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Abstract
Deep learning with noisy labels is practically challenging, as the capacity of deep
models is so high that they can totally memorize these noisy labels sooner or later
during training. Nonetheless, recent studies on the memorization effects of deep
neural networks show that they would first memorize training data of clean labels
and then those of noisy labels. Therefore in this paper, we propose a new deep
learning paradigm called “Co-teaching” for combating with noisy labels. Namely,
we train two deep neural networks simultaneously, and let them teach each other
given every mini-batch: firstly, each network feeds forward all data and selects
some data of possibly clean labels; secondly, two networks communicate with each
other what data in this mini-batch should be used for training; finally, each network
back propagates the data selected by its peer network and updates itself. Empirical
results on noisy versions of MNIST, CIFAR-10 and CIFAR-100 demonstrate that
Co-teaching is much superior to the state-of-the-art methods in the robustness of
trained deep models.

1 Introduction
Learning from noisy labels can date back to three decades ago [1], and still keeps vibrant in recent
years [13, 31]. Essentially, noisy labels are corrupted from ground-truth labels, and thus they
inevitably degenerate the robustness of learned models, especially for deep neural networks [2, 45].
Unfortunately, noisy labels are ubiquitous in the real world. For instance, both online queries [4] and
crowdsourcing [42, 44] yield a large number of noisy labels across the world everyday.

As deep neural networks have the high capacity to fit noisy labels [45], it is challenging to train deep
networks robustly with noisy labels. Current methods focus on estimating the noise transition matrix.
For example, on top of the softmax layer, Goldberger et al. [13] added an additional softmax layer to
model the noise transition matrix. Patrini et al. [31] leveraged a two-step solution to estimating the
noise transition matrix heuristically. However, the noise transition matrix is not easy to be estimated
accurately, especially when the number of classes is large.

To be free of estimating the noise transition matrix, a promising direction focuses on training on
selected samples [17, 26, 34]. These works try to select clean instances out of the noisy ones, and
then use them to update the network. Intuitively, as the training data becomes less noisy, better
performance can be obtained. Among those works, the representative methods are MentorNet [17]
and Decoupling [26]. Specifically, MentorNet pre-trains an extra network, and then uses the extra
network for selecting clean instances to guide the training. When the clean validation data is not
available, MentorNet has to use a predefined curriculum (e.g., self-paced curriculum). Nevertheless,
the idea of self-paced MentorNet is similar to the self-training approach [6], and it inherited the same
inferiority of accumulated error caused by the sample-selection bias. Decoupling trains two networks
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Figure 1: Comparison of error flow among MentorNet (M-Net) [17], Decoupling [26] and Co-
teaching. Assume that the error flow comes from the biased selection of training instances, and error
flow from network A or B is denoted by red arrows or blue arrows, respectively. Left panel: M-Net
maintains only one network (A). Middle panel: Decoupling maintains two networks (A & B). The
parameters of two networks are updated, when the predictions of them disagree (!=). Right panel:
Co-teaching maintains two networks (A & B) simultaneously. In each mini-batch data, each network
samples its small-loss instances as the useful knowledge, and teaches such useful instances to its peer
network for the further training. Thus, the error flow in Co-teaching displays the zigzag shape.

simultaneously, and then updates models only using the instances that have different predictions from
these two networks. Nonetheless, noisy labels are evenly spread across the whole space of examples.
Thus, the disagreement area includes a number of noisy labels, where the Decoupling approach cannot
handle noisy labels explicitly. Although MentorNet and Decoupling are representative approaches in
this promising direction, there still exist the above discussed issues, which naturally motivates us to
improve them in our research.

Meanwhile, an interesting observation for deep models is that they can memorize easy instances
first, and gradually adapt to hard instances as training epochs become large [2]. When noisy labels
exist, deep learning models will eventually memorize these wrongly given labels [45], which leads to
the poor generalization performance. Besides, this phenomenon does not change with the choice of
training optimizations (e.g., Adagrad [9] and Adam [18]) or network architectures (e.g., MLP [15],
Alexnet [20] and Inception [37]) [17, 45].

In this paper, we propose a simple but effective learning paradigm called “Co-teaching”, which allows
us to train deep networks robustly even with extremely noisy labels (e.g., 45% of noisy labels occur
in the fine-grained classification with multiple classes [8]). Our idea stems from the Co-training
approach [5]. Similarly to Decoupling, our Co-teaching also maintains two networks simultaneously.
That being said, it is worth noting that, in each mini-batch of data, each network views its small-loss
instances (like self-paced MentorNet) as the useful knowledge, and teaches such useful instances to
its peer network for updating the parameters. The intuition why Co-teaching can be more robust is
briefly explained as follows. In Figure 1, assume that the error flow comes from the biased selection
of training instances in the first mini-batch of data. In MentorNet or Decoupling, the error from one
network will be directly transferred back to itself in the second mini-batch of data, and the error
should be increasingly accumulated. However, in Co-teaching, since two networks have different
learning abilities, they can filter different types of error introduced by noisy labels. In this exchange
procedure, the error flows can be reduced by peer networks mutually. Moreover, we train deep
networks using stochastic optimization with momentum, and nonlinear deep networks can memorize
clean data first to become robust [2]. When the error from noisy data flows into the peer network, it
will attenuate this error due to its robustness.

We conduct experiments on noisy versions of MNIST, CIFAR-10 and CIFAR-100 datasets. Empirical
results demonstrate that, under extremely noisy circumstances (i.e., 45% of noisy labels), the robust-
ness of deep learning models trained by the Co-teaching approach is much superior to state-of-the-art
baselines. Under low-level noisy circumstances (i.e., 20% of noisy labels), the robustness of deep
learning models trained by the Co-teaching approach is still superior to most baselines.

2 Related literature

Statistical learning methods. Statistical learning contributed a lot to the problem of noisy labels,
especially in theoretical aspects. The approach can be categorized into three strands: surrogate loss,
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Algorithm 1 Co-teaching Algorithm.
1: Input wf and wg , learning rate η, fixed τ , epoch Tk and Tmax, iteration Nmax;
for T = 1, 2, . . . , Tmax do

2: Shuffle training set D; //noisy dataset
for N = 1, . . . , Nmax do

3: Fetch mini-batch D̄ from D;
4: Obtain D̄f = arg minD′:|D′|≥R(T )|D̄| `(f,D′); //sample R(T )% small-loss instances
5: Obtain D̄g = arg minD′:|D′|≥R(T )|D̄| `(g,D′); //sample R(T )% small-loss instances
6: Update wf = wf − η∇`(f, D̄g); //update wf by D̄g;
7: Update wg = wg − η∇`(g, D̄f ); //update wg by D̄f ;

end
8: Update R(T ) = 1−min

{
T
Tk
τ, τ

}
;

end
9: Output wf and wg .

noise rate estimation and probabilistic modeling. For example, in the surrogate losses category,
Natarajan et al. [30] proposed an unbiased estimator to provide the noise corrected loss approach.
Masnadi-Shirazi et al. [27] presented a robust non-convex loss, which is the special case in a family
of robust losses. In the noise rate estimation category, both Menon et al. [28] and Liu et al. [23]
proposed a class-probability estimator using order statistics on the range of scores. Sanderson
et al. [36] presented the same estimator using the slope of the ROC curve. In the probabilistic
modeling category, Raykar et al. [32] proposed a two-coin model to handle noisy labels from multiple
annotators. Yan et al. [42] extended this two-coin model by setting the dynamic flipping probability
associated with instances.
Other deep learning approaches. In addition, there are some other deep learning solutions to deal
with noisy labels [24, 41]. For example, Li et al. [22] proposed a unified framework to distill the
knowledge from clean labels and knowledge graph, which can be exploited to learn a better model
from noisy labels. Veit et al. [40] trained a label cleaning network by a small set of clean labels,
and used this network to reduce the noise in large-scale noisy labels. Tanaka et al. [38] presented a
joint optimization framework to learn parameters and estimate true labels simultaneously. Ren et
al. [34] leveraged an additional validation set to adaptively assign weights to training examples in
every iteration. Rodrigues et al. [35] added a crowd layer after the output layer for noisy labels from
multiple annotators. However, all methods require either extra resources or more complex networks.
Learning to teach methods. Learning-to-teach is also a hot topic. Inspired by [16], these methods
are made up by teacher and student networks. The duty of teacher network is to select more
informative instances for better training of student networks. Recently, such idea is applied to learn a
proper curriculum for the training data [10] and deal with multi-labels [14]. However, these works do
not consider noisy labels, and MentorNet [17] introduced this idea into such area.

3 Co-teaching meets noisy supervision

Our idea is to train two deep networks simultaneously. As in Figure 1, in each mini-batch data, each
network selects its small-loss instances as the useful knowledge, and teaches such useful instances to
its peer network for the further training. Therefore, the proposed algorithm is named Co-teaching
(Algorithm 1). As all deep learning training methods are based on stochastic gradient descent, our
Co-teaching works in a mini-batch manner. Specifically, we maintain two networks f (with parameter
wf ) and g (with parameter wg). When a mini-batch D̄ is formed (step 3), we first let f (resp. g)
select a small proportion of instances in this mini-batch D̄f (resp. D̄g) that have small training loss
(steps 4 and 5). The number of instances is controlled by R(T ), and f (resp. g) only selects R(T )
percentage of small-loss instances out of the mini-batch. Then, the selected instances are fed into its
peer network as the useful knowledge for parameter updates (steps 6 and 7).

There are two important questions for designing above Algorithm 1:

Q1. Why can sampling small-loss instances based on dynamicR(T ) help us find clean instances?

Q2. Why do we need two networks and cross-update the parameters?
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To answer the first question, we first need to clarify the connection between small losses and clean
instances. Intuitively, when labels are correct, small-loss instances are more likely to be the ones
which are correctly labeled. Thus, if we train our classifier only using small-loss instances in each
mini-bach data, it should be resistant to noisy labels.

However, the above requires that the classifier is reliable enough so that the small-loss instances
are indeed clean. The “memorization” effect of deep networks can exactly help us address this
problem [2]. Namely, on noisy data sets, even with the existence of noisy labels, deep networks
will learn clean and easy pattern in the initial epochs [45, 2]. So, they have the ability to filter out
noisy instances using their loss values at the beginning of training. Yet, the problem is that when the
number of epochs goes large, they will eventually overfit on noisy labels. To rectify this problem, we
want to keep more instances in the mini-batch at the start, i.e., R(T ) is large. Then, we gradually
increase the drop rate, i.e., R(T ) becomes smaller, so that we can keep clean instances and drop those
noisy ones before our networks memorize them (details of R(T ) will be discussed in Section 4.2).

Based on this idea, we can just use one network in Algorithm 1, and let the classifier evolve by itself.
This process is similar to boosting [11] and active learning [7]. However, it is commonly known that
boosting and active learning are sensitive to outliers and noise, and a few wrongly selected instances
can deteriorate the learning performance of the whole model [12, 3]. This connects with our second
question, where two classifiers can help.

Intuitively, different classifiers can generate different decision boundaries and then have different
abilities to learn. Thus, when training on noisy labels, we also expect that they can have different
abilities to filter out the label noise. This motivates us to exchange the selected small-loss instances,
i.e., update parameters in f (resp. g) using mini-batch instances selected from g (resp. f ). This
process is similar to Co-training [5], and these two networks will adaptively correct the training error
by the peer network if the selected instances are not fully clean. Take “peer-review” as a supportive
example. When students check their own exam papers, it is hard for them to find any error or bug
because they have some personal bias for the answers. Luckily, they can ask peer classmates to
review their papers. Then, it becomes much easier for them to find their potential faults. To sum
up, as the error from one network will not be directly transferred back itself, we can expect that our
Co-teaching method can deal with heavier noise compared with the self-evolving one.

Relations to Co-training. Although Co-teaching is motivated by Co-training, the only similarity
is that two classifiers are trained. There are fundamental differences between them. (i). Co-training
needs two views (two independent sets of features), while Co-teaching needs a single view. (ii)
Co-training does not exploit the memorization of deep neural networks, while Co-teaching does. (iii)
Co-training is designed for semi-supervised learning (SSL), and Co-teaching is for learning with
noisy labels (LNL); as LNL is not a special case of SSL, we cannot simply translate Co-training from
one problem setting to another problem setting.

4 Experiments
Datasets. We verify the effectiveness of our approach on three benchmark datasets. MNIST, CIFAR-
10 and CIFAR-100 are used here (Table 1), because these data sets are popularly used for evaluation
of noisy labels in the literature [13, 31, 33].

Table 1: Summary of data sets used in the experiments.
# of training # of testing # of class image size

MNIST 60,000 10,000 10 28×28
CIFAR-10 50,000 10,000 10 32×32
CIFAR-100 50,000 10,000 100 32×32

Since all datasets are clean, following [31, 33], we need to corrupt these datasets manually by the
noise transition matrix Q, where Qij = Pr(ỹ = j|y = i) given that noisy ỹ is flipped from clean y.
Assume that the matrix Q has two representative structures (Figure 2): (1) Symmetry flipping [39];
(2) Pair flipping: a simulation of fine-grained classification with noisy labels, where labelers may
make mistakes only within very similar classes. Their precise definition is in Appendix A.

Since this paper mainly focuses on the robustness of our Co-teaching on extremely noisy supervision,
the noise rate ε is chosen from {0.45, 0.5}. Intuitively, this means almost half of the instances have
noisy labels. Note that, the noise rate > 50% for pair flipping means over half of the training data
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(a) Pair (ε = 45%). (b) Symmetry (ε = 50%).
Figure 2: Transition matrices of different noise types (using 5 classes as an example).

Table 2: Comparison of state-of-the-art techniques with our Co-teaching approach. In the first column,
“large noise”: can deal with a large number of classes; “heavy noise”: can combat with the heavy
noise, i.e., high noise ratio; “flexibility”: need not combine with specific network architecture; “no
pre-train”: can be trained from scratch.

Bootstrap S-model F-correction Decoupling MentorNet Co-teaching
large class 7 7 7 X X X

heavy noise 7 7 7 7 X X
flexibility 7 7 X X X X

no pre-train X 7 7 7 X X

have wrong labels that cannot be learned without additional assumptions. As a side product, we also
verify the robustness of Co-teaching on low-level noisy supervision, where ε is set to 0.2. Note that
pair case is much harder than symmetry case. In Figure 2(a), the true class only has 10% more correct
instances over wrong ones. However, the true has 37.5% more correct instances in Figure 2(b).

Baselines. We compare the Co-teaching (Algorithm 1) with following state-of-art approaches: (i).
Bootstrap [33], which uses a weighted combination of predicted and original labels as the correct
labels, and then does back propagation. Hard labels are used as they yield better performance; (ii).
S-model [13], which uses an additional softmax layer to model the noise transition matrix; (iii).
F-correction [31], which corrects the prediction by the noise transition matrix. As suggested by the
authors, we first train a standard network to estimate the transition matrix; (iv). Decoupling [26],
which updates the parameters only using the samples which have different prediction from two
classifiers; and (v). MentorNet [17]. An extra teacher network is pre-trained and then used to filter
out noisy instances for its student network to learn robustly under noisy labels. Then, student network
is used for classification. We used self-paced MentorNet in this paper. (vi). As a baseline, we
compare Co-teaching with the standard deep networks trained on noisy datasets (abbreviated as
Standard). Above methods are systematically compared in Table 2. As can be seen, our Co-teaching
method does not rely on any specific network architectures, which can also deal with a large number
of classes and is more robust to noise. Besides, it can be trained from scratch. These make our
Co-teaching more appealing for practical usage. Our implementation of Co-teaching is available at
https://github.com/bhanML/Co-teaching.

Network structure and optimizer. For the fair comparison, we implement all methods with default
parameters by PyTorch, and conduct all the experiments on a NIVIDIA K80 GPU. CNN is used with
Leaky-ReLU (LReLU) active function [25], and the detailed architecture is in Table 3. Namely, the
9-layer CNN architecture in our paper follows “Temporal Ensembling” [21] and “Virtual Adversarial
Training” [29], since the network structure we used here is standard test bed for weakly-supervised
learning. For all experiments, Adam optimizer (momentum=0.9) is with an initial learning rate
of 0.001, and the batch size is set to 128 and we run 200 epochs. Besides, dropout and batch-
normalization are also used. As deep networks are highly nonconvex, even with the same network and
optimization method, different initializations can lead to different local optimal. Thus, following [26],
we also take two networks with the same architecture but different initializations as two classifiers.

Experimental setup. Here, we assume the noise level ε is known and set R(T ) = 1 − τ ·
min (T/Tk, 1) with Tk = 10 and τ = ε. If ε is not known in advanced, ε can be inferred us-
ing validation sets [23, 43]. The choices of R(T ) and τ are analyzed in Section 4.2. Note that R(T )
only depends on the memorization effect of deep networks but not any specific datasets.

As for performance measurements, first, we use the test accuracy, i.e., test Accuracy = (# of correct
predictions) / (# of test dataset). Besides, we also use the label precision in each mini-batch, i.e.,
label Precision = (# of clean labels) / (# of all selected labels). Specifically, we sample R(T ) of
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Table 3: CNN models used in our experiments on MNIST, CIFAR-10, and CIFAR-100. The slopes of
all LReLU functions in the networks are set to 0.01.

CNN on MNIST CNN on CIFAR-10 CNN on CIFAR-100
28×28 Gray Image 32×32 RGB Image 32×32 RGB Image

3×3 conv, 128 LReLU
3×3 conv, 128 LReLU
3×3 conv, 128 LReLU
2×2 max-pool, stride 2

dropout, p = 0.25
3×3 conv, 256 LReLU
3×3 conv, 256 LReLU
3×3 conv, 256 LReLU
2×2 max-pool, stride 2

dropout, p = 0.25
3×3 conv, 512 LReLU
3×3 conv, 256 LReLU
3×3 conv, 128 LReLU

avg-pool
dense 128→10 dense 128→10 dense 128→100

Table 4: Average test accuracy on MNIST over the last ten epochs.
Flipping-Rate Standard Bootstrap S-model F-correction Decoupling MentorNet Co-teaching

Pair-45% 56.52% 57.23% 56.88% 0.24% 58.03% 80.88% 87.63%
±0.55% ±0.73% ±0.32% ±0.03% ±0.07% ±4.45% ±0.21%

Symmetry-50% 66.05% 67.55% 62.29% 79.61% 81.15% 90.05% 91.32%
±0.61% ±0.53% ±0.46% ±1.96% ±0.03% ±0.30% ±0.06%

Symmetry-20% 94.05% 94.40% 98.31% 98.80% 95.70% 96.70% 97.25%
±0.16% ±0.26% ±0.11% ±0.12% ±0.02% ±0.22% ±0.03%

small-loss instances in each mini-batch, and then calculate the ratio of clean labels in the small-loss
instances. Intuitively, higher label precision means less noisy instances in the mini-batch after sample
selection, and the algorithm with higher label precision is also more robust to the label noise. All
experiments are repeated five times. The error bar for STD in each figure has been highlighted as a
shade. Besides, the full Y-axis versions for all figures are in Appendix B.

4.1 Comparison with the State-of-the-Arts
Results on MNIST. Table 4 reports the accuracy on the testing set. As can be seen, on the symmetry
case with 20% noisy rate, which is also the easiest case, all methods work well. Even Standard can
achieve 94.05% test set accuracy. Then, when noisy rate raises to 50%, Standard, Bootstrap, S-model
and F-correction fail, and their accuracy decrease lower than 80%. Methods based on “selected
instances”, i.e., Decoupling, MentorNet and Co-teaching are better. Among them, Co-teaching is the
best. Finally, in the hardest case, i.e., pair case with 45% noisy rate, Standard, Bootstrap and S-Model
cannot learn anything. Their testing accuracy keep the same as the percentage of clean instances
in the training dataset. F-correct fails totally, and it heavily relies on the correct estimation of the
underneath transition matrix. Thus, when Standard works, it can work better than Standard; then,
when Standard fails, it works much worse than Standard. In this case, our Co-teaching is again the
best, which is also much better than the second method, i.e. 87.53% for Co-teaching vs. 80.88% for
MentorNet.

In Figure 3 , we show test accuracy vs. number of epochs. In all three plots, we can clearly see the
memorization effects of networks, i.e., test accuracy of Standard first reaches a very high level and
then gradually decreases. Thus, a good robust training method should stop or alleviate the decreasing
processing. On this point, all methods except Bootstrap work well in the easiest Symmetry-20%
case. However, only MentorNet and our Co-teaching can combat with the other two harder cases, i.e.,
Pair-45% and Symmetry-50%. Besides, our Co-teaching consistently achieves higher accuracy than
MentorNet, and is the best method in these two cases.

To explain such good performance, we plot label precision vs. number of epochs in Figure 4. Only
MentorNet, Decoupling and Co-teaching are considered here, as they are methods do instance
selection during training. First, we can see Decoupling fails to pick up clean instances, and its label
precision is the same as Standard which does not compact with noisy label at all. The reason is that
Decoupling does not utilize the memorization effects during training. Then, we can see Co-teaching
and MentorNet can successfully pick clean instances out. These two methods tie on the easier
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(c) Symmetry-20%.
Figure 3: Test accuracy vs. number of epochs on MNIST dataset.

Symmetry-50% and Symmetry-20%, when our Co-teaching achieve higher precision on the hardest
Pair-45% case. This shows our approach is better at finding clean instances.
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(c) Symmetry-20%.
Figure 4: Label precision vs. number of epochs on MNIST dataset.

Finally, note that while in Figure 4(b) and (c), MentorNet and Co-teaching tie together. Co-teaching
still gets higher testing accuracy (Table 4). Recall that MentorNet is a self-evolving method, which
only uses one classifier, while Co-teaching uses two. The better accuracy comes from the fact
Co-teaching further takes the advantage of different learning abilities of two classifiers.

Results on CIFAR-10. Test accuracy is shown in Table 5. As we can see, the observations here are
consistently the same as these for MNIST dataset. In the easiest Symmetry-20% case, all methods
work well. F-correction is the best, and our Co-teaching is comparable with F-correction. Then, all
methods, except MentorNet and Co-teaching, fail on harder, i.e., Pair-45% and Symmetry-50% cases.
Between these two, Co-teaching is the best. In the extreme Pair-45% case, Co-teaching is at least
14% higher than MentorNet in test accuracy.

Table 5: Average test accuracy on CIFAR-10 over the last ten epochs.
Flipping,Rate Standard Bootstrap S-model F-correction Decoupling MentorNet Co-teaching

Pair-45% 49.50% 50.05% 48.21% 6.61% 48.80% 58.14% 72.62%
±0.42% ±0.30% ±0.55% ±1.12% ±0.04% ±0.38% ±0.15%

Symmetry-50% 48.87% 50.66% 46.15% 59.83% 51.49% 71.10% 74.02%
±0.52% ±0.56% ±0.76% ±0.17% ±0.08% ±0.48% ±0.04%

Symmetry-20% 76.25% 77.01% 76.84% 84.55% 80.44% 80.76% 82.32%
±0.28% ±0.29% ±0.66% ±0.16% ±0.05% ±0.36% ±0.07%

Figure 5 shows test accuracy and label precision vs. number of epochs. Again, on test accuracy, we
can see Co-teaching strongly hinders neural networks from memorizing noisy labels. Thus, it works
much better on the harder Pair-45% and Symmetry-50% cases. On label precision, while Decoupling
fails to find clean instances, both MentorNet and Co-teaching can do this. However, due to the usage
of two classifiers, Co-teaching is stronger.

Results on CIFAR-100. Finally, we show our results on CIFAR-100. The test accuracy is in Table 6.
Test accuracy and label precision vs. number of epochs are in Figure 6. Note that there are only 10
classes in MNIST and CIFAR-10 datasets. Thus, overall the accuracy is much lower than previous
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Figure 5: Results on CIFAR-10 dataset. Top: test accuracy vs. number of epochs; bottom: label
precision vs. number of epochs.

ones in Tables 4 and 5. However, the observations are the same as previous datasets. We can clearly
see our Co-teaching is the best on harder and noisy cases.

Table 6: Average test accuracy on CIFAR-100 over the last ten epochs.
Flipping,Rate Standard Bootstrap S-model F-correction Decoupling MentorNet Co-teaching

Pair-45% 31.99% 32.07% 21.79% 1.60% 26.05% 31.60% 34.81%
±0.64% ±0.30% ±0.86% ±0.04% ±0.03% ±0.51% ±0.07%

Symmetry-50% 25.21% 21.98% 18.93% 41.04% 25.80% 39.00% 41.37%
±0.64% ±6.36% ±0.39% ±0.07% ±0.04% ±1.00% ±0.08%

Symmetry-20% 47.55% 47.00% 41.51% 61.87% 44.52% 52.13% 54.23%
±0.47% ±0.54% ±0.60% ±0.21% ±0.04% ±0.40% ±0.08%

4.2 Choices of R(T ) and τ
Deep networks initially fit clean (easy) instances, and then fit noisy (hard) instances progressively.
Thus, intuitively R(T ) should meet following requirements: (i). R(T ) ∈ [τ, 1], where τ depends on
the noise rate ε; (ii). R(1) = 1, which means we do not need to drop any instances at the beginning.
At the initial learning epochs, we can safely update the parameters of deep neural networks using
entire noisy data, because the networks will not memorize the noisy data at the early stage [2]; (iii).
R(T ) should be a non-increasing function on T , which means that we need to drop more instances
when the number of epochs gets large. This is because as the learning proceeds, the networks will
eventually try to fit noisy data (which tends to have larger losses compared to clean data). Thus, we
need to ignore them by not updating the networks parameters using large loss instances [2]. The
MNIST dataset is used in the sequel.

Based on above principles, to show how the decay of R(T ) affects Co-teaching, first, we let R(T ) =
1−τ ·min{T c/Tk, 1} with τ = ε, where three choices of c should be considered, i.e., c = {0.5, 1, 2}.
Then, three values of Tk are considered, i.e., Tk = {5, 10, 15}. Results are in Table 7. As can be
seen, the test accuracy is stable on the choices of Tk and c here. The previous setup (c = 1 and
Tk = 10) works well but does not lead to the best performance. To show the impact of τ , we
vary τ = {0.5, 0.75, 1, 1.25, 1.5}ε. Note that, τ cannot be zero. In this case, no gradient will be
back-propagated and the optimization will stop. Test accuracy is in Table 8. We can see, with more
dropped instances, the performance can be improved. However, if too many instances are dropped,
networks may not get sufficient training data and the performance can deteriorate. We set τ = ε in
Section 4.1, and it works well but not necessarily leads to the best performance.
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Figure 6: Results on CIFAR-100 dataset. Top: test accuracy vs. number of epochs; bottom: label
precision vs. number of epochs.

Table 7: Average test accuracy on MNIST over the last ten epochs.
c = 0.5 c = 1 c = 2

Pair-45% Tk = 5 75.56%±0.33% 87.59%±0.26% 87.54%±0.23%
Tk = 10 88.43%±0.25% 87.56%±0.12% 87.93%±0.21%
Tk = 15 88.37%±0.09% 87.29%±0.15% 88.09%±0.17%

Symmetry-50% Tk = 5 91.75%±0.13% 91.75%±0.12% 92.20%±0.14%
Tk = 10 91.70%±0.21% 91.55%±0.08% 91.27%±0.13%
Tk = 15 91.74%±0.14% 91.20%±0.11% 91.38%±0.08%

Symmetry-20% Tk = 5 97.05%±0.06% 97.10%±0.06% 97.41%±0.08%
Tk = 10 97.33%±0.05% 96.97%±0.07% 97.48%±0.08%
Tk = 15 97.41%±0.06% 97.25%±0.09% 97.51%±0.05%

Table 8: Average test accuracy of Co-teaching with different τ on MNIST over the last ten epochs.
Flipping,Rate 0.5ε 0.75ε ε 1.25ε 1.5ε

Pair-45% 66.74%±0.28% 77.86%±0.47% 87.63%±0.21% 97.89%±0.06% 69.47%±0.02%
Symmetry-50% 75.89%±0.21% 82.00%±0.28% 91.32%±0.06% 98.62%±0.05% 79.43%±0.02%
Symmetry-20% 94.94%±0.09% 96.25%±0.06% 97.25%±0.03% 98.90%±0.03% 99.39%±0.02%

5 Conclusion
This paper presents a simple but effective learning paradigm called Co-teaching, which trains
deep neural networks robustly under noisy supervision. Our key idea is to maintain two networks
simultaneously, and cross-trains on instances screened by the “small loss” criteria. We conduct
simulated experiments to demonstrate that, our proposed Co-teaching can train deep models robustly
with the extremely noisy supervision. In future, we can extend our work in the following aspects.
First, we can adapt Co-teaching paradigm to train deep models under other weak supervisions,
e.g., positive and unlabeled data [19]. Second, we would investigate the theoretical guarantees for
Co-teaching. Previous theories for Co-training are very hard to transfer into Co-teaching, since our
setting is fundamentally different. Besides, there is no analysis for generalization performance on
deep learning with noisy labels. Thus, we leave the generalization analysis as a future work.
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