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Abstract.  

Purpose: Increasing evidence suggests that intrafraction tumour motion 

monitoring needs to include both 3D translations and 3D rotations. Presently, 15 

methods to estimate the rotation motion require the 3D translation of the target to 

be known first. However, ideally, translation and rotation should be estimated 

concurrently. We present the first method to directly estimate six-degree-of-

freedom (6DoF) motion from the target’s projection on a single rotating x-ray 

imager in real-time. 20 

Methods: This novel method is based on the linear correlations between the 

superior-inferior translations and the motion in the other five degrees-of-freedom. 

The accuracy of the method was evaluated in silico with 81 liver tumour motion 

traces from 19 patients with three implanted markers. The ground-truth motion 

was estimated using the current gold standard method where each marker’s 3D 25 

position was first estimated using a Gaussian probability method, and the 6DoF 

motion was then estimated from the 3D positions using an iterative method.  

The 3D position of each marker was projected onto a gantry-mounted imager with 

an imaging rate of 11Hz. After an initial 110° gantry rotation (200 images), a 

correlation model between superior-inferior translations and the five other DoFs 30 

was built using a least square method. The correlation model was then updated 

after each subsequent frame to estimate 6DoF motion in real-time. 

Results: The proposed algorithm had an accuracy (±precision) of -0.03±0.32mm, 

-0.01±0.13mm and 0.03±0.52mm for translations in the left-right (LR), superior-

inferior (SI) and anterior-posterior (AP) directions respectively; and, 0.07±1.18°, 35 

0.07±1.00° and 0.06±1.32° for rotations around the LR, SI and AP axes 

respectively on the dataset.  

Conclusion: The first method to directly estimate real-time 6DoF target motion 

from segmented marker positions on a 2D imager was devised. The algorithm was 

evaluated using 81 motion traces from 19 liver patients and found to have sub-40 

mm and sub-degree accuracy.  
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1. Introduction 

In current radiation therapy, image guided radiation therapy (IGRT) is routinely applied at the start 

of treatment to align the target with its planned position. However, tumours in the thorax, abdomen 

and pelvis are not static during treatment. Hence, methods to monitor tumour motion during 5 

treatment are highly desirable, even more so with dose escalation and hypofractionation. 

A number of different intrafraction real-time guidance methods have been used during prostate 

cancer treatments. Systems such as CyberKnife (Accuray, Sunnyvale, CA) and the real-time 

tracking radiotherapy (RTRT) system use real-time kilovoltage (kV) images from two (CyberKnife) 

or four (RTRT system) orthogonal room-mounted imagers to track the prostate position based on 10 

segmented positions of implanted fiducial markers (King et al., 2009, Kitamura et al., 2002, Sazawa 

et al., 2009, Shimizu et al., 2000, Shirato et al., 2003, Shirato et al., 2000). Calypso (Varian, Palo 

Alto, CA) (Kupelian et al., 2007)  and RayPilot (Micropos, Gothenburg, Sweden) (Castellanos et 

al., 2012) utilise implanted electromagnetic transponders, transmitting positional signals to an 

external receiver. Emerging real-time guidance technologies include ultrasonography (Ballhausen 15 

et al., 2015) and integrated magnetic resonance imaging (MRI)-radiation therapy systems (Fallone 

et al., 2009, Raaymakers et al., 2009) . Common to all these methods is the need for additional 

dedicated and typically expensive equipment to perform the real-time guidance.  

Ideally, real-time image guidance would be performed using a standard linear accelerator (linac) 

without relying on additional hardware. To this end, a number of algorithms have been proposed 20 

for the purpose of estimating the target’s position in 3D based on its location on a 2D image, which 

can be acquired using a linear accelerator gantry mounted kilovoltage (kV) x-ray imager system. 

An apparent advantage of utilising the kV imager is that: most modern linear accelerator have a kV 

imager, mounted orthogonally to the treatment beam. However, as the target position on the kV 

imager only contains 2D information, a 2D3D target position conversion is often required. The 25 

sparse information renders the problem of solving for the target’s 3D position ill-posed, hence, some 

a priori knowledge or assumption is usually required.  

 

1.1 The problem of 2D3D estimation 

Poulsen et al. (2008b) proposed a Maximum Likelihood Estimation (MLE) algorithm to estimate 30 

the target’s 3D position assuming a Gaussian distribution, which can be built after a learning arc. 

This solution has been clinically implemented as the Kilovoltage Intrafraction Monitoring (KIM) 

system, and is currently being trialled for real-time tumour motion guidance in a pilot clinical trial 

and a multi-centre clinical trial (Keall et al., 2016, Nguyen et al., 2017). Recently, a Bayesian 

method to estimate the proper distribution of the target was also proposed  (Li et al., 2011), which 35 

does not assume Gaussian distribution and hence may be more accurate in estimating the target’s 

respiratory motion as the thoracic tumour motions are complicated and can be asymmetrical as well 

as hysteric.  

Other 2D3D methods that do not follow the probabilistic approach have also been proposed. 

For Cone Beam CT (CBCT) trajectories reconstruction, the positions of the target in 3D can be 40 

estimated using phase-binning, and linear interpolation, assuming the target’s position in 3D do not 

change much within each respiratory bin (Park et al., 2012, Becker et al., 2010). However, this 

method requires all projections to be collected before 2D3D estimation and hence, is not suitable 

for real-time target positional estimation during treatment.  
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A different approach for 2D3D estimation is to make use of interdimensional correlation 

(IDC), which works for two reasons: (1) thoracic tumour motion in the Anterior-Posterior (AP) and 

Left-Right (LR) are correlated to its motion in the Superior-Inferior (SI) direction; and (2) as the 

gantry rotates around the patient, the SI position of the tumour is always visible on the kV images. 

Poulsen et al. (2008) implicitly incorporated IDC into their MLE of a Gaussian distribution. Other 5 

authors have shown that IDC can be used exclusively for 2D3D estimation, i.e without probability 

estimation, including the works of Cho et al. (2012) and Chung et al. (2016). An advantage of this 

method is that it can be extended to include the signal from an external surrogate, which is also 

correlated with the 3D motion of the target. Additionally, the linear model of IDC could be expanded 

to include state-augmentation to account for hysteresis in thoracic tumour motions (Ruan et al., 10 

2008).  

 

1.2 The problem of 2D6D estimation 

Increasing evidence suggests that intrafractional tumour motion corrections should be applied for 

both tumour translations and tumour rotations (Amro et al., 2013, Rijkhorst et al., 2009, Wu et al., 15 

2011). Retrospective post-treatment calculation of tumour rotations have shown that the rotations 

could be significant for both prostate and lung tumours (Amro et al., 2013, Aubry et al., 2003). 

Dosimetrically, uncorrected prostate rotations of 15° can result in a 12% under dose to the tumour 

(Rijkhorst et al., 2009). Tumour rotation estimation using KIM has been developed using the 

iterative closest point (ICP) algorithm (Tehrani et al., 2013). This method has been used 20 

retrospectively to quantify translational and rotational motion for prostate and lung cancers (Huang 

et al., 2015) and liver cancer (Bertholet et al., 2016). A disadvantage of this method is that the 

rotational motions are solved after the translational motions as the ICP algorithm requires target 

positions in 3D.  

 25 

In this work, we propose a novel method that expands upon the 2D3D IDC formalism to solve 

for six degrees of freedom in one step. The rationale behind this novel method is supported by the 

works of Huang et al. (2015) and Bertholet et al. (2016) that revealed strong correlations between 

the rotational motions and the superior-inferior translational motion in both lung and liver tumours. 

The accuracy and precision of the proposed algorithm are evaluated in silico with patients’ tumour 30 

liver traces during CBCT scans prior to radiotherapy as described in (Bertholet et al., 2016).  

 

This paper describes a direct method for estimating real-time 6DoF target motion from the 

target’s positions on a 2D imager that is mounted on the gantry of a standard linac. Previous efforts 

to calculate 6DoF motion from the target’s 2D positions were done in two steps: (i) estimating the 35 

3D position of each point of the target; and (ii) calculating the 6DoF motion by iteratively 

minimising the sum of squared differences in estimated and measured 3D positions of the points of 

the target (Tehrani et al., 2013, Huang et al., 2015, Bertholet et al., 2016). The implication of the 

prior work is that if errors occurs in the first step, the rotation estimation can become erroneous as 

well. The presented algorithm can be used to estimate 6DoF tumour motion affected by the 40 

breathing motion from 2D kV images in real-time. The method is thus applicable for use on 

standard-equipped modern linacs. 
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2. Methods 

In this section, we first describe the formalism of a novel method for estimate 6DoF motion form 

2D projection of a target using the least square method. Then, we describe the VMAT simulation 

used to comprehensively evaluate the proposed algorithm, based on the patients’ liver data, acquired 

in a clinical trial at the Aarhus University Hospital. Throughout this paper, we use the IEC 61217 5 

coordinate system to describe the patient’s motion relative to the treatment beam. 

2.1 The 2D6D-IDC formalism 

2.1.1 The forward problem: 6D2D 

In order to find a unique solution for the 6DoF motion of a target provided its projection in 2D is an 

inverse problem. To facilitate the description of this inverse problem, it helps to first describe the 10 

forward problem: If we know the target’s 6DoF motions with respect to a reference, what is the 

projection of the object on a rotating kV imager?  

In the Euclidean coordinates system, the rotational and translational position of a target 𝑴 at time 

𝒕  with respect to a referenced position 𝑴𝒓𝒆𝒇 is defined as:  

                                        (
𝒙
𝒚
𝒛
) =   𝑹 ∙ (

𝒙𝒓𝒆𝒇
𝒚𝒓𝒆𝒇
𝒛𝒓𝒆𝒇

) + (

𝑻𝒓𝒙
𝑻𝒓𝒚
𝑻𝒓𝒛

)   (1) 15 

where 𝑅 is the rotational matrix    

𝑹 = 𝑹𝒙𝑹𝒚𝑹𝒛 = 

[

𝑐𝑜𝑠𝛽 𝑐𝑜𝑠𝛾 −𝑐𝑜𝑠𝛽 𝑠𝑖𝑛𝛾 𝑠𝑖𝑛𝛽
𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛾 + 𝑠𝑖𝑛𝛼 𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛾 𝑐𝑜𝑠𝛼 𝑐𝑜𝑠𝛾 − 𝑠𝑖𝑛𝛼 𝑠𝑖𝑛𝛽 𝑠𝑖𝑛𝛾 −𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛽
𝑠𝑖𝑛𝛼 𝑠𝑖𝑛𝛾 −  𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛾 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛾 + 𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛽 𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛼 𝑐𝑜𝑠𝛽

]  (1-1) 

where (𝛼, 𝛽, 𝛾) are the angles describing the rotation of the object around the axes 𝑥, 𝑦 and 𝑧, 

respectively. Note that the vector 𝑻𝒓 =  (

𝑻𝒓𝒙
𝑻𝒓𝒚
𝑻𝒓𝒛

) is merely a mathematical by-product of the 20 

rotation equation to accurately relate a 3D object with coordinates (𝒙, 𝒚, 𝒛) with its referenced 

coordinates  (𝒙𝒓𝒆𝒇, 𝒚𝒓𝒆𝒇, 𝒛𝒓𝒆𝒇) . The vector 𝑻𝒓  on its own does not provide the translational 

motion information. The real translational vector is defined as simply a vector difference between 

the current centroid of the object and its referenced centroid coordinates 



 5 

𝑻 = 𝑴̅𝒕 − 𝑴̅𝒓𝒆𝒇 = (

𝑻𝒙
𝑻𝒚
𝑻𝒛

) = (
𝒙̅
𝒚̅
𝒛̅
) − (

𝒙̅𝒓𝒆𝒇
𝒚̅𝒓𝒆𝒇
𝒛̅𝒓𝒆𝒇

) (1-2) 

Given the object 𝑴 with the 3D coordinates (𝒙, 𝒚, 𝒛), we can find its projected position (𝒙𝒑, 𝒚𝒑) 

on the kV imager when the linac gantry is at a certain angle 𝜽 with the following projection 

equation:  

𝑷(𝒙, 𝒚, 𝒛 |𝜽) =  (
𝒙𝒑
𝒚𝒑
) (𝜽) =  

𝑺𝑰𝑫

𝑺𝑨𝑫 −(𝒙∙𝒄𝒐𝒔𝜽+𝒛∙𝒔𝒊𝒏𝜽)
(𝒙 ∙ 𝒔𝒊𝒏𝜽 − 𝒛 ∙ 𝒄𝒐𝒔𝜽

𝒚
)                      (2) 5 

where SID is the source-to-imager distance and SAD is the source-to-axis distance, i.e. the 

distance between the kV X-ray source to the  radiation isocentre.   

Thus, from equations (1) and (2), we can determine the position of aa target projected onto the 

kV imager if the rotational matrix 𝑹 and the vector 𝑻𝒓 are known. The reference position 𝑴𝒓𝒆𝒇 in 

the context of external beam radiotherapy can be determined as the tumour position in the 10 

planning CT.  

2.1.2 The inverse problem: 2D6D 

Conversely, to solve for the matrix 𝑹 and the vector 𝑻𝒓 given only the projected positions (
𝒙𝒑
𝒚𝒑
) of 

the target is an ill-posed problem. However, given three or more points in the target 𝑴, a solution 

can be found numerically, providing a priori knowledge. In this paper, our prior is that there is a 15 

linear correlation between the translational and rotational components of the object’s motion 

(Bertholet et al., 2016, Huang et al., 2015). Additionally, we also assume that the target moves 

rigidly, without any deformations. 

If the translational and rotational components of the target’s motions are linearly correlated, the 

following equation can be assumed:  20 

(

 
 
 
 

𝑻𝒓𝒙̂
𝑻𝒓𝒚̂

𝑻𝒓𝒛
𝜶
𝜷

𝜸̂

̂
̂

̂

)

 
 
 
 

(𝒕) =

(

  
 

𝒂𝒙
𝒂𝒚
𝒂𝒛
𝒂𝜶
𝒂𝜷
𝒂𝜸)

  
 
∙ 𝒚(𝒕) +

(

 
 
 
 

𝒃𝒙
𝒃𝒚
𝒃𝒛
𝒃𝜶
𝒃𝜷
𝒃𝜸)

 
 
 
 

 = 𝑨𝒚(𝒕) + 𝑩    (3) 
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where 𝒚(𝒕) is the target’s coordinate in the y (superior-inferior) direction and the vectors 𝑨 and 𝑩 

contain all scalars. Equation (3) relates all the components of equation (1) with the target’s y-

coordinate. This is advantageous because the gantry and kV imager rotate around the y-axis. In fact, 

from the equation (2), we have:   

𝒚(𝒕|𝜽) =  
𝑺𝑨𝑫−(𝒙(𝒕)∙𝒄𝒐𝒔𝜽+𝒛(𝒕)∙𝒔𝒊𝒏𝜽)

𝑺𝑰𝑫
𝒚𝒑(𝒕)    (4) 5 

If we assume the quantity (𝒙(𝒕) ∙ 𝒄𝒐𝒔𝜽 + 𝒛(𝒕) ∙ 𝒔𝒊𝒏𝜽) in equation (4) to be much smaller than 

SAD, which is realistic because SAD is normally 1000 mm in most clinical linac systems while 

the distance between the target position and the gantry rotation axis is typically small. This is 

because in reality, the radiation isocentre will either in or very close to the tumour, i.e. our target. 

In some cases, implanted markers are to be tracked instead of the tumour, which are usually 10 

implanted in the vicinity of the tumour. Then 𝑦(𝑡) can be approximated as:  

𝒚(𝒕) =  
𝑺𝑨𝑫

𝑺𝑰𝑫
𝒚𝒑(𝒕)         (4-1) 

As  equation (4-1) enables a relatively accurate estimation of 𝑦(𝑡), the scalar vectors 𝐴 and 𝐵 

can hence be estimated using the least squares method, similar to methods described by Chung et 

al. (2016), Cho et al. (2012), Ruan et al. (2008), with some modifications: Firstly, from equation 15 

(3),  

(

 
 
 
 

𝑻𝒓𝒙̂
𝑻𝒓𝒚̂

𝑻𝒓𝒛
𝜶
𝜷

𝜸̂

̂
̂

̂

)

 
 
 
 

(𝒕) can be estimated from 𝑦(𝑡). Consequently, we can compute the estimated 

coordinates (
𝒙
𝒚̂
𝒛̂

) using equation (1), which can then be used to compute the estimated projected 

coordinates (
𝒙̂𝒑
𝒚̂𝒑
) by applying equation (2) to (

𝒙̂
𝒚̂
𝒛̂

). The cost function of the Euclidean distance 

between (
𝒙̂𝒑
𝒚̂𝒑
) and the actual coordinates of the target (

𝒙𝒑
𝒚𝒑
) can then be computed as: 

𝑪 = ‖√(𝒙𝒑 − 𝒙𝒑)
𝟐 + (𝒚𝒑 − 𝒚̂𝒑)

𝟐‖
𝟐

                            (5) 20 

Finally, the vectors 𝑨 and 𝑩 can be estimated by minimizing the cost function 𝐶, given 

(
𝒙𝒑
𝒚𝒑
) (𝒕), in the least square sense.   
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Since equation (4-1) is only an approximation of equation (4), we iteratively refine the solution, 

as shown the pseudo-codes in Figure 1.  

 

 

 5 

 

 

 

Figure 1. Pseudo-codes for refining vectors 𝐴 and 𝐵 estimations with 6D-IDC. 

2.2 In silico simulation 10 

The flowchart in Figure 2 summarises in silico simulation and data processing to evaluate the 

accuracy of the proposed 6D-IDC algorithm. 

2.2.1 Ground-truth data descriptions 

A dataset of 29 patients with 3 fiducials implanted near the tumour in the liver for image guided 

radiotherapy, first described by Bertholet et al. (2016), was used in our in silico simulation. Each 15 

patient was treated with Stereotactic Body Radiation Therapy (SBRT), receiving treatment in 3-6 

fractions. In each fraction, each patient’s 1 to 3 cone beam CBCT scans (11 fps, 125 kV, 80 mA, 13 

ms) were acquired. The fiducials were segmented in each image. We furthermore rejected traces 

where the data were not continuous for at least 50 seconds. This is because the simulation aims to 

mimic real-time treatment to assess the algorithm’s accuracy for realistic intrafraction conditions. 20 

If there were more than one segments of continuous data within one fraction, each continuous 

segment was used independently. Overall, the refined dataset contained 81 traces from 19 patients. 

The range of 6DoF motions in this dataset are shown in Figure 3. 

for i = 1:6  

    if (i==1) 

- Compute y using equation (4-1).  
- A and B initialised to unity vectors.  

    else  

       - Compute (𝑇𝑟𝑥̂, 𝑇𝑟𝑦,̂ 𝑇𝑟𝑧̂ , 𝛼̂, 𝛽̂, 𝛾) based on previous value of 
A,B.  

       - Compute new rotation matrix with 𝛼̂, 𝛽̂, 𝛾.  
       - Compute new estimated centroid location.  

  - Compute new y of estimated centroid location using                         

equation (4).  

    end 

- Optimise the cost function C with new value of y to 

solve for A and B. 

end 
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The ground truth 6 DoF motion data were computed in two steps. The 2D3D estimation of 

each marker’s position in each image frame was computed using the method of Poulsen et al. 

(2008b), which has been measured to have sub-mm accuracy (Keall et al., 2016, Poulsen et al., 

2008b). From the imaging frames with all 3 markers successfully segmented, the 6DoF motions of 

the target were calculated using the ICP algorithm (Tehrani et al., 2013), which computed the 6DoF 5 

motions from individual 3D coordinates of the three markers. The accuracy of this method in 

estimating the rotation motions during radiotherapy were evaluated and quantified by Kim et al. 

(2016) and found to be accurate within 1°. The positions of the markers at the first frame of imaging 

in each fraction were used as the referenced positions for 6DoF calculation as it was the intrafraction 

6DoF motion that were of interest.  10 

 
Figure 2. Flow chart of the in silico simulation for evaluating the accuracy of 6D-IDC. 
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Figure 3. Histogram of six degrees of freedom motion in the ground-truth data, across 81 traces 

from 19 patients and 53736 frames. A: translational motion. B: rotational motion.  

2.2.2 VMAT simulation 

In order to test the accuracy of the 6D-IDC algorithm estimated 6DoF motion, for each trace in the 5 

ground-truth dataset, the ground-truth 3D positions of the markers were projected onto the imager 

using equation (2). The SAD and SID value were set at 1000 mm and 1800 mm, respectively. For 

each simulation, the gantry started at 180° and rotated counter-clockwise at 6°/s to simulate a full 

rotation VMAT treatment.  

The 6D-IDC algorithm was then used to estimate 6DoF motion using only information from the 10 

projected positions of the markers on each image frame, as described in section 2.1. The first 6D-

IDC model was built after 200 imaging frames, equivalent to 110° of gantry rotation. After the first 

model was updated, for each new frame, using all the data from the beginning of the treatment. 

However, when updating the model, only one iteration of optimisation was used, instead of 6 as 

described in the algorithm in Figure 1, and the least square optimisation was started at the last found 15 

solution for the vectors correlation vectors 𝐴 and 𝐵. For the first model, it was found that using 6 

iteration allows the solution to converge for all the test trajectories with the difference in the sum of 

square error criterion set at 1e-6 mm. During the update phase, the least square solver used the 

solution from the last time point, this effectively gives it a “warm start”. Thus, the six iterations 

were not necessary and one iteration was sufficient to have to solution converged.  20 
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2.2.3 Analysis of simulation results 

The error of the 6D-IDC algorithm was defined as the difference between 6DoF motions estimated 

with 6D-IDC and the 6DoF ground-truth motion.  

We analysed the factors affecting the accuracy of 6D-IDC, including:  

1. Deformation: estimated by the change in the area of the triangle, that was formed by the 3 5 

markers, in 3D in each frame, compared with the referenced area. 

2. Absolute magnitude of motion in each DoF: the absolute value of 6DoF motions in each frame 

relative to planned marker position 

3. Linear correlation between motion in each DoF and the motion of the SI direction: defined by 

the absolute value of the Pearson’s linear correlation value (ρ) computed between the motion in 10 

each DoF and the motion in SI for each tested trace.  

The effect of each of the aforementioned factors to the accuracy was quantified by calculating the 

Pearson’s correlation value (ρ) between the absolute value of the error in each DoF and the tested 

parameter, except for the third factor, linear correlation value. The correlation between the 

maximum value of error in estimating 6DoF motion and the linear correlation value of each DoF 15 

was used instead because linear correlation value was a trace-specific value.  

 

The 6D-IDC algorithm, in silico simulation and analyses of the results were implemented in 

Matlab (Mathworks, MA, USA).  
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3. Results 

For this section, the translational motion is denoted by its axis of motion, e.g, translation motion in 

LR is denoted as “LR”. The rotational motion is denoted by an “r” before its axis of rotation, e.g 

rotation motion around the SI axis is denoted as “rSI”. This is simply for clarity in figures.  

3.1 Accuracy of 6D-IDC 5 

Figure 4 shows a comparison of 6DoF motion estimated using 6D-IDC and the ground truth motion 

used in the simulation. The means and standard deviations of the differences are summarised in 

Table 1. The mean of error in the 6DoF are under 0.1 mm and 0.1° across 81 motion traces from 19 

patients. The standard deviation of error for 6D-IDC estimated motion are less than 1 mm for 

translational motion and less than 1.5° for rotational motion. This result is a pooled analysis across 10 

53736 imaging frames of the 81 liver motion traces from 19 patients. The boxplot of the overall 

error is shown in Figure 5.  

Figure 6 shows the boxplot of the mean of error of 6D-IDC estimations compared with ground-

truth 6DoF motion for each of the 81 tested traces. From Figure 6, it can be observed than even 

though there are outliers of error up to 20°, as seen in Figure 5, in 95% of cases, the mean error of 15 

6D-IDC estimated motion of each trace are within 1 mm and 1°. A typical example of one case 

where such large outliers are present, is shown in Figure 7. As depicted in Figure 7, some of the 

outliers were caused by sudden motion, such as coughing, which alter the linear relationship 

between the motion in SI and motions in the other DoFs.  

 20 

 

 

 

 

 25 
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Table 1. Summary of error of 6DoF motion estimated with 6D-IDC. 

 
Mean 

error 

Standard 

deviation of error 

[5th to 95th] 

percentile interval 

LR (mm) -0.03 0.32 [-0.55 – 0.50] 

SI (mm) -0.01 0.13 [-0.18 – 0.17] 

AP (mm) 0.03 0.52 [-0.64 – 0.73] 

rLR (degrees) 0.07 1.18 [-1.51 – 1.70] 

rSI (degrees) 0.07 1.00 [-1.50  – 1.70] 

rAP (degrees) 0.06 1.32 [-1.53 – 1.68] 

 

 

 

 5 
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Figure 4. Six degree of freedom target motion successfully estimated with 6D-IDC compared to 

the ground truth. The data is from patient 26, fraction 3.  
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Figure 5. Boxplot showing the distributions of error in 6DoF between 6D-IDC estimation and 

ground-truth across 81 liver tumour traces from 19 patient with 53736 image frames.  

 
Figure 6. Boxplot showing the distributions of the mean of error in each segment in 6DoF 5 

between 6D-IDC estimation and ground-truth across 81 liver tumour traces from 19 patients. 
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Figure 7. An example where 6D-IDC struggled in estimating motion due to sudden change in 

correlation (arrow). The data from patient 14, fraction 1.  

3.2 Factors affecting 6D-IDC accuracy 

Figures 8 and 9 are the scatter plots of the error between 6D-IDC  estimated motions in each DoF 5 

as a function of the magnitude of deformation, assessed by the variation in the area of the triangle 

subtended by the markers (Figure 8) and the absolute value of motion (Figure 9).  

The magnitude of the deformation seen in the ground-truth dataset had little effect on the 

accuracy of the 6D-IDC algorithm (Figure 8). However, from the scatter plots in figure 8, the 

relationship between the magnitude of error and the change in area in each frame was weak in all 10 

six DoFs. The computed Pearson correlation coefficients shows that the error in the translational 

SI direction has the highest correlation with the change in area (ρ = 0.41), followed by the error in 

the translational AP direction (ρ = 0.28) and the error in the rotation around the LR axis (ρ = 

0.22).  
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Figure 8. Scatter plot showing the relationship between the magnitude of errors and the magnitude 

of the change in the area made by the three fiducials. The 𝜌 value indicates the Pearson correlation 

coefficient between each value pair.  

The absolute magnitude of ground-truth motion, which includes systematic offsets, does not 5 

have any effect on the magnitude of 6D-IDC error in estimating translational motion; all the 

Pearson’s correlation ρ values for the translation motion are less than 0.1 (Figure 9). The 

magnitude of the rotational motions are weakly correlated with the magnitude of the error (Figure 

9) with rSI and rAP having ρ values less than 0.3 and rLR having a ρ value of 0.42.  

 10 
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Figure 9. Scatter plots showing the relationship between the magnitude of errors and the 

magnitude of absolute motion of the target. The 𝜌 value indicates the Pearson correlation 

coefficient between each value pair. 5 

 

Figure 10 shows scatter plots of the maximum of error and the linear correlation between each 

DoF motion and the translational SI motion for all tested traces. A strong correlation is found in 

the AP translation motion and the rotation around the LR axis (rLR), with Pearson’s correlation ρ 

values of -0.6 for AP and -0.5 for rLR. A negative Pearson’s correlation indicates a negatively 10 

correlated relationship. However, in all other DoF motions, no correlation or very weak 

correlation can be observed. From Figure 10, it can also be observed that most of the outliers 

occurred with weak correlation with SI (< 0.2), especially in translation motions in AP and rLR 

and rAP rotation motion.  

 15 
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Figure 10. Scatter plots showing the relationship between the maximum error of 6D-IDC 

estimations in each degree of freedom and the absolute linear correlation value of the motion in 

that degree of freedom and the motion in the SI direction for each trace. The 𝜌 value indicates the 5 

Pearson correlation coefficient between each value pair.  
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4. Discussion 

This paper describes a method to directly estimate real-time 6DoF target motion from segmented 

marker positions on a 2D imager that is orthogonally mounted on the gantry of a standard linac. 

Previous efforts to calculate 6DoF motion from the target’s 2D positions were done in two steps: (i) 

estimating 3D position of the target; and (ii) calculating the 6DoF motion by iteratively minimising 5 

the sum of squared differences in estimated and measured 3D positions of the target (Tehrani et al., 

2013, Huang et al., 2015, Bertholet et al., 2016). The presented method utilises the interdimensional 

correlation in the translation in SI direction with other 5 degrees of freedom motions as an a priori, 

which was found to exist for liver and lung traces in previous studies (Huang et al., 2015, Bertholet 

et al., 2016). This new method, named 6D-IDC, has been evaluated in a series of in silico simulations 10 

with liver SBRT patients’ 6DoF trajectories. Compared with the ground-truth 6DoF motion, 

assumed as the current standard for estimating 6DoF motions, the 6D-IDC algorithm performed 

equivalently well, with sub-mm and sub-degree accuracy on the tested dataset. The accuracy (mean) 

and precision (standard deviation) of the 6D-IDC method in estimating translation motions of the 

tested dataset were sub-mm, which is comparable to previously reported 2D-3D accuracy of 15 

probability-based methods in similar simulations with thoracic/abdominal tumour trajectories (Li et 

al., 2011, Poulsen et al., 2008a).  

The presented 6D-IDC algorithm employs solving the correlation matrix in a least square sense. 

This formalism of solving 6DoF motion from the target’s projection on an imager is a scalable 

solution. In our simulation, three points, i.e. markers, were used. Three is the lowest number of 20 

points to describe the target that allows the algorithm to uniquely determine the rotation and 

translation of the object. The algorithm is capable of solving for the 6DoF motion of a target 

comprised of a larger number of points, such as situations with four or more markers, or the 

segmented tumour on a projection image.   

 25 

The perspective-n-point problem in computer vision can be used to solve for the 6DoF 

information of an object, provided three or more points are available on an image taken by a 

calibrated camera (kV imaging system in this case) and the distance between these points are known. 

Haralick et al. (1994) describes a range of algorithms to solve for the 3D position of each points of 

the object in the case where only three points are available, from which the absolute orientation of 30 

the object can be determined. Thus, the perspective-n-point problem is in fact similar to the problem 

of determining 6DoF tumour motions of radiotherapy. Similar to the existing method (Tehrani et 

al., 2013) to determine tumour translation and rotation from fluoroscopic 2D images, the 

perspective-n-point solves the translation and rotation in two steps. The 3D coordinates of each 

point must be solved before the absolute transformation matrix can be determined (Haralick et al., 35 

1994). The advantage of our solution to solve for tumour motion during treatment is in the use of 

equation (3), which linearly models the correlation between motion in the SI direction and the other 

5 degrees of freedom motions. Utilising equation 3, our algorithm is able to compute the rotation 

and translation of the target directly, without the need to solve for the 3D coordinates of each point 

separately.  40 

 

The reported results were from an online scenario where the 6D-IDC algorithm estimated 6DoF 

motion on each new in-coming image, after a learning arc. The accuracy of the algorithm is likely 



 20 

to be better in a retrospective scenario. However, we were more interested in its performance in 

real-time as the main application for such an algorithm is intrafraction monitoring and as a 

positioning system for a tracking system. A learning arc of 110° was used in our simulation, which 

is less than the amount of learning arc (120°) used in clinical application of the probability-based 

method by Poulsen et al. (2008a) (Keall et al., 2016). Additionally, Chung et al. (2016) described a 5 

3D IDC-based method and showed that a learning arc of at least 90° reduced the errors in estimating 

motions at the start of the trajectory. Similarly, we found that around 110° of learning arc provided 

a stable start for the 6D-IDC algorithm.  

 

As shown in figures 4 and 7, the rotation motions calculated with 6D-IDC tend to be smoother 10 

and free of spikes, compared with rotation motions calculated with the ICP algorithm. This is 

because the ICP algorithm is sensitive to noise in the 3D positions of the object. That is, if one of 

the three markers moves due to the noise in the system, the ICP algorithm interpreted such 

movements as true motions and attempted to over-fit into its model. Meanwhile, the presented 6D-

IDC algorithm attempted to find the best rotation and translation correlation parameters to minimise 15 

the error between the estimated position of the object and its projection on the imager. Effectively, 

performing the least square estimation on at least 200 points of data filtered the signal so as to 

mitigate noise in the estimated signal as well.  

 

We investigated a number of factors that could influence the accuracy of the presented 6D-IDC 20 

algorithm, including deformation, quantified by the change in area of the triangle formed by the 3 

markers in 3D, the magnitude of motion in 6DoF and the correlation between each DoF and the 

motion in SI. Among these three factors, it was found that the algorithm was robust against both 

deformation and both large rotation and translation motions, with low or very low Pearson’s 

correlation value between the magnitude of error and any of the aforementioned values. However, 25 

the 6D-IDC algorithm was sensitive to the correlation value between each DoF and the motion in 

SI, especially in the AP and rLR direction. The outliers in the estimation errors of each DoF also 

occur more frequently at low correlation, as shown in Figure 10. If the algorithm is to be 

implemented clinically, the correlation value can be used to assess the degree of its reliability in 

estimating 6DoF motion in each patient. In patients whose motions have low value of correlation, 30 

e.g correlation with magnitude of less than 0.2, probability methods such as those described by 

(Poulsen et al., 2008b, Li et al., 2011) could be more accurate than the 6D-IDC method.  

 

Limitations and future work 

 35 

One limitation of this work is the inherent uncertainty of the ground-truth dataset. From  the 

previous works (Bertholet et al., 2016, Keall et al., 2016, Kim et al., 2017, Poulsen et al., 2008a, 

Poulsen et al., 2008b), it has been shown that the uncertainty of the ground-truth data set is within 

1 mm and 1°. Specifically, Kim et al. (2017) showed experimentally on a phantom that estimation 

of 6DoF motions for prostate and lung tumour traces using the combination of the probability 40 

method and the ICP method has an accuracy of 1 mm and 1° as compared with kV/MV triangulation. 

Furthermore, the ground-truth data rejected 3D points that had an uncertainty of more than 1 mm, 

as described in (Bertholet et al., 2016). Although the uncertainty of the ground-truth dataset is low, 

it does affect the presented results. In the worst-case scenario, the reported error is an additive 

combination of the actual error inherent to our method and the inherent error within the ground-45 

truth dataset. Data from a more independent source such as the electromagnetic system Calypso 
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(Varian Medical System, Palo Alto, CA, USA) may provide a more reliable benchmarking data than 

the dataset used in this paper, e.g. in clinical trials such as (Poulsen et al., 2016, Booth et al., 2016). 

However, these clinical trials have not been completed and the data is not yet available.  

In this paper, the 6D-IDC method was evaluated using in silico simulations for VMAT 

treatments. Due to the short duration of the continuous trajectories available in our dataset where 5 

all of the tested trajectories were less than 65 seconds in length, IMRT simulations were not carried 

out. As more data of intrafraction tumour motions of the thoracic and abdominal tumours with at 

least 3 points becomes available from the ongoing clinical trials, the algorithm will also be evaluated 

for IMRT treatments. The immediate next step is to further evaluate the accuracy of the algorithm 

in phantom experiments, paving the way to develop it as a clinical tool for real-time tumour motion 10 

management during treatment. Such a development would require the algorithm to be implemented 

together with a marker or markerless tumour segmentation algorithm.  

5. Conclusion 

This paper describes, to the best of our knowledge, the first method that is capable of directly 

estimating real-time 6DoF target motion from the target’s positions on a 2D imager that is mounted 15 

on the gantry of a standard linear accelerator.. The accuracy of the algorithm was numerically 

evaluated using 81 liver tumour motion traces from 19 patients and found to be within sub-mm and 

sub-degree, with precision sub-mm and sub-1.5 degrees. Requiring only images from a single 

rotating kV imaging system that is widely available in all modern linear accelerators, the described 

method can thus be used to estimate the real-time tumour 6DoF motion for real-time treatment 20 

adaptations.  
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