction. We define our prediction
function F(·) on all regions and previous time period up to t− h.

2.2 Multi-Task CRNN (MT-CRNN) framework

We design a multi-task deep learning framework (shown in Fig.1) that contains
two tasks: (1) The main task involves predicting the precise passenger demand
in the next time interval by capturing the spatial-temporal relationships within
historical observed data from selected regions; (2) The auxiliary task is to predict
and classify the level of passenger demand (e.g., whether it is high, low or medium
in the next time interval) to get a better representation of external features for
the main task.

Fig. 1. Multi-Task Convolutional Recurrent Neural Networks (MT-CRNN)

Auxiliary Task: Predict Future Passenger Demand Level For passen-
ger demand prediction and related tasks (such as crowd prediction, air quality
prediction, rainfall prediction and so on), it is not apparent how external fea-
tures can be used. External features from different domains may have different



attributes, i.e., they may vary from dynamic to static and from continuous to
categorical. Misusing external features may adversely impact the accuracy of
the final prediction. The state-of-the-art methods [1][4][13] usually map exter-
nal features to the value of the passenger demand directly, which can result in
significant errors and thus doesn’t make the best use of external features. Our
intuition is that external features have a closer relationship with a more granular
measure of the passenger demand rather than the precise value. Mapping exter-
nal features to passenger demand level could lead to a better representation of
external features. Here, we use categorical values to denote levels. For example,
level 0, 1 and 2 map to low, medium and high passenger demand respectively.

Table 1. Passenger Demand Level Generation
Level Condition Label

Extreme Dt+1(ri) >= 3 ∗Ari 3

High 2 ∗Ari =< Dt+1(ri) < 3 ∗Ari 2

Medium 1 ∗Ari =< Dt+1(ri) < 2 ∗Ari 1

Low Dt+1(ri) < Ari 0

Label Generation Predicting passenger demand level of the next time interval
is a classification task. Given the external features as input, the classifier outputs
the label of the corresponding passenger demand level. To train a classifier, we
organize external features as a vector. We use Et+1(ri) to represent the vector
of region ri in time interval t+ 1 and then label Et+1(ri) by comparing Dt+1(ri)
with the average passenger demand of region ri in a day. In this paper, labels are
generated according to Table 1, where Ari is the average passenger demand of
region ri in the corresponding day. Considering the high imbalance of passenger
demand in large cities, region-specific average demands are more meaningful
than a comprehensive average demand for the entire city. We emphasize that
predicting demand level would not involve unavailable data because we only
need to generate demand level when training the model. We do not need to
generate demand level in the predicting phase. While some external features
(such as weather) of the next time interval are also not obtainable in testing, we
can use the predicted value or the value in the last period.

Classification As shown in Fig.1, the classification portion of the auxiliary
task is composed of an auto-encoder and two fully-connected layers. Et+1(ri)
is fed into an auto-encoder at first to fuse features from different domains to-
gether while keeping most of the useful information. The encoding and decod-
ing processes are implemented with two-layer fully-connected neural networks:
Ht+1(ri) = encoder(Et+1(ri)) and Êt+1(ri) = decoder(Ht+1(ri)). Then the hid-
den representation Ht+1(ri) is fed into two fully connected layers for classifica-
tion.

Main Task: Predicting Future Passenger Demand As introduced in Sec-
tion 1, previous works are inapplicable to non-grid based city partition datasets.
When applied to grid-based datasets, they either introduce excessive data from
weakly correlated regions or miss out on exploiting correlations from spatially
distant but similar regions. To overcome these problems, we propose to extract



spatial correlations only from regions that are similar to the target region. We
propose two strategies to measure similarities between different regions.
Measuring by historical order sequence A direct way to measure the sim-
ilarity between different regions is to calculate the correlations (e.g., Pearson
Coefficient) with historical demand. Let D0∼t(ri) represent historical order se-
quence of region ri from time 0 to t in the training data. Then the similarity of
region ri and rj can be defined as:

Similarityri,rj = Pearson(D0∼t(ri), D0∼t(rj)) (1)

Measuring by PoI similarity PoI information can also be used to measure
the region similarity. Our motivation is that the existence of certain PoIs in
a region can directly influence the passenger demand patterns in that region.
For example, if a region has many shopping malls, then passenger demand of
that region would significantly increase on weekends and holidays. PoI data can
thus be used to characterize a region, analyze the region’s passenger demand
patterns and find regions that have similar characteristics. Consequently, regions
with similar categories of PoI are likely to share similar patterns of passenger
demand. Considering that different regions are of different size, we normalize the
PoI information of each region with the area of that region. For region ri and
region rj , similarity between ri and rj is :

Similarityri,rj = ‖ poiri
Areari

−
poirj
Arearj

‖1 (2)

where Areari and Arearj represent the area of region ri and region rj re-
spectively, ‖ · ‖1 represents the L1 norm.

After obtaining the pairwise similarities between all regions, we select the m
most similar regions for region ri, represented as ri s1, ri s2, ..., ri sm. We organize
their passenger demand and crowd outflow data of the same time interval as a
vector separately. The main task (predicting precise passenger demand) treats
the passenger demand and crowd outflow data in the previous h time intervals
of the target region and m similar regions as input to model the spatial and
temporal correlations.

Convolutional Neural Networks As shown in Fig.1, historical passenger de-
mand and crowd outflow are fed into two CNN networks separately to extract
spatial relationships. In the following, we will omit the descriptions for crowd
outflow data transformation as they are the same with processing passenger de-
mand data. For each time interval in the previous h time intervals, we only use
demand data during this period. Consider region ri as the target region, we
have the most similar m regions ri s1, ri s2, ..., ri sm of ri. At time interval t, we
treat and mix these 1 + m region’s passenger demand as a 1 × (2 ∗ m) image
respectively, represented as:

Dt(ri, ri s1, ri s2, ..., ri sm) = (Dt(ri), Dt(ri s1), Dt(ri), Dt(ri s2),

..., Dt(ri), Dt(ri sm))
(3)

For time interval t in the previous h time intervals, the CNN takes Dt(ri, ri s1,
ri s2, ..., ri s3) as input and feeds it into a convolutional layer. After the convolu-
tional operation, a flatten layer is used to transfer the output of the convolutional



layer into a vector. Next we use a fully-connected layer to lower the dimension
and get Rtd(ri). Using the same approach, we can also get Rtc(ri) for crowd out-
flow in time t of region ri. Before feeding these two representations into the
LSTM layer, we concatenate them together:

Rtdc(ri) = Rtd(ri) +Rtc(ri) (4)
LSTM Layer The representations extracted from the CNN are fed into an
LSTM layer to capture the temporal relationships between future passenger de-
mand and previous h time interval’s passenger demand and crowd outflow. No-
tice that we use previous h time intervals’ passenger demand and crowd outflow
as input to CNN and extract representations for each time interval separately,
so we get h representations. We only save the output of the last LSTM cell for
further processing:

Qtt−h+1(ri) = lstm(Rt−h+1
dc (ri), R

t−h+2
dc (ri), ..., R

t
dc(ri)) (5)

where lstm represents the transformation of all cells in LSTM layer, Qtt−h+1(ri)
is the output of the last LSTM cell, it represents the captured spatial-temporal
information of region ri and corresponding top m most similar regions from time
interval t− h+ 1 to t.
Combination and Prediction To fuse the information from spatial, temporal
and external part together, we concatenate Qtt−h+1(ri) with Ĥt+1(ri) together
to form Ut+1(ri):

Ut+1(ri) = Qtt−h+1(ri) + Ĥt+1(ri) (6)

Finally Ut+1(ri) is fed into three fully-connected layers to get the final predicted
passenger demand D̂t+1(ri). Up to this point, the objective function of the pro-
posed network is composed of three parts: (1) Constraint of auto-encoder in
auxiliary task part L1; (2) Loss of passenger demand level prediction in auxil-
iary task part L2; (3) Loss of final passenger demand prediction in main task
part L3 :

L1 = MSE(Êt+1(ri)− Et+1(ri)) (7)

L2 = Cross entropy(L̂t+1(ri)− Lt+1(ri)) (8)

L3 = MSE(D̂t+1(ri)−Dt+1(ri)) (9)

where MSE is the mean square error, Cross entropy is the cross entropy loss,
and Lt+1(ri) is the true label of passenger demand level for region ri in t + 1.
Then the overall loss is:

L(θ) = L1 + L2 + L3 (10)

where θ represents all learnable parameters in the network. It is obtained via
back-propagation and Adadelta optimizer.

3 Experiments
3.1 Dataset

We use real-world collected datasets to evaluate our method. There are five
datasets collected from Dec 5th, 2016 to Feb 4th, 2017 in Shenyang, a big city
in China [11]:



– Passenger Demand Data: This dataset contains taxi request data of Didi
Chuxing. Each item contains the time and location (latitude and longitude)
of a request. We pre-process this dataset to map requests to related regions
and time intervals. In our experiment, we set the time interval to 1 hour.

– Crowd Outflow Data: This data is extracted from the cellular networks
of the same city which covers more than 1.5 × 106 mobile users. They are
also mapped to related regions and time intervals, with the time interval set
to 1 hour.

– Meteorological Data: The meteorological dataset contains information
about weather and air quality, including temperature, wind speed, visibility,
weather, and air quality level. Temperature, wind speed, and visibility read-
ings are continuous and updated every one hour. Weather and air quality
level are categorical data.

– PoI data: We collected PoI data of 12 categories, including offices, entertain-
ment facilities, hotels, shopping malls, residences (i.e., apartments), schools,
banks, restaurants, government facilities, bus stations, tourist attractions,
and hospitals. Each PoI item contains name and location (latitude and lon-
gitude). We pre-process this dataset to map PoI data to related regions.

– Time Meta: Time meta includes hour of day, day of week, and holiday
information.

3.2 Experiment Settings

The model is implemented in TensorFlow 1.8. Due to the page limitations, we
have excluded the discussion on parameter tuning. In our experiments, the length
of the time interval used is 1 hour. We set the number of the most similar regions
m to 3 and the historical time window h to 8, which means previous 8 hours
passenger demand and crowd outflow of the most similar three regions are used
to predict the passenger demand in next hour. We use 32 kernels with size
1 × 3 in CNN, and the stride is 1 × 1. The output dimension of CNN is re-
scaled to 32 by FC layer. The hidden layer of auto-encoder is 24 dimensions.
We set the learning rate to 0.02, batch size to 140, and use previous 80% of the
data for training and the rest 20% for testing. To evaluate the model, we use

Root Mean Square Error RMSE =
√

1
ε

∑
i(D̂t+1(ri)−Dt+1(ri))2 and Mean

Absolute Error MAE = 1
ε

∑
i ‖D̂t+1(ri)−Dt+1(ri)‖ of all regions to evaluate

our model, where ε is the number of total time intervals in testing data.

3.3 Experimental Results

Overall Comparison. To validate our model, we compare it with the following
methods.

– HA: The historical average model predicts future passenger demand by cal-
culating the average value of previous passenger demand in the same related
time interval in the same region.

– ARIMA: The Auto-Regressive Integrated Moving Average model is a widely
used time series prediction model which is a generalization of Auto-Regressive
Moving Average (ARMA) model.



– SARIMA: The Seasonal Auto-Regressive Integrated Moving Average model
is a variance of the ARIMA model, which can capture the seasonality in a
time series data.

– OLSR: The Ordinary Least Square Regression model is a kind of linear
regression model, it can estimate the relationship between multiple variables.

– MLP: The Multiple Layer perceptron is a typical class of feed-forward neural
network. It has multiple layers and non-linear activation function.

– LSTM: As introduced in section 4, LSTM is a variation of recurrent neural
networks, which is prominent in sequence data processing.

– XGBoost [14]: XGBoost is a boosting tree-based machine learning method,
which is used to achieve state-of-the-art results on many data mining chal-
lenges.

– DMVST-Net [2]: DMVST-Net is a state-of-the-art method for predict pas-
senger demand. It is a deep learning based method which considers both
spatial and temporal correlations.

Table 2. Overall Comparison with Different Methods
Index Method RMSE MAE

1 HA 25.028 95.573
2 ARIMA 23.702 93.829
3 SARIMA 23.293 91.682
4 OSLR 22.003 87.348
5 MLP 21.889 85.265
6 LSTM 21.799 88.049
7 XGBoost [14] 20.497 79.489
8 DMVST-Net [2] 20.231 80.753

9 MT-CRNN (PoI) 19.602 76.469
10 MT-CRNN (Order) 19.467 74.438

HA only considers the historical demand as input, while all other aforemen-
tioned models employ all features to predict future passenger demand. MLP con-
tains four fully connected layers, while LSTM only has one layer. As described
in Section 1, DMVST-Net [2] can only be used when the city is partitioned to
grids. In order to compare with DMVST-Net, we fed inputs of our model to
DMVST-Net.

We show the experimental results in Table.2. From the table, we can ob-
serve that the performance of simple neural networks such as MLP and LSTM
is not good. They don’t show much improvement over traditional methods such
as SARIMA and OSLR. In contrast, state-of-the-art methods XGBoost and
DMVST-Net achieve 18.17% and 19.57% improvement in RMSE over HA, re-
spectively. However, our model produces the lowest RMSE (19.602 when mea-
suring similarity by PoI and 19.467 when measuring similarity by historical or-
der sequence) among all the methods. Furthermore, our method achieves 3.80%
(RMSE) and 7.82% (MAE) relative improvement over DMVST-Net.

Component Analysis. We also evaluated some variations of our MT-CRNN
model to study the effect of different components and our auxiliary task setting,
including:



– ST-D: This model only performs the main task of the MT-CRNN model
and uses historical demand data as input. Similar region selection, CNN and
LSTM layers are the same with MT-CRNN. The loss function is L1.

– ST-DC: Similar to ST-D, ST-DC further integrates crowd flow data as ad-
ditional input.

– ST-DE: ST-DE is a single task model with the same design as MT-CRNN,
but it doesn’t take crowd flow data as input. The loss function is L1 + L3.

– ST-DCE: In this model, the final loss function is L1 +L3, which transforms
MT-CRNN to a single task model.

– MT-DE: MT-DE is a multi-task model with the same design as MT-CRNN,
but it doesn’t utilize crowd outflow data.

– MT-FC: In this model, the final loss function is L2 + L3, which means the
decoder part of the auto-encoder is not trained. Thus, the auto-encoder is
transformed into a two-layer fully-connected neural network.

– MT-GA: Instead of labeling the passenger demand level by the target region’s
average demand, this model labels the passenger demand with the entire
region’s average demand.

Fig. 2. Component Analysis Fig. 3. Prediction with different corre-
lated regions

From Fig.2, we can observe that MT-CRNN outperforms ST-DCE and MT-
DE outperforms ST-DE, which justify the importance of our multi-task setting.
Secondly, ST-DC outperforms ST-D, ST-DCE outperforms ST-DE and MT-
CRNN outperforms MT-DE, which shows that prediction accuracy is better
when crowd outflow data is included in addition to historical passenger demand
data. Besides, ST-DCE performs worse than ST-DC and ST-DE performs worse
than ST-D, which demonstrates that the improper use of external features ad-
versely impacts prediction accuracy. Thirdly, the results for MT-FC shows that
an auto-encoder is better than fully-connected neural networks in extracting
hidden features from external data. Finally, by comparing MT-GA with MT-
CRNN, we can show that considering region-specific average demand is better
than average demand over the entire city.

Spatial Correlation Analysis. We also evaluated the performance of our
model with data from different regions to analyze spatial correlations. As shown
in Fig.3, we included the following:



– Singular: Only consider the target region’s historical data;
– Random: Randomly select correlated regions for the target region. We ran-

domly select regions five times and present the average prediction results.
– Nearest: Similar with DMVST-Net, it only considers spatially nearby regions

to capture their spatial correlations;
– PoI: Select correlated regions by PoI similarity;
– Order: Select correlated regions by historical demand series similarity;
– All: Similar with DeepST [12], it captures the spatial correlations within the

whole city.

We can observe that predicting only with selected similar region’s data is better
than all other strategies, which shows the advantages of our similarity-based
CNN in capturing spatial correlations. Moreover, all strategies are better than
One, which demonstrate the importance of spatial correlations in predicting
passenger demand.

4 Related Works

One traditional method for passenger demand prediction is to consider passenger
demand as time series data and applying time series models. Luis Moreira-Matias
et al. [6] combined three time-series forecasting techniques (Time-Varying Pois-
son Model, Weighted Time-Varying Poisson Model, ARIMA model) to arrive
at a prediction. Xiaolong Li et al. [7] proposed an improved ARIMA model to
forecast the spatial-temporal variation of passengers in hotspots. These early
works rely on GPS trajectories data from a subset of the entire taxis, which
may not necessarily reveal the actual passenger demand. In recent years, some
researchers have applied deep learning methods in smart transportation systems
[10]. Rose Yu et al. [9] proposed to use Long-Short Term Memory (LSTM) net-
work to capture the temporal relationship in historical observations and used
auto-encoder to process static features. However, they didnt consider spatial
correlations. Wang et al. [5] presented a neural network framework based on
fully-connected layers and residual network to predict the gap between passen-
ger demand and supply. Their approach cannot accurately capture the sequential
relationship. Another way to capture the spatial correlation is treating the city
as an image (a two-dimensional matrix) and applying CNN to it. Junbo Zhang
et al. [3] propose a spatial-temporal model to predict citywide crowd flow. They
represent city-wide crowd flow as a multi-dimensional image and use CNN and
residual network to extract spatial relationships. Huaxiu Yao et al. [2] further
designed “local CNN” to extract spatial relationship within surrounding regions
and construct a weighted graph to represent similarity among regions. A posi-
tive aspect is that all these deep learning based methods take external features
(weather, holiday, time meta) into consideration. However, they transform ex-
ternal features using fully-connected layers or auto-encoder, which are incapable
of fully realising their potential.

5 Conclusions

In this paper, we proposed a Multi-Task Convolutional Recurrent Neural Net-
work (MT-CRNN) framework to forecast the passenger demand with multiple



features from different domains. We captured the spatial-temporal correlations
of historical passenger demand by the convolutional recurrent neural network
based on the historical demand of selected similar regions. To better utilize ex-
ternal features, we designed an auxiliary task for predicting passenger demand
level under the guideline of multi-task learning. Experimental results show that
our model significantly outperforms a series of baselines and gains 3.8% im-
provement (RMSE) over state-of-the-art methods and that the auxiliary task
can improve the final passenger demand prediction accuracy.
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