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Abstract

Background: Single-cell resequencing (SCRS) provides many biomedical advances in variations detection at the
single-cell level, but it currently relies on whole genome amplification (WGA). Three methods are commonly used
for WGA: multiple displacement amplification (MDA), degenerate-oligonucleotide-primed PCR (DOP-PCR) and
multiple annealing and looping-based amplification cycles (MALBAC). However, a comprehensive comparison of
variations detection performance between these WGA methods has not yet been performed.

Results: We systematically compared the advantages and disadvantages of different WGA methods, focusing
particularly on variations detection. Low-coverage whole-genome sequencing revealed that DOP-PCR had the
highest duplication ratio, but an even read distribution and the best reproducibility and accuracy for detection of
copy-number variations (CNVs). However, MDA had significantly higher genome recovery sensitivity (~84 %) than
DOP-PCR (~6 %) and MALBAC (~52 %) at high sequencing depth. MALBAC and MDA had comparable single-nucleotide
variations detection efficiency, false-positive ratio, and allele drop-out ratio. We further demonstrated that SCRS data
amplified by either MDA or MALBAC from a gastric cancer cell line could accurately detect gastric cancer CNVs
with comparable sensitivity and specificity, including amplifications of 12p11.22 (KRAS) and 9p24.1 (JAK2, CD274,
and PDCD1LG2).

Conclusions: Our findings provide a comprehensive comparison of variations detection performance using SCRS
amplified by different WGA methods. It will guide researchers to determine which WGA method is best suited to
individual experimental needs at single-cell level.
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Background
Variations detection in single-cell resequencing (SCRS) re-
search has enabled numerous advances in heterogeneity
analysis [1], including cancer research [2–5], haplotype
studies [6, 7], single-neuron sequencing [8], and detection
of aneuploidy and unbalanced chromosomal rearrange-
ment in pre-implantation screening/diagnosis [9, 10]. The
direct sequencing of single cells has been limited by the pi-
cogram amount of DNA in individual cells; hence, whole
genome amplification (WGA) is usually used to increase
the amount of DNA before sequencing library preparation.
Currently, three WGA strategies are widely used for

SCRS: degenerate-oligonucleotide-primed polymerase
chain reaction (DOP-PCR) [11, 12], multiple displace-
ment amplification (MDA) [13–15], and a combination
of displacement pre-amplification and PCR amplification
(marketed as PicoPlex kit by Rubicon Genomics [16, 17],
MALBAC kit by Yikon Genomics [7, 18, 19]). These
three WGA strategies differ in the enzymes used and in
the experimental protocol design, which may yield dif-
ferent performances and biases, allowing for different
specific applications. Quake et al. reported the compari-
son of CNVs detection, single-nucleotide variations
(SNVs) detection and de-novo genome assembly using
single-cell Escherichia coli DNA amplified by these three
methods, with the corresponding bulk DNA as control
[20]. He et al. compared the performance of genome
coverage efficiency, reproducibility, GC bias, genome
coverage uniformity and CNVs detection of 11 hippo-
campal neurons also amplified by these three methods
at low-coverage sequencing depth [21]. Voet et al. re-
ported the variations detection performance comparison
using human cell line and blastomeres amplified by
MDA and PicoPlex WGA [22].
However, although it is known that the WGA strat-

egies may introduce artifacts and cause errors in varia-
tions detection [1], there is still no comprehensive
comparison of the amplification bias and variations de-
tection performance of the widely used commercialized
kits completely based on these three strategies. To sys-
tematically evaluate the SCRS performance of commonly
used WGA methods, we performed single-cell WGA
using seven kits, with several experimental replicates for
each kit, and then sequenced the whole genome of the
successfully amplified DNA. We designed a narrowing-
down strategy to investigate the amplification and varia-
tions detection performance cost-efficiently. First, we
evaluated the mapping ratio, duplication ratio, and genome
coverage uniformity using the single-cell low-coverage
whole genome sequencing (LWGS) data or the extracted
single-cell LWGS data. By evaluating the amplification
quality during LWGS comparison, we selected the kits
with best genome recovery sensitivity or uniformity. Using
the further deep-sequenced whole genome sequencing
(WGS) data amplified by the chosen kits, we further inves-
tigated the amplification bias and variations detection abil-
ity. In this way, we found that DOP-PCR methods had the
highest duplication ratio and limited mapping efficiency
and genome recovery - presumably as a result of the PCR
process - but also that DOP-PCR methods had the best re-
producibility and accuracy for detection of CNVs. In
addition, we found that MDA and MALBAC had compar-
able genome recovery sensitivity, higher than that of DOP-
PCR. Furthermore, we found that SCRS data from MDA
also had comparable SNVs detection accuracy and CNVs
detection accuracy to that of MALBAC. Our results pro-
vide a comprehensive comparison of variations detection
performance at single-cell level between different WGA
methods, and guidance for researchers to choose best
suited WGA methods when performing variations detec-
tion at single-cell level.

Data description
As shown in Fig. 1, we used a narrowing-down strategy
to compare the WGA methods cost-effectively. We ob-
tained 29 single cells from the YH cell line (a human
lymphoblastoid cell line from first Asian genome donor
[23]) and amplified them using seven commercialized
kits. The kits tested were: GenomePlex® Single Cell
WGA Kit (which we called DOP-1, Sigma-Aldrich, St.
Louis, MO, USA); Silicon Biosystem Ampli™ WGA Kit
(DOP-2, Silicon Biosystems, Bologna, Italy); NEB Single
Cell WGA Kit (DOP-3, New England Biolabs, Ipswich,
MA, USA); Qiagen REPLI-g Mini Kit (MDA-1, Qiagen,
Düsseldorf, Germany); Qiagen REPLI-g Single Cell Kit
(MDA-2, Qiagen, Düsseldorf, Germany); GE Healthcare
illustra GenomiPhi V2 DNA Amplification Kit (MDA-3,
GE Healthcare, Little Chalfont, Buckinghamshire, England);
and Yikon Genomics Single Cell Whole Genome Amplifi-
cation Kit (MALBAC, Yikon Genomics, China). These kits
were based on DOP-PCR, MDA, or MALBAC method re-
spectively as indicated by their designations. We performed
several experimental replicates for each kit, and se-
quenced the WGA product of each single cell a mean
depth of ~0.5X (Additional file 1: Table S1 and Additional
file 2: Table S2). We performed a low-coverage sequencing
comparison using 20 YH single cells which were amplified
by these seven WGA kits and sequenced them on Illu-
mina Sequencer (Additional file 1: Table S1). Three out of
the 20 YH single cells that showed outstanding uniformity
during low-coverage sequencing comparison and two
other YH single cells amplified by MDA-2 kit were also
selected to further high-coverage sequence to around 30X
on Illumina Sequencer (Additional file 3: Table S3). We
also obtained deep WGS data from two sets of YH cells
(each set was comprised of 10–20 single YH cells) whose
DNA was amplified using the MDA-2 kit (called MDA-
2_M6 and MDA-2_M16; Additional file 3: Table S3). We
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Fig. 1 A narrowing-down strategy used to compare WGA methods cost-effectively. We describe the narrowing-down strategy using 3 panels
(a, b, c). We perform LWGS comparison including genome coverage and uniform using YH single cells which are amplified by seven WGA kits
based on DOP, MDA and MALBAC methods in panel A. We additionally compare the CNVs detection using simulated data of YH single cells in
panel A. In panel B, we perform the deep WGS comparison of biases and SNVs detection using deep-sequenced YH or SW480 single cells
amplified by DOP, MDA or MALBAC respectively. Corresponding bulk data is used as unamplified control. In panel C, we further compare the
CNVs detection between MDA-2 and MALBAC amplified data using real data of BGC823 single cells. *Ion Proton sequencing data; #Illumina and
Ion Proton sequencing data. LWGS, low-coverage whole-genome sequencing; WGS: whole genome sequencing. DOP-1,GenomePlex® Single Cell
WGA Kit; DOP-2, Silicon Biosystem Ampli™ WGA Kit; DOP-3, NEB Single Cell WGA Kit; MDA-1, Qiagen REPLI-g Mini Kit; MDA-2, Qiagen REPLI-g
Single Cell Kit; MDA-3, GE Healthcare illustra GenomiPhi V2 DNA Amplification Kit; MALBAC,Yikon Genomics Single Cell Whole Genome Amplification
Kit. Data marked in purple is downloaded
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obtained the bulk WGS data from the YH cell line as con-
trol (called YH-mix; Additional file 3: Table S3). Seven
other YH single cells were amplified by MDA-2 or MAL-
BAC, then sequenced on Lifetech Ion Proton Sequencer
to perform CNVs detection (Additional file 2: Table S2).
For the cancer cell line data, we downloaded the

MALBAC-amplified WGS data of five single cells de-
rived from the SW480 human colon cancer cell line and
corresponding bulk SW480 sequencing data from the
NCBI Short Read Archive (SRA060929).
Finally, we obtained 10 single cells from a human gas-

tric cancer cell line (called BGC823), amplified five by
MALBAC and five by MDA-2, and sequenced them to
~0.5X depth on Lifetech Ion Proton Sequencer. We also
obtained the WGS data of the bulk DNA of BGC823 as
a control (Additional file 2: Table S2).
Analyses
Comparison of low-coverage single-cell WGS performance
We first aligned the raw short reads of 20 low-coverage
sequenced YH single cells to the human reference gen-
ome (hg19) using BWA [24] (Methods). The resulting
data, including the read mapping ratio, read duplication
ratio, GC content, depth, and genome coverage, was
summarized and evaluated in Additional file 1: Table S1.
To eliminate the impact of sequencing depth and sequen-
cer bias on the WGA comparison, we randomly extracted
0.1X data from the raw LWGS data (Additional file 4:
Table S4). We found that MDA-2 amplified data had the
highest mean genome coverage (8.84 %), even higher than
that of MALBAC (8.06 %). MDA and MALBAC amplified
data had lower duplication ratio than DOP-PCR amplified
data (Bonferroni-corrected Mann–Whitney-Wilcoxon test,
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p < 0.05), but higher mean mapping ratio than DOP ampli-
fied data (Average 98.36 %, SD 0.92 % for MDA; average
97.68 %, SD 0.17 % for MALBAC; and average 89.31 %, SD
2.41 % for DOP, Bonferroni-corrected Mann–Whitney-
Wilcoxon test, p < 0.05) (Fig. 2a).
To gain more insights into the distinction of the map-

ping ratio between different WGA methods, we then
investigated unmapped reads for their GC content, sequen-
cing quality, and mapping quality. We found no significant
difference in the GC content of unmapped reads between
the methods (Additional file 5: Figure S1). However, we
found a significantly different N ratio for the unmapped
a

c

Fig. 2 LWGS Comparison of recovery sensitivity and amplification uniformi
three different WGA methods using 0.1X randomly extracted LWGS data. T
duplication ratio of different methods, respectively. b The mean normalized
data. The normalized read depth is defined as the ratio of the mean depth
genome. The binning window is 100 kb. The dashed curve is plotted using
(λ = 30) and normalized by dividing by 30. c A comparison of mean norma
kits. The binning window is 100 kb. YH-mix is used as the unamplified con
reads among the three WGA methods, with that for
MALBAC being the highest (Bonferroni-corrected
Mann–Whitney-Wilcoxon test, p < 0.001) and that for
MDA being the lowest (Bonferroni-corrected Mann–
Whitney-Wilcoxon test, p < 0.001) (Additional file 6:
Figure S2). The lowest N ratio seen in MDA-amplified
data could be explained by the high fidelity of the
Phi29 polymerase. Also, the different amplification
primers and the different sequencing quality may cause
the N ratio distinction, either.
We compared the read distribution uniformity using

0.1X extracted data from all the YH single cells mentioned
b

ty between WGA methods. a The recovery sensitivity comparison of
he histogram and line graph show the mean mapping ratio and mean
depth distribution of the seven WGA kits using the 0.1X sequencing
of all reads in each window to the mean depth of the whole
the simulated data (1000 dots) that followed the Poisson distribution
lized depth distribution in chr15:q11.1-q26.3 between different WGA
trol
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above. We simulated the theoretic sequencing depth dis-
tribution which followed the Poisson distribution (1000
dots, λ = 30) and was normalized by dividing by 30. We
then found that the mean normalized sequencing depth
distribution of DOP-1 data was most similar with the the-
oretic one, whereas all other amplification kits had ob-
served bias (Fig. 2b). Overall, the mean normalized depth
distribution biases for DOP-PCR methods, MDA-2 and
MALBAC were lower than those of MDA-1 and MDA-3.
DOP-PCR and MALBAC showed higher reproducibility
than MDA (Additional file 7: Figure S3, Additional file 8:
Table S5, Bonferroni-corrected Mann–Whitney-Wilcoxon
test, p < 0.05).
Using the 0.1X extracted data, we then assessed the re-

gional reads distribution in one genomic region in which
there were no copy-number alterations in the YH-mix
data (chr15: q11.1-q26.3). The read distribution for DOP-
PCR, MDA-2, and MALBAC had better evenness and re-
producibility than other WGA kits, and the MDA-1 read
distribution demonstrated the highest bias (Bonferroni-
corrected Mann–Whitney-Wilcoxon test, p < 0.001), as
also found in a previous report [18] (Fig. 2c, Additional file
9: Figure S4 and Additional file 10: Figure S5).
In summary, SCRS data amplified by MDA or MALBAC

had a lower duplication ratio, a higher mapping ratio, and
a higher genome recovery than that from DOP-PCR.
DOP-PCR, MDA-2 and MALBAC amplified data showed
high uniformity and reproducibility. All three amplification
strategies could potentially provide a uniform distribution
of sequencing reads, which is important for CNVs analysis
at the single-cell level.
Deep single-cell WGS and bias evaluation
To further explore the genome coverage bias introduced
by WGA, we compared deep-sequenced data (~30×) amp-
lified by DOP-1, MDA-2, MDA-3 or MALBAC respect-
ively (Table 1), because LWGS data amplified by these
four WGA kits had better genome recovery sensitivity or
sequence evenness than other kits. Among 5 deep-
sequenced YH single cells, MDA-3 amplified data covered
more than 94.35 % of the reference genome, and mean
genome coverage of 3 MDA-2 amplified single cells was
97.72 % (SD 2.97 %). We downloaded deep-sequenced
data of five SW480 single cells (derived from a colon cell
line) amplified by MALBAC cells from previous report
[18], which covered a mean of 82 % (SD 9.42 %) of the
whole genome. Of note, DOP-1 amplified YH WGS data
covered only 23.23 % of the reference genome with se-
quencing depth ~30X (we received ~30X raw sequencing
data, and after removing the primer sequences and dupli-
cations we obtained ~3X mapping reads with DOP-1).
The low amplification efficiency of the DOP-PCR method,
which resulted from the random primer PCR and the
enzyme [12], may cause the high duplication ratio
(39.24 %) at the whole genome level.
We next determined the cumulative sequencing depth

distribution across the entire genome to evaluate amplifi-
cation bias. Cumulative depth distribution curves for
DOP-1, MDA-2, MDA-3, and MALBAC fitted a standard
Poisson distribution (Fig. 3a). Although the YH-mix and
bulk SW480 control datasets covered almost whole refer-
ence genome with a sequencing depth of 10X or more
(98.62 % and 96.65 %, respectively), the coverage of WGA
data was much lower – average 82.21 % (SD 11.98 %) in
MDA-2, 59.49 % in MDA-3, 5.93 % in DOP-1, and average
47.33 % (SD 6.32 %) in MALBAC, respectively. All three
WGA strategies therefore introduced amplification bias,
but MDA-2 showed the highest effective covered sequen-
cing depth that may best suited for variations calling
(Bonferroni-corrected Mann–Whitney-Wilcoxon test, p <
0.001, Additional file 11: Table S6).
To further determine the specific regional bias and

GC bias introduced by WGA, we next used the deep-
sequenced data to evaluate the normalized depth distri-
bution in Alu and L1 repeat regions and regions with
different GC content. We plotted the distributions of
normalized depth in each Alu and L1 region, compared
with the distribution in entire genome split into 100 kb
windows. We observed that the normalized depth distri-
bution of DOP-1 amplified data in Alu and L1 regions
was significantly lower than that at whole-genome level,
and DOP-1 amplified data had the greatest difference of
normalized depth distribution between the repeat regions
and whole genome among different WGA methods
(Fig. 3b, Bonferroni-corrected Mann–Whitney-Wilcoxon
test, p < 0.001). In addition, the read distribution of SCRS
data from DOP-1 was influenced slightly by GC content,
as the result of the unamplified control of YH-mix
(Fig. 3c), whereas high GC content influenced the read
distribution of the MDA-3 data (Bonferroni-corrected
Mann–Whitney-Wilcoxon test, p < 0.001).
Using the deep-sequenced data, we performed extra

comparison of assembly performance between MDA and
MALBAC amplified data, and found that MALBAC may
have comparable assembly quality as MDA but lower sta-
bility of the assembly than MDA by mitochondrial assem-
bly (See details in Additional file 12: Supplementary Note).

Assessment of artifacts introduced by different WGA
methods
To gain more comprehensive insights into the single-
nucleotide artifacts introduced by the three amplification
methods, we first defined a ‘golden control’ genotype set
for MDA and DOP-PCR amplified data: a set of genotype
consensus sites from the YH-mix that were also found on
the 2.5 M Illumina Omni SNP Chip (Methods). We also
defined a ‘golden control’ genotype set for MALBAC:



Table 1 Deep-sequencing statistics of single cells amplified by different kits

Sample index Number of mapped
bases (bp)

Read mapping
ratio (%)

Read duplication
ratio (%)

GC content (%) Mean depth (X) Genome coverage (%)

MDA-2_46 109,113,164,019 98.42 2.44 43.63 38.20 94.30

MDA-2_47 82,746,143,862 98.49 1.73 42.74 28.95 99.63

MDA-2_66 102,165,179,471 98.54 6.52 40.66 35.84 99.24

MDA-3_45 52,911,771,602 99.09 6.17 39.40 18.52 94.35

DOP-1_97 8,294,107,956 86.18 39.24 40.65 3.00 23.23

SW480-1 55,385,452,648 94.34 7.50 42.95 19.45 91.33

SW480-2 57,344,758,117 94.69 7.51 42.86 20.15 91.63

SW480-3 66,569,935,382 93.54 19.64 40.40 23.42 83.33

SW480-4 78,746,822,579 92.56 21.83 39.91 27.76 70.88

SW480-5 40,966,360,470 89.53 7.05 40.36 14.50 74.87

SW480-HEC 104,576,495,349 96.49 3.82 42.84 36.59 99.01

SW480-SCD 88,079,534,311 91.39 3.43 39.42 30.99 99.13

YH-mix 109,269,489,080 95.97 10.77 41.39 38.30 99.68

Hou et al. GigaScience  (2015) 4:37 Page 6 of 16
shared genotype consensus sites between bulk sequencing
data of SW480-SCD and SW480-HET that were also
found on the 2.5 M Illumina Omni SNP Chip. We com-
pared the consensus genotypes from the DOP-1, MDA-2,
MDA-3, and MALBAC deep-sequenced data with the cor-
responding golden controls (Table 2 and Additional file
13: Table S7), and evaluated the consensus genotypes de-
tection efficiency (CGDE) and concordant ratio (Methods).
The mean CGDE of MDA-2 data was 84.57 % (up to
94.62 %) , and the mean concordant ratio was 97.10 % (up
to 99.88 %). By contrast, data from DOP-1, MDA-3, and
MALBAC sequencing had a substantially lower CGDE
(6.00 %, 66.63 %, and a mean of 51.87 %, respectively), with
concordant ratio of 82.05 %, 97.12 % and a mean of
96.74 %, respectively (Fig. 3d). The limitations of CGDE in-
dicated a common WGA bias in these different methods;
however, data from MDA-2 had less bias.
To further investigate the potential biological impact

of these discordant genotypes sites (present in single
cells but not in the golden control) in SCRS data intro-
duced by the WGA, we sorted out the discordant SNVs
among these discordant genotype sites in three deep-
sequenced single cells amplified by MDA-2, and then
annotated these discordant SNVs using ANNOVAR [25]
(Additional file 14: Table S8). We found that most of the
altered genes that contained discordant SNVs occurred
only in one of the three cells, and only ~ 4 % of the al-
tered genes were shared among all of the three cells
(Additional file 15: Figure S6), indicating that the arti-
facts introduced by the MDA-1 were unlikely to influ-
ence the gene category analysis.
Because MDA frequently introduced chimeras [26], we

used deep WGS data of two single YH cells (MDA-2_47
and MDA-2_66) and another two sets of 10–20 single YH
cells (MDA-2_M6 and MDA-2_M16, Additional file 3:
Table S3) to evaluate the amplification chimeras. We per-
formed breakpoints identification using CREST [27] in
these samples as well as YH-mix as a control (Methods).
We defined the chimeras as the breakpoints appeared only
in the single-cell data rather than in YH-mix. Of the
different types of breakpoints such as the insertion
(INS), deletion (DEL), inversion (INV), intra-chromosomal
translocation (ITX) and inter-chromosomal translocation
(CTX), we found that chimeric ITX (Additional file 16:
Figure S7) was the dominant chimera type (82.08 %,
Fig. 3e). In addition, we found a significant difference of
length distribution between true ITXs (shared by the YH-
mix) and chimeric ITXs in single cells (Fig. 3f), suggesting
that the chimeras tended to be produced by neighboring
amplicons randomly connecting on the same chromosome,
as previously reported [26]. The percentages of other
chimera types, such as chimeric CTX (Additional file 17:
Figure S8), deletion, insertion and inversion, were 1.13 %,
8.09 %, 5.07 %, and 3.68 %, respectively.

Single-cell SNVs and CNVs detection accuracy of the WGA
methods
Owing to the amplification bias discussed above, SCRS
may lose one or both alleles at specific genome loci during
amplification (we termed sites with the loss of one allele
‘allele drop-out’ sites, ADO) (Methods). In addition, WGA
may introduce additional alleles that might lead to false-
positive mutations at the single-cell level (we termed sites
with WGA-introduced alleles as false-positive sites, FP).
The high duplication ratio and low genome coverage of
DOP-PCR methods limited their application in SNVs de-
tection; so we just compared the SNVs detection accuracy
of MDA with MALBAC (downloaded data from the previ-
ous reports [18]). Taking the YH-mix as the golden con-
trol for MDA-2 amplified data, we calculated the SNVs



Fig. 3 Bias and chimeras comparison using WGS data. a The cumulative distribution of sequencing fold depth of deep WGS data amplified by
DOP-1, MDA-2, MDA-3, and MALBAC, respectively. The standard Poisson Cumulative Distribution (λ = 30) is plotted (dashed), and YH-mix and
SW480 bulk data are presented as a control. It was related to Additional file 11: Table S6. b Normalized read depth distribution in repeat regions
(Alu and L1 regions) and the entire genome of deep-sequenced data amplified by different WGA kits. The normalized read depth is calculated for
each Alu/L1 region and for each window binning 100 kb of the entire genome. c Normalized read depth distribution in regions with different GC
content of deep-sequenced data amplified by different WGA kits. The 100 kb windows with GC content >50 % are defined as ‘HighGC’ windows,
<35 % as ‘LowGC’ windows, and others as ‘MiddleGC’ windows. d Histogram of effective consensus genotype efficiency, and line graph of the
concordant ratio of all deep-sequenced cells amplified by different WGA kits compared to the golden control. e The percentage of different types
of chimeras detected in MDA-2-amplified YH single cells. CTX, inter-chromosomal translocation; ITX, intra-chromosomal translocation; DEL,
deletion: INS, insertion: INV, inversion. f Boxplot of the length distribution of ITXs shared between MDA-2-amplified cells and YH-mix versus the
chimera ITXs that are unique in single cells. p < 0.01, Mann–Whitney-Wilcoxon test
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detection accuracy of deep-sequenced single cells ampli-
fied by MDA-2, and showed the results in Table 3. We de-
tected a mean of 3,044,473 SNVs in MDA-2 amplified
single cells compared with 3,649,573 SNVs in the YH-mix,
thus the overall detection efficiency for the MDA-2 data
was 83.42 %. We then calculated the ADO ratio and FP
ratio of SCRS data amplified by MDA-2, founding that the
mean ADO ratio was 12.47 % (0.78 %, 3.23 % and 33.40 %,
respectively), and the mean FP ratio was 5.31 × 10−5 (SD
0.007 %) which was comparable with ~4 × 10−5 of the FP
ratio of MALBAC in previous report [18]. Although the
5.31 × 10−5 false-positive ratio for SNVs detection (due to
the amplification enzyme) appeared to be a problem for
accurately genotyping single-cell whole human genomes
(3 × 109 sites), by integrating the consensus sequence of
two or three independent cells, the false-positive ratio
could be decreased to ~10−8 with two replicate cells
and to ~10−12 with three replicate cells, as described in
previous report [18]. In conclusion, we inferred that
the SCRS data generated using MALBAC and MDA-2
had a comparable performance for SNVs detection, with
up to ~10−12 false positives across the entire genome of a
single cell.
To systematically compare the performance of the

SCRS data from MALBAC, MDA, and DOP-PCR for
CNVs detection, we first used the 0.1X LWGS data de-
scribed in Additional file 4: Table S4 to compare the
CNVs detection accuracy (Methods). Because the YH
cell line was derived from normal lymphocytes with few
CNVs (≥1 Mb), we only observed few large CNVs at the
single-cell level (Additional file 18: Figure S9) in most of
the SCRS data amplified with DOP-PCR, MALBAC or
MDA. To further compare the CNVs detection of differ-
ent WGA method using these data, we simulated some



Table 2 Comparison of consensus genotypes and SNVs detection accuracy of deep-sequenced data amplified by MDA and MALBAC

Allele type

Golden control for SW480 cells

HOM ref. HOM mut. HET ref. Total Consistency (%)

1,762,437.00 403,431.00 173,098.00 2,338,966.00

MALBAC mean

HOM ref.

2 849,057.40 - -

1 - - 10,352.40 859,455.20 98.79

0 - 45.40 -

HOM mut.

2 - 266,889.00 -

1 - - 18,507.40 285,625.60 93.44

0 213.40 11.20 4.60

HET ref.

2 - - 58,948.80

1 2,287.20 6,860.40 8.80 68,105.20 86.56

0 - 0.00 -

Total 851,558.00 273,806.00 87,822.00 1,213,186.00 96.84

Coverage (%) 48.32 67.87 50.74 51.87 -

Allele type

Golden control for YH cells

HOM ref. HOM mut. HET ref. Total Consistency (%)

1,584,649.00 270,225.00 351,490.00 2,206,364.00

MDA mean

HOM ref.

2 1,373,228.00 - -

1 - - 21,871.00 1,395,113.33 98.43

0 - 14.33 -

HOM mut.

2 - 256,682.67 -

1 - - 27,674.00 284,365.67 90.26

0 7.33 1.67 0.00

HET ref.

2 - - 256,185.67

1 212.67 326.33 2.33 256,727.00 99.79

0 - 0.00 -

Total 1,373,448.00 257,025.00 305,733.00 1936,206.00 97.41

Coverage (%) 86.67 95.12 86.98 87.76 -

Mean coverage and consistency are calculated using the data amplified by the same WGA method according to Additional file 13: Table S7. HOMref, homozygotes
where both alleles are identical to the reference; HOMmut, homozygotes where both alleles are different from the reference; HETref, heterozygotes where only one
allele is identical to the reference. We formulate the mean counts of genotyped alleles of single cell sequencing sites that are consistent with ‘golden control’ at both
alleles, at one allele, or that are inconsistent at both alleles as 2, 1, and 0, respectively
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CNVs candidates into each single YH cell data and YH-
mix data (Methods). These CNVs candidates were deter-
mined as the concordant CNVs of the SW480-SCD bulk
data and the SW480-HET bulk data. We then called
CNVs using a pipeline modified from Baslan’s method
[28] (Methods). Comparing each single cell data with
the YH-mix data as control, we found that DOP-PCR had
the best accuracy for CNVs detection (≥1 Mb, Bonferroni-
Table 3 Comparison of consensus genotypes and SNVs detection acc

Control/sample Heterozygous (FP/ADO/Efficiency) Homoz

YH-mix (Unamplified control) 2051,282 1,598,29

MDA-2_46 777,908 (5563/390,038/37 %) 1,747,00

MDA-2_47 1,807,282 (6517/14,124/87 %) 1,562,03

MDA-2_66 1,651,733 (6347/55,158/80 %) 1,587,45
corrected Mann–Whitney-Wilcoxon test, p < 0.05), with a
mean sensitivity of 94.15 % (SD 4.84 %) and a mean speci-
ficity of 94.00 % (SD 6.51 %). Simulated data from MAL-
BAC could detect CNVs (≥1 Mb) with a mean sensitivity
of 91.40 % (SD 1.61 %) and a mean specificity of 87.80 %
(SD 1.98 %), whereas simulated SCRS data from MDA
could detect CNVs (≥1 Mb) with only a mean sensitivity
of 74.04 % (SD 20.21 %) and a mean specificity of 67.93 %
uracy of deep-sequenced data amplified by MDA and MALBAC

ygous (FP/Efficiency) Total (FP/Efficiency) FP ratio ADO Ratio

1 3,649,573 - -

4 (390,107/84 %) 2,524,912 (395,670/58 %) 1.32E-04 0.3340

6 (14,177/96 %) 3,369,318 (20,694/91 %) 6.90E-06 0.0078

6 (55,195/95 %) 3,239,189 (61,542/87 %) 2.05E-05 0.0323
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(SD 25.97 %) (Fig. 4a; see also Additional file 19: Table S9
and Additional file 20: Figure S10). We found that al-
though the mean CNVs detection sensitivity and specifi-
city for the SCRS data from MDA was lower than those of
DOP-PCR and MALBAC, the mean CNVs detection
mean sensitivity and mean specificity for the SCRS data
from MDA-2 were 78.91 % and 76.47 %, respectively,
and one specific MDA-2 cell (cell MDA-2_66) even
reached 93.84 % and 96.13 %, respectively. We also cal-
culated the pair-wise Pearson correlation of copy-
number ratio of all single cell data, and found that the
SCRS data from MALBAC and DOP-PCR had signifi-
cantly higher consistency than MDA, indicating that
MALBAC and DOP-PCR have better reproducibility in
CNVs detection (Additional file 21: Table S10, Bonferroni-
corrected Mann–Whitney-Wilcoxon test, p < 0.05).
To further investigate the power of CNVs detection

using real SCRS data amplified by MALBAC and MDA-
2, we amplified 10 additional cells from a human gastric
adenocarcinoma cell line (BGC823) using MALBAC (5
cells) and MDA-2 (5 cells) respectively, and sequenced
them on Lifetech Ion Proton sequencer. BGC823 bulk
sequencing data was used as the unamplified data con-
trol. We also introduced 7 YH single cells data which
were amplified by MALBAC (3 cells) or MDA-2 (4 cells)
and then sequenced on Lifetech Ion Proton sequencer.
We found no recurrent CNVs (≥1 Mb) in the single YH
cells and YH-mix, and did not identify any obvious dif-
ferent CNVs compared with YH cells sequenced on Illu-
mina platform (Additional file 2: Table S2), indicating
that different sequencing platforms (Illumina and Life-
tech Ion Proton Sequencers) made few impacts on the
CNVs detection comparison. We observed 213 major
CNVs larger than 1 Mb in the bulk sequencing data of
BGC823 (Additional file 22: Table S11), and most of the
major CNVs in bulk sequencing data of BGC823 over-
lapped with CNVs in single BGC823 cells, including
amplification regions that include the oncogene KRAS
(12p11.22-p11.21) and the recently reported recurrent
amplification at 9p24.1 at the locus containing JAK2,
CD274, and PDCD1LG2 (which augments the anti-
tumor immune response) [29] (Fig. 4b, Additional file
23: Figure S11a, Additional file 24: Figure S11b and
Additional file 22: Table S11). Treating the bulk sequen-
cing data of BGC823 as control, we estimated that the
MALBAC-amplified BGC823 SCRS data achieved a mean
sensitivity of 84.72 % (SD 0.82 %) and a mean specificity
of 85.18 % (SD 1.61 %), while MDA-2 amplified BGC823
SCRS data achieved a mean sensitivity of 85.86 % (SD
10.27 %) and a mean specificity of 81.18 % (SD 8.90 %), in-
dicating that MALBAC provided a higher specificity and
slightly lower sensitivity than MDA-2 (Additional file 25:
Table S12). This result is different with our simulated data,
which may be caused by difference in CNVs complexity
between different cancer cell lines. In addition, MALBAC
showed a higher reproducibility among replicates than
MDA-2 in CNVs detection (Additional file 26: Table S13,
Mann–Whitney-Wilcoxon test, p < 0.01), which is consist-
ent with simulation data result. However, taking our find-
ings on CNVs together, we concluded that the SCRS data
from both MALBAC and MDA-2 could robustly identify
CNVs larger than 1 Mb.

Discussion
Here, we provided a comprehensive comparison of single-
cell variations detection performance basing on different
WGA methods. We first performed LWGS analysis of sin-
gle cells using three major WGA methods: MDA, DOP-
PCR, and MALBAC. The results indicated that SCRS data
generated by MDA-2 (MDA using the Qiagen REPLI-g
Single Cell Kit) presented higher genome recovery sensi-
tivity than those generated by MALBAC and DOP-PCR
with the same sequencing depth. SCRS data from DOP-
PCR had the lowest amplification bias along the entire
genome, as well as high reproducibility and the highest
single-cell CNVs detection accuracy (>90 %). In contrast
to previous reports [18], our analysis showed that MDA-2
and MALBAC had similarly favorable detection accuracy
and efficiency for single-cell SNVs and CNVs detection,
although MDA and MALBAC introduced FP sites, ADO
sites, and amplification bias.
DOP-PCR based sequencing data showed high duplica-

tion ratio and limited genome recovery sensitivity in our
study, indicating that this method may not be suitable for
detecting additional SNVs and structural variations at deep
sequencing depth. However, DOP-PCR has also been re-
ported to accurately detect aneuploidy and unbalanced
chromosomal rearrangements, achieving 99.63 % sensitiv-
ity and 97.71 % specificity for detecting CNVs larger than
1 Mb [30]. Considering our result together, we suggest that
DOP-PCR methods are suitable for studies focusing on the
analysis involving number of sequencing reads, such as
CNVs or aneuploidy detection in pre-implantation screen-
ing/diagnosis, cancer research or other disease research.
We found that MALBAC sequencing data had inter-

mediate genome recovery sensitivity, and uniformity for
CNVs detection. A previous study showed that MAL-
BAC was advantageous for SNVs and CNVs detection in
SCRS data compared with MDA (based on the kit called
MDA-1 here) [18]. However, when we compared the
SNVs and CNVs detection performance of the MDA-2
kit (an optimized version of the MDA-1 kit), we found
that the MDA-2 data had higher genome recovery than
the MALBAC data with the same sequencing depth
(Additional file 4: Table S4, Additional file 27: Table
S14). More importantly, we found that the MDA-2 data
had a comparable SNVs detection accuracy and CNVs
detection accuracy with those of the MALBAC data; and



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 X

0
2

4

6
8

0
2

4

6
8

0
2

4

6
8

0
2

4

6
8

0

2

4

6
8

M
A

LB
A

C
_B

G
C

1
M

A
LB

A
C

_B
G

C
2

M
D

A
−

2_B
G

C
7

M
D

A
−

2_B
G

C
9

B
G

C

Chromosome

C
op

y 
N

um
be

r

Amplification Normal Deletion

21 22

a

b

0

10

20

30

40

50

60

70

80

90

100
)

%( yticificep
S dna ytivitisne

S fo egatnecre
P

Sensitivity Specificity

Y

Fig. 4 Read-data CNVs detection comparison between MALBAC and MDA-2 amplified data. a Taking the simulated YH-mix data as control, sensitivity
and specificity of CNVs (≥1 Mb) in simulated single YH cells amplified by different WGA methods are bar-plotted. b CNVs of BGC823 single cells amplified
by MALBAC or MDA-2. BGC823 single cells are sequenced on the Ion Proton sequencer (~0.5X) as control. Bulk BGC823 sequencing data (bottom row)
are sequenced by PE-100 on an Illumina Hiseq 2000 (~50X), and ~1X data was extracted randomly to detect CNVs. Green, red, and blue represent normal,
amplification, and deletion, respectively

Hou et al. GigaScience  (2015) 4:37 Page 10 of 16



Hou et al. GigaScience  (2015) 4:37 Page 11 of 16
this accuracy was greater than that indicated by a previ-
ous report for MDA-1 [18]. Taken together, these data
suggest that optimization of MDA experimental proto-
cols may significantly improve SNVs and CNVs detec-
tion in SCRS data. Thus, we conclude that both MDA
and MALBAC can be used for research that require
low duplication ratio and high genome coverage, for
example, the detection of SNVs in disease research. In
addition, if researchers need to perform SNVs and
CNVs detection at the same time in some fields like
tumor heterogeneity and evolution research, we recom-
mend using MDA-2 and/or MALBAC because of their
higher efficiency and accuracy in variations detection.
However, MALBAC may have higher reproducibility of
uniformity and of CNVs detection performance than
MDA-2, making MALBAC more conducive to the het-
erogeneity research related to variations detection.
Although MDA method would introduce chimeras

during WGS, our analysis indicated that chimeras of
MDA-2 had potential to detect the breakpoints of struc-
tural variations for specific types of structural variations
at the single-cell level, such as inter-chromosomal struc-
tural variations, with the possibility of increasing the
specificity by reducing the number of random chimeras
in an increasing number of replicate cells.
A remaining challenge for variations detection at the

single-cell level is the cost. Unlike bulk sequencing,
single-cell analysis needs to amplify the whole genome
of the single cell first. The cost, especially for a large
number of cells to be amplified before sequencing, will
be considerable when taking the failure ratio into con-
sideration. The MDA and DOP-PCR are the most
widely used WGA methods even before the single-cell
sequencing occurs, and their costs are relatively low,
especially if using homemade reagents following the
freely available protocol. However, MALBAC is a new
method with more complex experimental procedure
that was developed especially for single-cell sequencing,
and thus the cost will be higher than that of MDA and
DOP. We believe that more detailed published proto-
cols and more users will help further reduce the cost of
MALBAC for single-cell amplification. Another ap-
proach that may reduce the cost significantly for all
three amplification methods could be microfluidics,
which would limit the reaction into a very small volume
(several nanoliters) for a large number of amplified sin-
gle cells [31].
Our results provide a comprehensive comparison of

variations detection performance in SCRS with different
WGA methods. It will guide researchers to choose the
most optimal WGA method to perform specific single
cell sequencing project in research areas such as analysis
of circulating tumor cells and tumor evolution, and pre-
implantation screening and diagnosis.
Methods
Sample preparation before WGA
A total of 39 single cells were collected in our study, 29
from a lymphoblastoid cell line (YH cell line) established
from the first Asian genome donor [23], the rest from a
widely known gastric cancer cell line, BGC823. Corre-
sponding bulk DNA was extracted as an unamplified
control. The BGC823 cell line was provided by Youyong
Lv at Beijing Cancer Hospital. All samples and experi-
mental protocols were approved by the Institutional Re-
view Board of BGI-Shenzhen.
Single cells were isolated as described previously [3].

Briefly, following sufficient dissociation and dilution of
cells, single cells were randomly picked up using a
mouth pipette under a microscope and washed three
times in phosphate-buffered saline to avoid exogenous
DNA contamination, then transferred into a PCR tube.
Single-cell isolation was confirmed by microscopy to en-
sure that only one cell was inside each tube.

WGA of single-cell genomic DNA with different WGA
methods
WGA was performed using seven different commercial
kits based on MDA, DOP-PCR or MALBAC strategies.
The kits used were Qiagen REPLI-g Mini Kit (MDA-1),
Qiagen REPLI-g Single Cell Kit (MDA-2), GE Healthcare
illustra GenomiPhi V2 DNA Amplification Kit (MDA-3),
GenomePlex® Single Cell WGA Kit (DOP-1), Silicon
Biosystem Ampli1™ WGA Kit (DOP-2), NEB Single Cell
WGA Kit (DOP-3), and Yikon Genomics Single Cell
WGA Kit (MALBAC). All experimental operations
followed the manufacturers’ protocols strictly and with-
out any modification.

Library construction and whole-genome DNA sequencing
The Illumina sequencer and LifeTech Ion Proton se-
quencer were used as the sequencing platforms in this
study. To construct the library for each cell on the Illu-
mina platform, 1–2 μg amplified genomic DNA was
used. After fragmentation, the ‘A’ adaptor was ligated to
each fragment. Next, 10 cycles of PCR using 8-base bar-
code primers was performed. After the DNA concentra-
tion and insert size measurement, the libraries were
processed for paired-end high-throughput sequencing on
Illumina HiSeq2000/HiSeq2500/MiSeq sequencer with a
mean depth of ~ 0.5X. Libraries with outstanding per-
formance in either recovery sensitivity or evenness of low-
coverage sequencing were further deeply sequenced to
around 30X. For LifeTech Ion Proton sequencing, a Bior-
uptor instrument was used to fragment DNA. The desired
size of DNA fragments were obtained and ligated with Ion
Proton A and P1 adaptors at each end, and then selected
using E-Gel EX 2 % Gel (Invitrogen, Carlsbad, CA) for
150- to 200-bp fragments. The fragments were amplified,
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and the DNA was purified with Agencourt AMPure XP
beads (Beckman Coulter Genomics, High Wycombe,
UK). As assessed by the BioAnalyzer High Sensitivity
LabChip Agilent, the resulting library had a median
fragment size of 180 bp. After dilution, emulsion PCR
reactions were set up for each nanoball in the library.
Before the nanoballs were placed onto the ION PI chip,
a sequencing primer and polymerase were added to the
final enriched spheres.
Read processing and mapping
Paired-ended reads generated by Illumina sequencer
Published data [18] of SW480 SCRS data and bulk SW480
sequencing data were downloaded from the NCBI Short
Read Archive with accession no. SRA060929. The WGA
primer was trimmed by Trimmomatic [32] from the 5′
ends of each read: 30 bases for YH cells amplified by
DOP-PCR [11, 12] and 35 bases for SW480 and YH cells
amplified by MALBAC [7, 18, 19]. Reads of YH cells amp-
lified by MDA [13–15] did not need to be trimmed. Reads
were then mapped to the human genome reference
(Hg19, Build37) by BWA [24] (version 62) and SAMtools
[33] (version 0.1.18), and sorted and marked as duplicates
by Picard [34] (version 1.72). 0.1X data was then randomly
down-sampled from the alignment results by Picard for
each sample.
Single-ended reads generated by LifeTech Ion Proton
sequencer
Thirty five bases of WGA primer were trimmed by Trim-
momatic from the 5′ ends of each read of BGC and YH
single cells amplified by MALBAC [18]. Reads were then
mapped to the human genome reference (Hg19, Build37)
by TMAP [35] (version 3.6.40) and SAMtools (version
0.1.18), and sorted and marked as duplicates by Picard
(version 1.72).
The alignment result was checked for quality by Quali-

map [36] (version 0.6).
SNVs calling
For each deeply sequenced sample, low-quality align-
ments (mapping quality less than 1, unmapped, dupli-
cates, and non-unique) were filtered using BamTools
[37]. Filtered alignments were then processed by GATK
[38] (version 2.3–9) with the options ‘Local Realignment
around Indels’ and ‘Base Quality Score Recalibration’.
SNVs were called at any callable sites by UnifiedGenotyper
(a variation caller of GATK), and trained by a Gaussian
mixture model using GATK. All the low-quality SNVs
and false-positive SNVs were identified and then fil-
tered based on the log odds ratio under the Gaussian
mixture model.
Excluding sequencing errors
In the LWGS study, we only used the Illumina sequen-
cing data to perform the comparison. The sequencing
error rates from the Illumina Miseq and Hiseq sequen-
cer have been reported previously [39]. In the compari-
son, we directly mapped the sequencing reads to the
hg19 human reference genome using BWA [24] with
mismatches allowed. As with most variations calling that
used resequencing data, we did not correct the sequen-
cing errors of the raw sequencing reads; instead, we ex-
cluded the low-quality reads, sorted the mapping data
and directly calculated the mapping ratio. To evaluate
the bias in the comparison caused by the correctable se-
quencing errors from Hiseq and Miseq, we extracted the
same amount of the sequencing reads amplified by the
same kit but sequenced on Hiseq 2000 or Miseq, re-
spectively. We found that there was no significant dif-
ference in the mapping ratio or duplication ratio
between the cells sequenced by the Hiseq 2000 or Miseq
(Additional file 28: Table S15). Thus, we inferred that
the conclusions we generated from the LWGS data
were not significantly biased by the correctable sequen-
cing errors.
In the deep WGS study, the correctable sequencing er-

rors may greatly influence the SNVs calling in the com-
parison. To exclude this influence introduced by the
sequencing errors, we performed the following steps in
the SNVs calling performance comparison between
MDA and MALBAC:

1. For each deeply sequenced sample, low-quality
alignments (mapping quality less than 1, unmapped,
duplicates, and non-unique) were filtered using
BamTools [37];

2. Alignments were processed by GATK [38] (version
2.3–9) with the options ‘Local Realignment around
Indels’ and ‘Base Quality Score Recalibration’ ;

3. SNVs were called at any callable sites by
UnifiedGenotyper (a Bayesian model based variation
caller of GATK), and trained by a Gaussian mixture
model using GATK (this step filtered out the
influence of the sequencing errors and the mapping
errors);

4. All the low-quality SNVs and false-positive SNVs
were identified and then filtered based on the log
odds ratio under the Gaussian mixture model;

5. The ADO ratio and false-positive ratio were
calculated, by comparing the genotypes of single cells
with those of the corresponding bulk sequencing data
sequenced on the same sequencer. In this way, after
the SNVs calling and filtering by the Bayesian
model and Gaussian mixture model, we ensured
that the sequencing errors did not bias the
comparison results.
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Single-nucleotide artifacts analysis
We defined different ‘golden controls’ for different cell
type data. For the YH single cells, the ‘golden control’
was defined as the concordant genotypes set overlapped
between YH-mix data and a commercial 2.5 M Illumina
Omni SNP Chip. And for the SW480 single cells, we
first obtained an overlap set of concordant genotypes be-
tween the two SW480 bulk (SW480-SCD and SW480-
HEC) sequencing data to reduce sequencing errors, and
defined the ‘golden control’ as the intersection set of ge-
notypes between the ‘overlap set’ and the commercial
2.5 M Illumina Omni SNP Chip. We clustered the geno-
typed alleles of both the ‘golden control’ and corre-
sponding single cells into three categories: HOMref
(homozygotes where both alleles were identical to the
hg19 reference genome), HOMmut (homozygotes where
both alleles were different with the hg19 reference gen-
ome), and HETref (heterozygotes where only one allele
was identical to the hg19 reference genome). We formu-
lated the counts of genotyped alleles of single cell se-
quencing sites that were consistent with ‘golden control’
at both alleles, at one allele, or that were inconsistent at
both alleles as 2, 1, and 0, respectively.
For each category (HOMref, HOMmut and HETref),

we calculated the consensus genotypes detection efficiency
(CGDE) as the ratio of counts of consensus genotypes de-
tected in single cell to those detected in corresponding
control. Concordant ratio was defined as the ratio of
counts of genotypes which both alleles were identical to
the golden control to the genotypes detected in single cell
for each category. We then calculated the mean CGDE
and concordant ratio of all categories for each single cell.

SNVs detection efficiency, ADO, and false-positive ratio
calculation
SNVs detection efficiency was calculated as the ratio of
the count of detected SNVs in a given single cell (minus
the number of false-positive SNVs) to those in the bulk
DNA. The ADO was defined as the non-amplification
occurred in alternative alleles present in heterozygous
sites. The false positive was defined as the SNVs in sin-
gle cell sequencing data but not present in the bulk se-
quencing data. Both the ADO and false positive ratio
were calculated by comparing the single cell sequencing
data with bulk control sequencing data.

Analysis of the chimera effect
To identify the chimeras at single-cell level, we identified
breakpoints using CREST [27] both in the MDA-2 ampli-
fied samples and YH-mix. Taking the YH-mix as the con-
trol, the true breakpoints in MDA-2 amplified samples
were defined as those overlapped with YH-mix if they
were of the same type and were not further apart than a
threshold of 100 bp: the rest were considered as chimeras.
CNVs simulation on the YH samples in silicon
Shared regions (≥1 Mb) between SW480-SCD and
SW480-HEC with concordant CNVs (the copy number
was assumed to be N) were selected as candidate regions
for further CNVs simulation. The copy number ratio (as-
sumed to be R) of the candidate region was formulated
as the copy number of the region divided by 2 (R = N/2).
For each YH sample (YH single cells and YH-mix con-
trol data), the simulated reads count (Ks) was defined as
the product of the reads count of a bin (Kr) and the
copy number ratio (R) of the corresponding candidate
region. (Ks = Kr × R). The modified pipeline was then
used to call CNVs in the simulated data for each sample.

Data simulation and CNVs calling
Copy numbers were computed for each sample separately
using a modified method based on that developed by the
Cold Spring Harbor Laboratory [28]. Briefly, we per-
formed following steps to detect CNVs:

1. Simulated single-ended reads (50 bp) from hg19
were mapped to hg19 by bowtie [40] (version 1.0.0).
10,000 genomics bins were used in the analysis.

2. Reads from the 0.1X LWGS alignments (BAM
format) were converted to FASTQ format through
the single-ended mode by BEDTools [41], and then
re-mapped to hg19 reference genome by bowtie.
Bases were trimmed from the 5′ end of each read to
ensure that each read was 50 bp long. Raw reads
generated by Lifetech Ion Proton sequencer (BAM
format) were converted to FASTQ format by
BEDTools, and then were trimmed by Trimmomatic
to an effective length (50 bp plus length of WGA
primer) from the 3′ end of the reads. The resulting
alignments were re-mapped to hg19 reference
genome by bowtie, and then bases were again
trimmed from the 5′ end of each read to ensure
each read was 50 bp long.

3. For each sample, segments were detected by
DNAcopy [42], a circular binary segmentation (CBS)
algorithm based CNVs detection tool. The density of
the segment ratio of all bins within autosomes was
plotted, and the mode of the segment ratio was set
corresponding to a copy number of two.

4. Sensitivity and specificity were calculated (following
[30]) as following:

Sensitivity ¼ LT=LC

Specificity ¼ LT=L;

where L represents the total length of CNVs (≥1 Mb) of a
single cell detected by this pipeline, LC represents the
length of CNVs (≥1 Mb) of the corresponding control data
(simulated YH-mix data) detected by this pipeline, and LT
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represents the length of the region that the CNVs (≥1 Mb)
of the single-cell overlap with the CNVs (≥1 Mb) of the cor-
responding control data.

Simulation on the YH genome in silicon
Shared regions (≥1 Mb) between SW480-SCD and SW480-
HEC with concordant CNV (the copy number was as-
sumed to be N) were selected as candidate regions for
further CNV simulation. The copy number ratio (as-
sumed to be R) of the candidate region is the copy
number of the region divided by 2 (R = N/2). For each
of the YH samples, to get the simulated reads count
(Ks), the reads count of a bin (Kr) was multiplied by
the copy number ratio (R) of the corresponding candi-
date region. (Ks = Kr × R). The modified pipeline was
then used to call CNVs in the simulated data for each
sample.

Statistical analyses
We performed the Mann–Whitney-Wilcoxon test to as-
sess the variations in cases of comparisons between two
groups. Pearson correlations were calculated to investigate
the similarity between metrics. To control the family-wise
error rate, we performed the Bonferroni correction when
multiple comparisons were conducted simultaneously.

Availability of supporting data
The raw sequence data in the FASTQ format from previous
reports [18] is available in the NCBI Short Read Archive re-
pository [SRA060929]. The raw data in the fastq format,
and the alignments and genotyping data from this study are
hosted in the GigaScience Repository, GigaDB [43].

Additional files

Additional file 1: Table S1. Summary of LWGS of YH single cells
amplified by different WGA methods on Illumina sequencer.

Additional file 2: Table S2. Summary of LWGS of BGC823 and YH
single cells on Lifetech Ion Proton sequencer. # represented ~1×
extracted data downsampled from the ~50× bulk BGC823 sequencing
data (PE-100, Illumina Hiseq 2000) as unamplified control.

Additional file 3: Table S3. Summary of deep WGS of YH single cells.
YH-mix is used as the unamplified control.

Additional file 4: Table S4. A comparison of recovery sensitivity
between WGA methods using randomly extracted 0.1X data.

Additional file 5: Figure S1. A comparison of GC content distributions
of unmapped reads between different WGA methods. We calculate the
GC content of each unmapped read and box-plotted the distributions
for each WGA method. YH-mix data is plotted as the un-amplified
control.

Additional file 6: Figure S2. A comparison of the N ratio of unmapped
reads between different WGA methods. We calculate the N ratio of each
unmapped read and box-plot the distributions for each WGA method.
YH-mix is used as the unamplified control.

Additional file 7: Figure S3. The normalized depth distributions of all
replicates. We plot the normalized read depth density distribution using the
0.1X extracted data. The normalized read depth is defined as the ratio of the
mean depth of all reads in each window to the mean depth of the whole
genome. The binning window is 100 kb. The dashed curve is plotted using
simulated data (1000 dots) that followed the Poisson distribution (λ= 30) and
normalized by dividing by 30.

Additional file 8: Table S5. Pearson correlation of mean normalized
depth between two replicates amplified by the same WGA kit. The
binning window to assess the mean normalized depth is 100 kb.

Additional file 9: Figure S4. Histograms of the mean depth distributions
over a region of chr15 (20,000,001-102,521,388) for each kit. We
calculate the mean depth of all replicates amplified with the same
WGA kit at each site in the targeted region. YH-mix is used as the
unamplified control.

Additional file 10: Figure S5. Histograms of the depth distributions of
all replicates over the same region of chr15 as Figure S4. YH-mix is used
as the unamplified control.

Additional file 11: Table S6. A comparison of genome coverage at
different read depths between different WGA kits. YH-mix and SW480-
SCD are used as unamplified controls.

Additional file 12: Supplementary Note. The performance comparison
of mitochondrial genome assembly between MDA and MALBAC.

Additional file 13: Table S7. A comparison of consensus genotypes
calling between different WGA kits.

Additional file 14: Table S8. Genes annotation of all the discordant
SNVs in the deep-sequenced single cells amplified by MDA-2.

Additional file 15: Figure S6. Venn diagram of altered genes harboring
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bulk sequencing data is used as the unamplified control. We extracted
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ratios between single cells amplified by MDA-2 or MALBAC kit.

Additional file 27: Table S14. A comparison of the genome coverage
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Additional file 28: Table S15. A comparison of the basic data
sequenced on an Illumina Hiseq 2000 and a Miseq Sequencer. We
extracted the same amount of the sequencing reads amplified by the
same kit except the sequencing platform type to control the variables.
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