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ABSTRACT 17 

The three-dimensional cellular geoinclusions (e.g. geocells, scrap tires) offer all-around 18 

confinement to the granular infill materials, which improves their strength and stiffness. The 19 

accurate evaluation of extra confinement offered by these geoinclusions is inevitable for 20 

predicting their performance in the field. The existing models to evaluate the additional 21 

confinement are based on either plane-strain or axisymmetric stress states. However, these 22 

geoinclusions are more likely to be subjected to the three-dimensional stresses in actual 23 

practice. This note proposes a semi-empirical model to evaluate the additional confinement 24 

provided by cellular geoinclusions under the three-dimensional stress state. The proposed 25 

model is successfully validated against the experimental data. A parametric study is conducted 26 

to investigate the influence of input parameters on additional confinement. The results reveal 27 

that the simplification of the three-dimensional stress state into axisymmetric or plane-strain 28 

condition has resulted in inaccurate and unreliable results. The extra confinement offered by 29 

the geoinclusion show substantial variation along the intermediate and minor principal stress 30 

directions depending on the intermediate principal stress, infill soil and geoinclusion 31 

properties. The magnitude of additional confinement increases with an increase in the 32 

geoinclusion modulus. The findings are crucial for the accurate assessment of the in-situ 33 

performance of three-dimensional cellular geoinclusions. 34 

 35 

Keywords: Cellular geoinclusions; Additional confinement; Mathematical model; General 36 

stress state.  37 
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INTRODUCTION 38 

The lateral spreading of unbound granular materials (UGM) under train-induced loading poses 39 

a severe challenge to the stability of the ballasted railway tracks (Selig and Waters 1994). This 40 

lateral movement is often associated with insufficient confinement of UGM layers overlying 41 

stiff subgrade soils (Sun et al. 2018; Nimbalkar et al. 2019). Fig. 1(a) shows the loss in track 42 

geometry due to the lateral spreading of UGM under the train traffic-induced loads. The three-43 

dimensional (3D) cellular geoinclusions such as geocells, scrap rubber tires, etc. can be 44 

employed in the ballasted railway tracks to provide additional confinement and consequently, 45 

improve the track stability. As shown in Fig. 1(b), these cellular geoinclusions surround the 46 

UGM and create a stiff structure which resists the lateral spreading of UGM (Koerner 2012). 47 

Consequently, the loss in track geometry can be minimized. 48 

The 3D cellular geoinclusions are increasingly being used to improve the mechanical 49 

properties of granular infill materials. These geoinclusions provide all-around confinement to 50 

the infill soil and consequently, prevent its lateral spreading under loads (Zhou and Wen 2008, 51 

Leshchinsky and Ling 2013a). The investigations in the past have demonstrated the beneficial 52 

role of geocells (e.g., Raymond 2001; Satyal et al. 2018) and scrap tires (e.g. Forsyth and Egan 53 

1976; Garga and O'shaughnessy 2000; Indraratna et al. 2017) in improving the stability of 54 

railway tracks and embankments. However, the lack of a well-established method to evaluate 55 

the magnitude of additional confinement provided by these geoinclusions has limited their 56 

application in the railway tracks. 57 

An insight into the load transfer mechanism, quantification of the benefits and the full-58 

scale performance data is inevitable to develop the design methods for cellular geoinclusions 59 

in railway applications. Although experimental and field studies are reliable techniques to gain 60 

insight into the behavior of 3D cellular geoinclusions, these investigations require a 61 

considerable amount of time and efforts. On the other hand, the analytical and numerical 62 
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simulations offer cost-effective alternatives to study and predict the response of the cellular 63 

geoinclusion reinforced soil. Therefore, researchers have conducted two-dimensional (e.g. 64 

Bathurst and Knight 1998) and three-dimensional numerical analysis (e.g. Han et al. 2008; 65 

Leshchinsky and Ling 2013a, 2013b; Liu et al. 2018) on geoinclusion-reinforced soil and have 66 

reported that the geoinclusions significantly improve the strength and stiffness of the infill soil. 67 

However, the magnitude of improvement/ modification depends on the stress state, properties 68 

of the infill and the geoinclusions (Nimbalkar et al. 2019). 69 

Several researchers have attempted to evaluate the extra confinement offered by the 70 

cellular geoinclusions under static (Bathurst and Rajagopal 1993; Rajagopal et al. 1999) and 71 

cyclic/repeated loading conditions (Yang and Han 2013; Indraratna et al. 2015). These models 72 

are applicable to two-dimensional (2D) (plane-strain or axisymmetric) stress state. However, 73 

the cellular geoinclusions are more likely to be subjected to general stress state (3D) in a real 74 

track (e.g., at turnouts, intersections). Therefore, the additional confinement provided by the 75 

cellular geoinclusions under general stress state may significantly differ from the plane-strain 76 

or triaxial (axisymmetric) stress state. 77 

The present paper describes the theoretical development of a semi-empirical model for 78 

evaluating the additional confinement provided by cellular geoinclusions under the 3D stress 79 

state. A parametric study is conducted to investigate the influence of infill soil properties, 80 

geoinclusion type and stress levels on additional confinement. Moreover, the proposed model 81 

is validated against the experimental data available in the literature. The present study is 82 

inevitable for assessing the performance of cellular geoinclusion-stabilized infills under the 3D 83 

stress state resembling actual track environment.  84 
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DEVELOPMENT OF MODEL 85 

General loading condition 86 

When the cellular geoinclusion-reinforced UGM is loaded vertically, the infill material 87 

deforms in vertical and lateral directions. The geoinclusion resists the lateral deformation of 88 

the infill material, which generate circumferential stresses (tension) along its periphery. These 89 

circumferential stresses provide additional confinement to the infill. The magnitude of 90 

additional confinement can be evaluated using the hoop tension theory as: 91 

(1a) Δ𝜎𝜎2′ =
2𝜎𝜎c,2 ∙ 𝑡𝑡g
𝐷𝐷g

 

(1b) 
Δ𝜎𝜎3′ =

2𝜎𝜎c,3 ∙ 𝑡𝑡g
𝐷𝐷g

 

where Δσ'2 and Δσ'3 are the additional confining pressures in the direction of intermediate (σ'2) 92 

and minor principal stresses (σ'3), respectively; σc,2 and σc,3 are the circumferential stresses in 93 

the direction of σ'2 and σ'3, respectively; Dg and tg are diameter and thickness of geoinclusion, 94 

respectively. The derivation of Eqs. (1a) and (1b) is given in Appendix. 95 

The circumferential stress is determined using the Hooke’s law (Timoshenko and 96 

Goodier, 1970) 97 

(2) 𝜎𝜎c =
𝑀𝑀m

𝑡𝑡g
�
�1 − 𝜇𝜇g�𝜀𝜀c + 𝜇𝜇g𝜀𝜀r
�1 + 𝜇𝜇g��1 − 2𝜇𝜇g�

� 

where Mm is the mobilized modulus of geoinclusion per unit width; μg is the Poisson’s ratio of 98 

geoinclusion; εc and εr are circumferential and radial strains in the geoinclusion, respectively. 99 

Figs. 2a‒2c show the deformation profiles of the cellular geoinclusions for general 100 

(σ'1≠σ'2≠σ'3 and ε2≠ε3≠0), plane-strain (σ'1≠σ'2≠σ'3 and ε2=0) and axisymmetric stress state 101 

(σ'1≠σ'2=σ'3 and ε2=ε3), respectively. In general loading condition, the geoinclusion-reinforced 102 

soil is subjected to a 3D stress state. In other words, under the general loading condition, all 103 

the three principal stresses or strains can vary independently. Assuming that the geoinclusion 104 
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deforms as an ellipse with a uniform tensile stress distribution along its height, the additional 105 

confinement can be calculated as [combining Eqs. (1) and (2)]: 106 

(3a) Δ𝜎𝜎2′ = −
2𝑀𝑀m

𝐷𝐷g
�
�1 − 𝜇𝜇g�𝑘𝑘c + 𝜇𝜇g
�1 + 𝜇𝜇g��1 − 2𝜇𝜇g�

� 𝜀𝜀2 

(3b) 
Δ𝜎𝜎3′ = −

2𝑀𝑀m

𝐷𝐷g
�
�1 − 𝜇𝜇g�𝑘𝑘c + 𝜇𝜇g
�1 + 𝜇𝜇g��1 − 2𝜇𝜇g�

� 𝜀𝜀3 

where ε2 and ε3 are the intermediate and minor principal strains in infill (assuming that the 107 

geocell and infill soil deform together); kc is the ratio of circumferential strain to the radial 108 

strain. 109 

Eqs. (3a) and (3b) can be employed to calculate the additional confinement provided by 110 

cellular geoinclusions under both static and repeated loading conditions. The parameters Mm, 111 

Dg, and μg are the material properties of geoinclusions and these can be evaluated easily. 112 

Moreover, the lateral principal strains (ε2 and ε3) in UGM usually comprises recoverable and 113 

irrecoverable components that can be calculated using the procedure described in the 114 

subsequent sections. The cellular geoinclusion and the infill soil deform together under the 115 

applied loading. The irrecoverable component of deformation for the infill soil is primarily 116 

attributed to the reorientation or rearrangement of the particles to a denser packing arrangement 117 

under loading. The geoinclusion undergoes recoverable deformation until the yield strain of 118 

the geoinclusion material is reached. However, the infill deformation usually comprises both 119 

recoverable and irrecoverable components due to the elastoplastic nature of granular materials. 120 

Recoverable deformation of infill 121 

The recoverable strains for the static loading case can be determined as follows (Timoshenko 122 

and Goodier, 1970): 123 

(4a) 𝜀𝜀2𝑒𝑒 =
1
𝐸𝐸

[𝜎𝜎2′ − 𝜇𝜇s(𝜎𝜎1′ + 𝜎𝜎3′ )] 
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(4b) 
𝜀𝜀3𝑒𝑒 =

1
𝐸𝐸

[𝜎𝜎3′ − 𝜇𝜇s(𝜎𝜎1′ + 𝜎𝜎2′)] 

where ε2
e and ε3

e are the recoverable components of intermediate and minor principal strains, 124 

respectively; σ'1, σ'2 and σ'3 are the major, intermediate and minor principal stresses; μs is the 125 

Poisson’s ratio of the infill material; E is Young’s modulus of the infill material. 126 

Similarly, for the repeated loading condition: 127 

(5a) 𝜀𝜀2𝑒𝑒 =
𝜎𝜎cyc
𝑀𝑀R

�
𝜎𝜎2′ − 𝜇𝜇s(𝜎𝜎1′ + 𝜎𝜎3′)
𝜎𝜎1′ − 𝜇𝜇s(𝜎𝜎2′ + 𝜎𝜎3′)

� 

(5b) 
𝜀𝜀3𝑒𝑒 =

𝜎𝜎cyc
𝑀𝑀R

�
𝜎𝜎3′ − 𝜇𝜇s(𝜎𝜎1′ + 𝜎𝜎2′)
𝜎𝜎1′ − 𝜇𝜇s(𝜎𝜎2′ + 𝜎𝜎3′)

� 

where σcyc is the cyclic deviator stress; MR is the resilient modulus of the infill material. 128 

Irrecoverable deformation of infill 129 

The irrecoverable components of intermediate and minor principal strains (ε2
p, ε3

p) can be 130 

evaluated by using the 3D stress-dilatancy relationship (Schanz and Vermeer 1996). This 131 

relationship is given as: 132 

(6) 
1
𝐾𝐾

= �
𝜎𝜎3′

𝜎𝜎1′
� �−

𝑑𝑑𝑑𝑑3
𝑝𝑝

𝑑𝑑𝑑𝑑1
𝑝𝑝�+ �

𝜎𝜎2′

𝜎𝜎1′
� �−

𝑑𝑑𝑑𝑑2
𝑝𝑝

𝑑𝑑𝑑𝑑1
𝑝𝑝� 

where dε1
p, dε2

p, dε3
p are the irrecoverable major, intermediate and minor principal strain rates, 133 

respectively; K is the coefficient representing the internal friction [K = (1+sin φ'f)/(1-sin φ'f)]; 134 

and φ'f is the mobilized friction angle. 135 

On rearranging Eq. (6), dε2
p and dε3

p can be expressed in terms of dε1
p as: 136 

(7a) −
𝑑𝑑𝜀𝜀2

𝑝𝑝

𝑑𝑑𝜀𝜀1
𝑝𝑝 =

(1 − 𝑅𝑅)−1

𝑏𝑏
∙ �1 − 𝐷𝐷 −

𝑅𝑅
𝐾𝐾
� 

(7b) 
−
𝑑𝑑𝜀𝜀3

𝑝𝑝

𝑑𝑑𝜀𝜀1
𝑝𝑝 = �1 −

(1 − 𝑅𝑅)−1

𝑏𝑏
� �1 − 𝐷𝐷 −

[𝑅𝑅−1 + 𝑏𝑏(1 − 𝑅𝑅−1)]−1

𝐾𝐾
� 

where D is the dilatancy rate (dεv
p/dε1

p); dεv
p is the volumetric strain rate; R is the stress ratio 137 

(σ'1/σ'3); b is the intermediate principal stress ratio [b=(σ'2-σ'3)/(σ'1-σ'3)]. 138 
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Thus, ε2
p and ε3

p can be calculated by integrating Eqs. (7a) and (7b), respectively. 139 

(8a) 𝜀𝜀2
𝑝𝑝 = −�

(1 − 𝑅𝑅)−1

𝑏𝑏
∙ �1 − 𝐷𝐷 −

𝑅𝑅
𝐾𝐾
�𝑑𝑑𝜀𝜀1

𝑝𝑝  

(8b) 
𝜀𝜀3
𝑝𝑝 = −��1 −

(1 − 𝑅𝑅)−1

𝑏𝑏
� �1 − 𝐷𝐷 −

[𝑅𝑅−1 + 𝑏𝑏(1 − 𝑅𝑅−1)]−1

𝐾𝐾
�𝑑𝑑𝜀𝜀1

𝑝𝑝 

Additional confinement 140 

The additional confinement (Δσ'2 and Δσ'3) provided by the cellular geoinclusions for static 141 

loading condition (loading in vertical direction) can be evaluated by combining Eqs. (3a), (3b), 142 

(4a), (4b), (8a) and (8b). 143 

(9a) 

Δ𝜎𝜎2′ = −
2𝑀𝑀m

𝐷𝐷g
�
�1 − 𝜇𝜇g�𝑘𝑘c + 𝜇𝜇g
�1 + 𝜇𝜇g��1 − 2𝜇𝜇g�

� �
𝜎𝜎3′

𝐸𝐸
[1 − 𝑏𝑏(1 − 𝑅𝑅) − 𝜇𝜇s(1 + 𝑅𝑅)]

−�
(1 − 𝑅𝑅)−1

𝑏𝑏
�1 − 𝐷𝐷 −

𝑅𝑅
𝐾𝐾
� 𝑑𝑑𝑑𝑑1

𝑝𝑝� 

(9b) 
 Δ𝜎𝜎3′ = −

2𝑀𝑀m

𝐷𝐷g
�
�1 − 𝜇𝜇g�𝑘𝑘c + 𝜇𝜇g
�1 + 𝜇𝜇g��1 − 2𝜇𝜇g�

� �
𝜎𝜎3′

𝐸𝐸
[1 + 𝜇𝜇s𝑏𝑏(1 − 𝑅𝑅) − 𝜇𝜇s(1 + 𝑅𝑅)]

−��1 −
(1 − 𝑅𝑅)−1

𝑏𝑏
� �1 − 𝐷𝐷 −

[𝑅𝑅−1 + 𝑏𝑏(1 − 𝑅𝑅−1)]−1

𝐾𝐾
�𝑑𝑑𝑑𝑑1

𝑝𝑝� 

Thus, for static loading conditions, the additional confinement at a given value of major 144 

principal strain (ε1) can be calculated by using Eqs. (9a) and (9b). However, under 145 

repeated/cyclic vertical loading conditions, the strain in UGM also varies with the number of 146 

load cycles (Dahlberg 2001). Several models have been developed to predict the behavior of 147 

UGM under cyclic loading conditions (Lekarp et al. 2000). In the present study, a power model 148 

has been used which incorporates the influence of the stress state and loading conditions on the 149 

irrecoverable deformation of UGM (e.g., Puppala et al. 2009). 150 
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(10) 𝜀𝜀1𝑝𝑝 = 𝑘𝑘1 ∙ �
𝜎𝜎oct
𝜎𝜎atm

�
𝑘𝑘2
�
τoct
𝜎𝜎atm

�
𝑘𝑘3
𝑁𝑁𝑘𝑘4 

where σoct is the octahedral normal stress; τoct is the octahedral shear stress; N is the number of 151 

load cycles; σatm is the atmospheric pressure; k1, k2, k3, k4 are the empirical parameters. The 152 

parameter k1 represents the influence of the infill type on the magnitude of ε1
p corresponding 153 

to the first load cycle. The parameters k2 and k3 represent the influence of octahedral normal 154 

and shear stresses on the magnitude of ε1
p corresponding to the first load cycle. The parameter 155 

k4 shows the dependency of ε1
p on the number of load cycles. It governs the variation of ε1

p 156 

with N. 157 

Differentiating Eq. (10) with respect to N and substituting the value of dε1
p in Eqs. (8a) 158 

and (8b) gives: 159 

(11a) 𝜀𝜀2
𝑝𝑝 = −�

𝑘𝑘1𝑘𝑘4(1 − 𝑅𝑅)−1

𝑏𝑏
�1 − 𝐷𝐷 −

𝑅𝑅
𝐾𝐾
� �
𝜎𝜎oct
𝜎𝜎atm

�
𝑘𝑘2
�
τoct
𝜎𝜎atm

�
𝑘𝑘3
𝑁𝑁𝑘𝑘4−1

𝑁𝑁lim

0

𝑑𝑑𝑑𝑑 

(11b) 

𝜀𝜀3
𝑝𝑝 = −� 𝑘𝑘1𝑘𝑘4 �1 −

(1 − 𝑅𝑅)−1

𝑏𝑏
� �1 − 𝐷𝐷 −

[𝑅𝑅−1 + 𝑏𝑏(1 − 𝑅𝑅−1)]−1

𝐾𝐾
�

𝑁𝑁lim

0

× �
𝜎𝜎oct
𝜎𝜎atm

�
𝑘𝑘2
�
τoct
𝜎𝜎atm

�
𝑘𝑘3
𝑁𝑁𝑘𝑘4−1𝑑𝑑𝑁𝑁 

Similarly, Eqs. (5a) and (5b) can be modified to incorporate the variation of MR with N: 160 

(12a) 𝜀𝜀2𝑒𝑒 = � �𝜎𝜎cyc �
𝜎𝜎3′ + 𝑏𝑏(𝜎𝜎1′ − 𝜎𝜎3′) − 𝜇𝜇s(𝜎𝜎1′ + 𝜎𝜎3′)
𝜎𝜎1′ − 𝜇𝜇s𝑏𝑏(𝜎𝜎1′ − 𝜎𝜎3′) − 2𝜇𝜇s𝜎𝜎3′

� �
𝑑𝑑𝑀𝑀R

−1

𝑑𝑑𝑑𝑑
�� 𝑑𝑑𝑑𝑑

𝑁𝑁lim

0

 

(12b) 𝜀𝜀3𝑒𝑒 = � �𝜎𝜎cyc �
𝜎𝜎3′ − 𝜇𝜇s(𝜎𝜎1′ + 𝜎𝜎3′) − 𝜇𝜇s𝑏𝑏(𝜎𝜎1′ − 𝜎𝜎3′)
𝜎𝜎1′ − 𝜇𝜇s𝑏𝑏(𝜎𝜎1′ − 𝜎𝜎3′) − 2𝜇𝜇s𝜎𝜎3′

� �
𝑑𝑑𝑀𝑀R

−1

𝑑𝑑𝑑𝑑
��

𝑁𝑁lim

0

𝑑𝑑𝑑𝑑 

Therefore, the additional confinement (Δσ'2 and Δσ'3) offered by the geoinclusions for repeated 161 

loading condition can be evaluated by combining Eqs. (3a), (3b), (11a), (11b), (12a) and (12b). 162 
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(13a) 

    Δ𝜎𝜎2′ = � −
2𝑀𝑀m

𝐷𝐷g
�
�1 − 𝜇𝜇g�𝑘𝑘c + 𝜇𝜇g
�1 + 𝜇𝜇g��1 − 2𝜇𝜇g�

� �𝜎𝜎cyc �
1 − 𝑏𝑏(1 − 𝑅𝑅)− 𝜇𝜇s(1 + 𝑅𝑅)
𝑅𝑅 + 𝜇𝜇s𝑏𝑏(1 − 𝑅𝑅) − 2𝜇𝜇s

��
𝑑𝑑𝑀𝑀R

−1

𝑑𝑑𝑑𝑑
�

𝑁𝑁lim

0

−
𝑘𝑘1𝑘𝑘4 ∙ (1 − 𝑅𝑅)−1

𝑏𝑏 �1 − 𝐷𝐷 −
𝑅𝑅
𝐾𝐾�

�
𝜎𝜎oct
𝜎𝜎atm

�
𝑘𝑘2
�
τoct
𝜎𝜎atm

�
𝑘𝑘3
𝑁𝑁𝑘𝑘4−1�𝑑𝑑𝑑𝑑 

(13b) 
      Δ𝜎𝜎3′ = � −

2𝑀𝑀m

𝐷𝐷g
�
�1 − 𝜇𝜇g�𝑘𝑘c + 𝜇𝜇g
�1 + 𝜇𝜇g��1 − 2𝜇𝜇g�

� �𝜎𝜎cyc �
1 + 𝜇𝜇s𝑏𝑏(1 − 𝑅𝑅) − 𝜇𝜇s(1 + 𝑅𝑅)

𝑅𝑅 + 𝜇𝜇s𝑏𝑏(1 − 𝑅𝑅) − 2𝜇𝜇s
� �
𝑑𝑑𝑀𝑀R

−1

𝑑𝑑𝑑𝑑
�

𝑁𝑁lim

0

− 𝑘𝑘1𝑘𝑘4 �1 −
(1 − 𝑅𝑅)−1

𝑏𝑏
� �1 − 𝐷𝐷 −

[𝑅𝑅−1 + 𝑏𝑏(1 − 𝑅𝑅−1)]−1

𝐾𝐾
� �

𝜎𝜎oct
𝜎𝜎atm

�
𝑘𝑘2
�
τoct
𝜎𝜎atm

�
𝑘𝑘3
𝑁𝑁𝑘𝑘4−1� 𝑑𝑑𝑑𝑑 

Thus, for repeated loading conditions, the extra confinement, offered by geoinclusions after the 163 

completion of a given number of load cycles (Nlim), can be calculated by using Eqs. (13a) and 164 

(13b). The proposed model can also be simplified to cater for the axisymmetric and the plane-165 

strain cases. 166 

Axisymmetric condition 167 

For the axisymmetric condition [σ'2 = σ'3 (or b = 0), dε2 = dε3 and kc = 1], Eq. (7a) is deduced 168 

to: 169 

(14) 𝑅𝑅 = 𝐾𝐾(1 − 𝐷𝐷) 

Upon simplification, Eq. (14) becomes 170 

(15) 𝑑𝑑𝜀𝜀3
𝑝𝑝 = −𝑑𝑑𝜀𝜀1

𝑝𝑝 𝑅𝑅
2 ∙ 𝐾𝐾

 

Thus, Δσ'3 for the axisymmetric condition can be given by:  171 

(16) 

Δ𝜎𝜎3′ = � −
2𝑀𝑀m

𝐷𝐷g
�

1
�1 + 𝜇𝜇g��1 − 2𝜇𝜇g�

� �𝜎𝜎cyc �
1 − 𝜇𝜇s(1 + 𝑅𝑅)

𝑅𝑅 − 2𝜇𝜇s
� �
𝑑𝑑𝑀𝑀R

−1

𝑑𝑑𝑑𝑑
�          

𝑁𝑁lim

0

−
𝑘𝑘1𝑘𝑘4𝑅𝑅

2𝐾𝐾
�
𝜎𝜎oct
𝜎𝜎atm

�
𝑘𝑘2
�
τoct
𝜎𝜎atm

�
𝑘𝑘3
𝑁𝑁𝑘𝑘4−1� 𝑑𝑑𝑑𝑑 

Plane-strain condition 172 
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For the plane-strain condition (dε2 = 0), Eq. (7a) can be simplified as: 173 

(17) 𝑑𝑑𝜀𝜀3
𝑝𝑝 = −𝑑𝑑𝜀𝜀1

𝑝𝑝 𝑅𝑅
𝐾𝐾

 

The Δσ'3 for the plane-strain condition can thus be expressed as: 174 

(18) 

Δ𝜎𝜎3′ = � −
2𝑀𝑀m

𝐷𝐷g
�
�1 − 𝜇𝜇g�𝑘𝑘c + 𝜇𝜇g
�1 + 𝜇𝜇g��1 − 2𝜇𝜇g�

� �𝜎𝜎cyc �
(1 − 𝜇𝜇s) − 𝜇𝜇s𝑅𝑅
𝑅𝑅(1 − 𝜇𝜇s) − 𝜇𝜇s

� �
𝑑𝑑𝑀𝑀R

−1

𝑑𝑑𝑑𝑑
�

𝑁𝑁lim

0

−
𝑘𝑘1𝑘𝑘4𝑅𝑅
𝐾𝐾

�
𝜎𝜎oct
𝜎𝜎atm

�
𝑘𝑘2
�
τoct
𝜎𝜎atm

�
𝑘𝑘3
𝑁𝑁𝑘𝑘4−1�𝑑𝑑𝑑𝑑 

IDENTIFICATION OF MODEL PARAMETERS 175 

The present model comprises the following parameters: Mm, Dg, μg, b, MR, E, μs, k1, k2, k3, k4, 176 

φ'f, and D. The first three parameters are the geoinclusion properties. The parameter b depends 177 

on the external loading conditions. The parameters MR, E and μs for a particular cellular 178 

geoinclusion reinforced UGM can be determined from conventional laboratory experiments. 179 

The empirical parameters k1, k2, k3 and k4 can be determined by fitting the experimental curves 180 

of irrecoverable vertical strain with the number of load cycles (N) for reinforced UGM at 181 

different loading conditions. Furthermore, parameters φ'f and D can be determined by 182 

conducting true-triaxial tests (σ'1≠σ'2≠σ'3) on geoinclusion reinforced UGM. Moreover, φ'f and 183 

D depend on the parameter b (Wang and Lade 2001). However, a unique relationship between 184 

these parameters is not yet established. Therefore, the values of b, φ'f and D are varied to 185 

investigate their influence on the additional confinement. 186 

RESULTS AND DISCUSSION 187 

Using the present approach, the influence of infill properties, stress levels and geoinclusion 188 

type on additional confinement are investigated. Table 1 lists the parameters used in the 189 

analysis. The results are expressed in terms of normalized additional confinement (kσ,2 = 190 
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Δσ'2/σ'2 and kσ,3 = Δσ'3/σ'3) and additional confinement ratio (ACR). The ACR is the ratio of 191 

extra confinement offered by the geoinclusions in lateral orthogonal directions (i.e., Δσ'2/Δσ'3). 192 

These normalized ratios are used to present the results in a concise form. Moreover, the use of 193 

ACR allows an efficient comparison of Δσ'2 with Δσ'3. The value of ACR ranges between 0 194 

and 1 corresponding to the cases when Δσ'2 = 0 and Δσ'2 = Δσ'3, respectively. 195 

Influence of infill properties and stress levels 196 

Fig. 3a shows the variation of ACR with the mobilized friction angle (φ'f) and dilatancy rate 197 

(D). It can be observed that ACR increases with a decrease in D (e.g. 370% increment when D 198 

decreases from -1 to -0.2, for φ'f = 40°). Moreover, it decreases with an increase in φ'f for a 199 

particular value of D (e.g. 98% reduction when φ'f increases from 40° to 60° for D = -0.2). This 200 

variation is probably due to a reduction in ε2 with an increase in D and K [refer to Eq. (8a)]. 201 

Consequently, a smaller magnitude of confinement (Δσ'2) is mobilized in the direction of σ'2 202 

for higher values of D and K. Thus, a weak infill (exhibited by small φ'f) with a smaller D may 203 

mobilize more confinement, Δσ'2, than a strong infill with a greater D (for a particular value of 204 

b). On the contrary, ε3 increases with an increase in D and K [refer to Eq. (8b)]. This increases 205 

the magnitude of Δσ'3. Therefore, an optimum value of φ'f and D may be required to derive 206 

maximum benefits from geoinclusion reinforcement. 207 

Nevertheless, this variation also depends on stress levels. Fig. 3b shows the influence of 208 

parameter b on ACR. It is observed that ACR decreases with an increase in b (e.g. 92% 209 

reduction when b increases from 0.1 to 0.3 for D = -0.2). This is because ε2 reduces with an 210 

increase in b. As a consequence, the extra confinement Δσ'2 undergoes substantial reduction. 211 

Thus, σ'2 significantly influences the magnitude of extra confinement offered by the 212 

geoinclusion.  213 
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It can be noted that parameter b at the plane-strain condition (bps) for the above case is 214 

0.32. Therefore, the magnitude of ACR is nearly equal to 0 for b = 0.3. Moreover, ACR 215 

becomes 0 for b≥bps because ε2 becomes compressive if b exceeds bps. Due to lack of 216 

experimental/field data, it is very difficult at this stage to visualize the deformation behavior of 217 

geoinclusion once b exceeds bps. Therefore, b has been normalized with bps in subsequent 218 

section to show its influence on additional confinement. Fig. 3c shows the polar contour plot 219 

of ACR for σ'3 = 15 kPa and D = -0.2 to elucidate the influence of φ'f and b/bps ratio on ACR. 220 

The radial and polar coordinates in the plot correspond to the values of parameters kc and b/bps 221 

ratio respectively. The four different sectors in the plot represent the ACR values for φ'f = 40°, 222 

45°, 50° and 55°. The radial boundary of each sector is marked by the plane-strain (b/bps = 1) 223 

and the axisymmetric conditions (b/bps = 0). It can be observed that ACR decreases with an 224 

increase in b/bps and φ'f. This may be attributed to the reduction in the magnitude of ε2 with an 225 

increase in φ'f and b/bps. 226 

Influence of geoinclusion type  227 

The geoinclusion type may influence the magnitude of additional confinement. Therefore, five 228 

different types of geoinclusion materials, namely, HDPE, woven coir fiber geotextile, 229 

nonwoven polypropylene fiber geotextile, rubber membrane (with three different thicknesses) 230 

and rubber tire, have been used in the analysis. Fig. 4a shows the load vs. strain curves of the 231 

five materials obtained from tension tests (Henkel and Gilbert 1952; Koerner 2012; Biabani 232 

2015; Indraratna et al. 2017; Lal et al. 2017). It can be observed that each material exhibits 233 

distinct load-strain response. HDPE shows an elastic-perfectly plastic response with high initial 234 

modulus, while nonwoven geotextile shows a strain hardening response with progressively 235 

increasing modulus. The secant modulus of coir geotextile is initially intermediate to that of 236 

HDPE and polypropylene geotextile. However, after 12.5% strain, the secant modulus of coir 237 
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geotextile exceeds the modulus of HDPE. Furthermore, the rubber tire and rubber membranes 238 

have the maximum and minimum modulus among all the materials, respectively. 239 

Fig. 4b shows the variation of normalized additional confinement with N for the five 240 

different geoinclusion materials at σ'3 = 15 kPa, b = 0.1, D = -0.2 and φ'f = 50°. It can be 241 

observed that the rubber tire provides the maximum confinement to the infill in the direction 242 

of σ'3. This is reasonable since the modulus of rubber tire is the maximum among the five 243 

materials at a particular magnitude of strain. HDPE provides a higher confinement than coir 244 

geotextile, polypropylene geotextile and rubber membranes. However, if the mobilized strain 245 

increases beyond 12.5%, the magnitude of confinement provided by coir geotextile may exceed 246 

that provided by HDPE [refer to Fig. 4a]. Nevertheless, the mobilized strain, in this case, is 247 

below 12.5%. Consequently, HDPE provides a higher confinement than coir geotextile 248 

throughout the loading schedule. The extra confinement offered by polypropylene geotextile 249 

and rubber membranes is very small as compared to rubber tire, HDPE and woven coir 250 

geotextile due to their low secant modulus. 251 

Similar behavior is observed in the direction of σ'2. The magnitude of kσ,2 is the highest 252 

for rubber tire followed by HDPE, coir geotextile, polypropylene geotextile and rubber 253 

membranes. However, kσ,2 is smaller than kσ,3 for all the materials. This is due to the 254 

mobilization of a small magnitude of strain in the direction of σ'2. 255 

Hence, the additional confinement provided by the geoinclusion significantly depends on 256 

the type of the constituent material. Usually, the confinement increases with an increase in 257 

geoinclusion modulus. However, the selection of an appropriate geoinclusion must be based 258 

on its intended function and scope of the project. Moreover, the additional confinement (Δσ'2 259 

and Δσ'3) is not only directionally sensitive, but also sensitive to parametric variations. 260 

Therefore, simplification of 3D into 2D (axisymmetric or plane-strain) stress state may result 261 
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into either over-predictive or conservative estimates. Thus, the present model yields more 262 

accurate results as compared to the existing models. 263 

In practice, the geoinclusion-stabilized soil is more likely to be subjected to a complex 264 

3D stress state. The present model evaluates the extra confinement offered by the cellular 265 

geoinclusions in the directions of σ'2 and σ'3. Moreover, it can capture the variations in the 266 

confinement mobilized in the two orthogonal directions due to changes in stress levels, infill 267 

and geoinclusion properties. Thus, the model can also help in the selection of adequate material 268 

parameters for deriving maximum potential benefits from geoinclusion reinforcement. 269 

MODEL VALIDATION 270 

Limited laboratory or field data are available on the magnitude of additional confinement 271 

provided by the cellular geoinclusions in the 3D (σ'1 ≠ σ'2 ≠ σ'3) loading conditions. 272 

Nevertheless, the present model is validated against the results of the static triaxial tests on 273 

geocell-reinforced soils conducted by Bathurst and Rajagopal (1993) and Rajagopal et al. 274 

(1999), and the repeated load triaxial tests conducted by Mengelt et al. (2006). Table 2 lists the 275 

input parameters used in the predictions. Fig. 5a compares the additional confinement 276 

calculated using the present model with the experimental data. It is observed that the predicted 277 

values vary by 1% to 20% from the experimental results. 278 

The model is also used to predict the extra confinement offered by geocells for the plane-279 

strain repeated load tests, conducted by Indraratna et al. (2015). The values of the parameters 280 

used in the prediction are listed in Table 2. Fig. 5b compares the predicted and experimentally 281 

observed results. The results are expressed in terms of normalized additional confinement (kσ,3). 282 

The predicted results are in a good agreement with the experimental data. A slight deviation 283 

from the experimental data can occur if the value of modulus is arbitrarily selected. In fact, the 284 

modulus needs careful evaluation by conducting the tensile tests or junction peel tests. This is 285 

because, it depends on the type of test arrangement (i.e. specimen with or without welds) and 286 
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the nature of the test (i.e. wide width, junction peel, split). Nevertheless, it is apparent that the 287 

present approach can provide reliable estimates of the extra confinement, offered by 288 

geoinclusions. 289 

CONCLUSIONS 290 

A semi-empirical model has been developed to evaluate the extra confinement offered by the 291 

cellular geoinclusions under the 3D stress state (σ'1 ≠ σ'2 ≠ σ'3). The results indicate that the 292 

magnitude of additional confinement is sensitive to the stress state (axisymmetric, plane-strain 293 

and 3D), type of inclusion and the parametric variations. The additional confinement ratio 294 

(ACR) varies between 0 and 1 for the 3D stress state, which indicates that the simplification of 295 

the 3D stress state to plane-strain or axisymmetric stress states yields conservative or over-296 

predicted results, respectively. Moreover, in comparison to Δσ'3, the additional confinement in 297 

the direction of σ'2 (Δσ'2) decreases with an increase in dilatancy rate (D), mobilized friction 298 

angle (φ'f) and the intermediate principal stress ratio (b). Furthermore, the magnitude of extra 299 

confinement increases with an increase in geoinclusion modulus. Thus, the present model 300 

provides a realistic assessment of additional confinement for deriving maximum potential 301 

benefits from geoinclusion reinforcement with a convenient selection of adequate material 302 

parameters. 303 
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Table captions 

Table 1. Input parameters for the parametric study. 

Table 2. Parameters for predicting the additional confinement under the plane-strain and 

axisymmetric conditions. 
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Table 1. Input parameters for the parametric study. 

Parameter Value 
Test type Repeated load test 
Loading condition General 
Geoinclusion material HDPE (unless otherwise stated) 
Infill material Subballast 
Frequency (Hz) 10 
Dg (m) 0.24, 0.54 (for rubber tire) 
σ'1 (kPa) 160 
σ'3 (kPa) 15, 20, 25, 30 
σcyc (kPa) 145, 140, 135, 130 
σatm (kPa) 101.325 
Nlim 500 000 
μg 0.3 
μs 0.35 
D* -0.2, -0.4, -0.6, -0.8, -1.0 
k1 19.12 
k2 -3 
k3 8.42 
k4 0.129 
φ'f (°) 40, 45, 50, 55, 60 

* Negative sign is assigned for dilative behavior 
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Table 2. Parameters for predicting the additional confinement under the plane-strain and 

axisymmetric conditions. 

Parameter 
Axisymmetric  Plane-strain 
Bathurst and 
Rajagopal (1993) 

Rajagopal et 
al. (1999) 

Mengelt et al. 
(2006) 

 Indraratna et 
al. (2015) 

Infill material Dense SS Sand Sand  Subballast 
Geocell material Polyethylene PP-W, PP-NW HDPE  HDPE 
Frequency (Hz) Not applicable Not applicable 1  10‒30 
Dg (m) 0.2 0.1 0.25  0.24 
σ'1 (kPa) 1 050 550‒860 25‒100  166 
σ'3 (kPa) 25 100 1  5‒30 
Nlim Not applicable Not applicable 1 500  500 000 
φ'f (°) 72.5 44.1‒52.4 67.4–78.6  Varies with N 
E (MPa) 46.2 21.9‒38.2 Not applicable  Not 

applicable 
MR (MPa) Not applicable Not applicable 16‒41  Varies with N 
μg 0.30 0.30 0.30  0.30 
μs 0.35 0.35 0.35  0.35 
kc 1 1 1  0.075 
k1 Not applicable Not applicable Not applicable  19.12‒72.17 
k2 Not applicable Not applicable Not applicable  -3 
k3 Not applicable Not applicable Not applicable  8.42 
k4 Not applicable Not applicable Not applicable  0.129‒0.156 
σatm (kPa) 101.325 101.325 101.325  101.325 
Note: Geocell modulus is the secant modulus corresponding to the magnitude of mobilized 
strain; SS = silica sand; PP-W = polypropylene woven geotextile; PP-NW = polypropylene 
nonwoven geotextile; HDPE = high-density polyethylene. 
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Figure captions 

Fig. 1. The behavior of railway embankment under train traffic-induced loads: (a) without 

cellular geoinclusion; (b) with cellular geoinclusion 

Fig. 2. Deformation of cellular geoinclusion under different stress states: (a) general; (b) plane-

strain; (c) axisymmetric 

Fig. 3. Variation of additional confinement ratio (ACR) with (a) mobilized friction angle (φ'f) 

and dilatancy rate (D); (b) dilatancy rate (D) for b = 0.1, 0.2 and 0.3; (c) b/bps ratio and φ'f 

Fig. 4(a). Tensile load-strain curves for five different types of cellular geoinclusion materials; 

(b). variation of normalized additional confinement (kσ,2 and kσ,3) with the number of load 

cycles (N) 

Fig. 5. Comparison of the additional confinement computed using the present model with the 

experimental data under (a) axisymmetric condition; (b) plane-strain condition 

 

Fig. A1. Stress profile of 3D cellular geoinclusion under general stress state   
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APPENDIX 

The Fig. A1 shows the stress profile of the 3D cellular geoinclusion under general stress state. 

Taking equilibrium of forces along the directions 2 and 3 gives: 

(A1) (𝜎𝜎2′ + ∆𝜎𝜎2′)𝐷𝐷𝑔𝑔 − 𝜎𝜎2′𝐷𝐷𝑔𝑔 − 2𝜎𝜎c,2𝑡𝑡𝑔𝑔 = 0 

(A2) (𝜎𝜎3′ + ∆𝜎𝜎3′)𝐷𝐷𝑔𝑔 − 𝜎𝜎3′𝐷𝐷𝑔𝑔 − 2𝜎𝜎𝑐𝑐,3𝑡𝑡𝑔𝑔 = 0 

where Δσ'2 and Δσ'3 are the additional confining pressures in the direction of intermediate (σ'2) 

and minor principal stresses (σ'3), respectively; σc,2 and σc,3 are the circumferential stresses in 

the direction of σ'2 and σ'3, respectively; Dg and tg are diameter and thickness of geoinclusion, 

respectively. 

On simplification, Δσ'2 and Δσ'3 can be expressed as: 

(A3) ∆𝜎𝜎2′ =
2𝜎𝜎c,2𝑡𝑡𝑔𝑔
𝐷𝐷𝑔𝑔

 

(A4) ∆𝜎𝜎3′ =
2𝜎𝜎𝑐𝑐,3𝑡𝑡𝑔𝑔
𝐷𝐷𝑔𝑔
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Fig. 1 The behaviour of railway embankment under train traffic-induced loads: (a) without cellular geoinclusion; (b) with cellular geoinclusion



Fig. 2. Deformation of cellular geoinclusion under different 
stress states: (a) general; (b) plane-strain; (c) axisymmetric
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Fig. 3 Variation of additional confinement ratio (ACR) with (a) mobilized friction angle (φ'f) and 
dilatancy rate (D); (b) dilatancy rate (D) for b = 0.1, 0.2 and 0.3; (c) b/bps ratio and φ'f
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Fig. 5 Comparison of the additional confinement computed using the present model with the 
experimental data under (a) axisymmetric condition; (b) plane-strain condition
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Fig. A1 Stress profile of 3D cellular geoinclusion under general stress state
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