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Abstract. Dual-system estimation is a well-established approach for estimating an 

unknown population size from two independent but imperfect counts of the 

population. In this paper we develop the estimation framework for using a coverage 

survey and population census as the two sources and combining with ratio 

estimation to produce a set of population estimates. Adjustments are developed to 

correct for a failure of the key assumptions of homogeneity and independence that 

under-pin dual-system estimation using an external count of the number of 

households. The issue of over-count within the census is also discussed and a 

bootstrap approach to variance estimation is proposed. A comprehensive set of 

simulation results are presented to support the decision to implement the framework 

to estimate the population following the 2011 Census of England and Wales; and 

the implementation to the estimation of census coverage in 2011 is discussed.  

Keywords: Census coverage, dual-system estimation, ratio estimation, 

dependence adjustment 
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1) Introduction 

 

The failure of the 1991 Census Validation Survey to correctly estimate the level of census 

under-coverage is well documented [1, 2]. This led to re-thinking the approach to coverage 

assessment for the 2001 Census. The result was the one-number census project, with the goal 

of accurately measuring and adjusting for census coverage issues. A key component of the one-

number census was a large-scale, independent post-enumeration survey called the Census 

Coverage Survey (CCS). The early thinking on the design of the CCS and the approach to 

estimation were outlined in [3] while the development of the imputation system to adjust the 

database was covered in [4]. Adjustments to the key age-sex estimates were detailed by [5]. 

 

Evaluating the census age-sex estimates for coverage is standard practice and was 

recommended by the United Nations (UN) for the 2010 round of population and housing 

censuses [6]. The imputation for unit non-response (households and people) carried out in the 

UK in 2001 is unique, although a similar approach was planned for the 2000 Census in the US 

(see [7]). In particular, the US Census Bureau has a long history of assessing census coverage 

using a survey, dating back to the 1950 Census [8], although the alternative estimates produced 

in [9] show that estimating census coverage has always been difficult. Starting with analysis 

post 1980 [10, 11] followed by developments at subsequent censuses, the Bureau’s primary 

approach is now based on dual-system estimation [12] with a large national post-enumeration 

survey [13, 14, 15, 16]. The Australian Bureau of Statistics also developed an estimation 

approach to combine its census with a survey during the 1980s and the current implementation 

for 2011 is developed and discussed in [17, 18]. Other examples include the approach used for 

the 2000 Census of Switzerland, as outlined in [19], and for Israel, as outlined in [20]. Many 

of these approaches are loosely based on the US Census Bureau application and this is the UN’s 
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recommended approach, outlined in [6], and therefore widely adopted by countries in the 2010 

round of censuses. A different approach, the reverse record check, was developed by Statistics 

Canada, utilising historical census data matched with other administrative data to estimate 

coverage of the current census. A description of the methodology can be found in [21], and 

Statistics Canada continue to take advantage of additional administrative data sources to assist 

in tracing of persons in the reverse record check sample.  

 

Evaluation of the one-number census approach used in the 2001 UK Censuses, see for example 

[22], broadly supported the strategy, and it was therefore adopted as the basis for coverage 

assessment and adjustment for England and Wales census in 2011 (see [23]). The overall 

framework is shown in Fig. 1. The key source of data to combine with the census remained the 

CCS. The approach to the 2011 CCS design built on the structure used in 2001, but reflected 

the lessons learnt from the 2001 evaluations; it is discussed in [24]. 

 

Insert Fig. 1 around here 

 

In this paper we present the formal framework for the estimation of the household population 

by age-sex for a geographic region referred to as an estimation area (as outlined in Fig. 1), and 

evaluate the performance of the estimators under a variety of scenarios. The small area 

approach to estimation of the population size by age and sex within local authorities, the level 

at which local Government operates in the UK and therefore the key level for population size 

estimation, is discussed in [25] and the creation of the final database is outlined in [26]. We 

develop the approach to combine dual-system estimation with classic approaches to survey 

estimation in Section 2 and then test the performance of the estimator using simulations in 

Section 3. In Section 4 we cover several extensions including the development of a bootstrap 
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approach to variance estimation and extending the dependence adjustments used in 2001 [5]. 

We finish with some discussion including issues relating to the actual implementation in 2011. 

 

 

2) General Estimation Framework 

 

The design of the CCS for 2011 is covered in detail in [24]. The structure of the survey 

essentially delivers an independent count of the population for a random sample of small areas. 

These areas are postcodes, collections of addresses used by the postal system, most with 

between 15 and 20 addresses. Postcodes are clustered together to form output areas (OAs), the 

lowest level of census output geography. OAs therefore formed the basis of the design, with 

sub-sampling of postcodes within selected OAs. The CCS was a stratified random sample of 

OAs, stratified using an index called the hard-to-count index [27] that classified OAs based on 

the predicted response rate in a census. Half of the postcodes (rounded up where necessary) 

within each OA were selected. In addition to the CCS sample of OAs, the census collected data 

for all the OAs. Therefore, the aim of the estimation framework was to combine the sampled 

data from the CCS with the census data from all areas to produce a better estimate of the 

population than given by the census alone. 

 

2.1) Ratio Estimation 

 

There is a long history of using a smaller-scale follow-up survey to improve estimates from a 

larger-scale data collection. [28] proposed sub-sampling the non-respondents from a relatively 

cheap mail survey covering a large sample, in our case that would be the census, and using an 

interview follow-up survey to obtain responses. This is essentially the field model for the actual 
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census but with 100% follow-up. Another way is to think of the census as producing counts for 

all small areas but with error. This would be similar to the situation in business surveys where 

the frame has (imperfect) measures of employment and turnover based on historical 

administrative data for all units in the population. A business survey then measures the correct 

employment or turnover for a sample of units and this is used to correct the errors in the frame 

variables at some level of aggregation through ratio estimation. This concept sits behind the 

estimation framework for combining the CCS with the census. The follow-up survey to the 

census (in combination with the census) will allow us to estimate the correct counts but only 

for a sample of areas, and this can be combined with the census counts using ratio estimation. 

For ease of understanding we start by assuming the CCS obtains a perfect response for each 

sampled OA and then deal with the issue of non-response introducing errors into the CCS. 

 

To formalise the estimation framework we start by specifying the structure of the sample. We 

have a sample of OAs o stratified by local authority (LA) and hard-to-count (HtC) index, and 

for simplicity of notation we wrap up both stratification levels in the index h. Within the 

selected OAs we observe the true count Yoa for age-sex group a and the corresponding census 

count Xoa. (In reality, Yoa will be the count for a sub-sample of postcodes and this is addressed 

in the subsequent section.) The standard ratio estimator model in stratum h [29] is then given 

as 

 

oa oa ha oa

2

oa oa ha oa

oa o*a oa o*a

E[Y |X ]  R X

V[Y |X ]  X

C[Y ,Y |X ,X ] 0 for all o o*







 

      (1) 

with the corresponding estimator of the total Tha given by 
h h

ha oa ha oa
o s o r

ˆ ˆT   Y R X  
 

    where 

sh are the sampled OAs from HtC level-within-LA stratum h and rh are the corresponding non-
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sampled OAs. The estimator predicts the non-sample areas based on the model and using least 

squares an estimate of the ratio ˆ
haR  is given by 

 h

h

oa
o s

ha

oa
o s

Y

R̂   
X










 .         (2) 

[29] motivates this estimation strategy as the optimal approach within the class of linear 

estimators for the ratio model given in (1), as the estimator 
haT̂  is the empirical best linear 

unbiased predictor of haT  given that (2) is the best linear unbiased estimator of the ratio 

between the census counts X and the true population counts Y. 

 

This estimation structure fits exactly into the design structure and allows for variation in 

coverage across the age-sex groups within the design stratification defined by LA and local 

area using the HtC index. As the sampling design utilises a simple random sample of OAs 

within the design strata, an approximately design-unbiased ratio estimator, see [30], would 

have the same basic form for 
haT̂  and the estimated ratio given in (2). However, for some LAs 

the sample sizes are not sufficient to support direct estimation. In such cases, estimation areas 

(EAs) e are formed by merging adjacent LAs with similar demographic structures and expected 

similar coverage based on the CCS sampling fractions, which are themselves related to the 

2001 coverage patterns [24]. This combining of LAs to increase the sample size implies using 

a common ratio for all LAs within an EA e so that the population model (1) becomes 

oa oa eha oa

2

oa oa eha oa

oa o*a oa o*a

E[Y |X ]  R X

V[Y |X ]  X

C[Y ,Y |X ,X ] 0 for all o o*







 

      (3) 

and the estimated coverage ratio (2) becomes  
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 eh

eh

oa
o s

eha

oa
o s

Y

R̂   
X










 .         (4) 

The collapsing across the LAs produces unbiased estimates within a model-based framework, 

which are robust to departures from the variance assumption, provided that the expectation in 

the modified population model (3), a common ratio for LAs within an EA after controlling for 

age-sex and hard-to-count, holds for all LAs within the EA. When there are LA-specific 

differences in census coverage after controlling for the EA, the level of hard-to-count within 

the EA and the age-sex group, the common ratio assumption does not hold. Examples would 

be a localised failure of the Census Address Register or local problems with the census 

fieldwork to follow up non-responders. 

 

When these LA specific effects exist, the modified population model (3) does not hold and then 

(4) is not unbiased with respect to the anticipated true population model (1) containing LA 

effects. A simple model-assisted estimator (see [31]) that reflects the sampling at the LA level, 

but estimates an overall ratio for the EA, adjusts (4) to give 

 eh*

eh*

eh
oa

o s eh
eha

eh
oa

o s eh

N
Y

n
R   

N
X

n










         (5) 

where Neh is the number of OAs within the HtC-within-LA stratum h in estimation area e for 

the population, neh is the corresponding number of OAs in the sample, and seh* represents the 

sampled OAs from the same hard-to count stratum h as the target ratio but across the LAs in 

the EA e, 
   

*eh eh

HtC h HtC h

s s 

 

 . 
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From a purely model-based perspective it is hard to justify (5) as it is neither unbiased for the 

LA specific model (1), unless the sample is balanced within the strata used in (1) such that the 

sample mean of the X’s is equal to the population mean of the X’s, nor optimal for the common 

ratio model (3) unless the sampling fractions are approximately equal. However, within a 

design-based framework, the balance on X is achieved ‘on average’ over repeated sampling. 

Therefore, (5) is approximately unbiased for the separate ratio model (1) and unbiased but not 

optimal for the combined ratio model. 

  

We can see from (5) that if the sampling fractions of OAs within a hard-to-count stratum for 

the LAs given by eh

eh

n

N
 are similar, meaning the sample is proportionally allocated across LAs 

within the EA, the estimator (5) is essentially the same as (4) regardless of the existence of LA 

effects. From a model-based perspective, this implies that we can ignore the existence of the 

LA effects as the sampling within LAs is ignorable with respect to an overall ratio model, 

although population model (3) based on ignoring the LA effects will not be as efficient as 

population model (1) reflecting them. Conversely, if the sampling fractions vary across the LAs 

but LA effects do not exist, after controlling for EA, HtC, and age-sex, then the ratio (4) is 

optimal as (3) is the appropriate model. The ratio given by (5) will still be unbiased with respect 

to the population model (3) but less efficient. 

 

The result is a general estimation strategy that utilises an estimator based on the separate ratio 

model (1) for all LAs with a sufficient sample to be a single LA estimation area, and an 

estimator based on the combined ratio model (3) for estimation areas formed by grouping LAs 

using an estimator of the coverage ratio defined by (4) as the default, but adjusted to (5) when 

the sampling fractions differ and there is evidence to support localised problems with census 
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coverage.  The enumeration ran satisfactorily on 2011, with no localised problems at the LA 

level, so the unweighted estimator (4) was utilised everywhere. 

 

 

2.2) Reflecting Census Coverage Survey (CCS) Non-Response   

 

The framework outlined in Section 2.1 assumes that the CCS samples entire output areas (OAs) 

and perfectly re-enumerates them. In reality this is not true for two reasons. First, the final 

sampling units for the CCS are postcodes and these are clustered within OAs. The level of 

clustering is explored in [24] and some clustering of postcodes within OAs is seen as a good 

compromise between the statistical efficiency of an un-clustered design and the fieldwork 

advantages of some clustering. [24] proposed selecting three postcodes per OA but in the final 

design approximately half the postcodes within an OA were selected. On average, selecting 

three postcodes is equivalent to selecting half the postcodes from an OA but the number of 

postcodes per OA can vary considerably while the size of an OA does not by design vary unless 

there has been dramatic change on-the-ground since the 2001 Census. Second, the CCS did not 

achieve a 100% response from the usually resident population for census night any more than 

the original census did, and was expected to have slightly lower response than the census, 

because it was not compulsory. This was borne out in practice in 2011 with a CCS person 

response rate of 88.4% and a census response rate of 93.8%. Therefore, we first extend the 

framework to reflect sampling within postcodes and then deal with CCS non-response.  

 

The population model (3) is extended to deal with sub-sampling of postcodes p within a 

sampled OA o to give 
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p

pa pa eha pa

2

pa pa eha pa

pa p*a pa p*a

E[Y |X ]  R X

V[Y |X ]  X

C[Y ,Y |X ,X ] 0 for all p p*







 

       (6) 

where we still assume a common population ratio 
p

ehaR  across LAs within estimation area e 

once we have controlled for age-sex group a and hard-to-count level. The covariance 

assumption is a simplification but a least squares approach to estimating the ratio will be robust 

to some residual clustering of postcodes within OAs [32]. Extending the estimate of the ratio 

(5) allowing for the sampling weights gives      

 eh o

eh o

eh o
pa

o s p sp eh o
eha

elh o
pa

o s p s elh o

N M
Y

n m
R   

N M
X

n m

 

 







 

 
        (7) 

where Mo is the number of postcodes within OA o for the population, mo is the corresponding 

number of postcodes in the sample, and so represents the sampled postcodes from selected OA 

o. By design, o

o

M

m
 is approximately constant and as discussed in Section 2.1 we expect that the 

LAs will be grouped so that the eh

eh

N

n
’s are also approximately constant with little evidence of 

LA effects. Therefore, in what follows we will work with the simpler version of the estimated 

coverage ratio (7) given by eh o

eh o

pa
o s p sp

eha

pa
o s p s

Y

R̂   
X

 

 



 

 
, which is similar to (4) and just based on the 

un-weighted counts from the sampled postcodes. We now tackle the second issue of CCS non-

response. 
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We can define 
eh o

eha pa
o s p s

t Y
 

    as the total of the true population for age-sex group a within 

HtC stratum h of estimation area e for the CCS sampled postcodes and therefore our basic 

estimator for the coverage ratio is given by 

eh o

eha
eha

pa
o s p s

t
R̂   

X
 


 

.         (8) 

However, we do not observe the true postcode counts Ypa; but after matching to the associated 

census counts Xpa, we know that the CCS counted Spa individuals and Bpa were counted in both. 

Applying dual-system estimation [12, 33] at the postcode level therefore allows us to estimate 

teha as 

 
eh o

pa pa

eha
o s p s pa

S X
t̂   

B 


   .        (9) 

Therefore, we are defining 
eh o

eha pa
o s p s

ˆt̂   Y
 

    where the true counts for the postcodes are 

estimated via dual-system estimation. Considering the individual dual-system estimates for 

each postcode, we can look at the conditional expectation of the estimator 

 
pa pa pa papa pa

pa pa pa

pa pa pa

E S |Y E X |YS X
ˆE Y |Y  E |Y  

B E B |Y

                   

    (10) 

approximating the expectation of a ratio / product as the ratio / product of the expectations. 

Now applying the underlying probability structure of the dual-system model to each 

expectation in (10) we get  

 
   ccs cen

pa pa pa pa

pa pa paccs cen

pa pa pa

Y p Y p
ˆE Y |Y  Y

Y p p

  
   
   

     (11) 

where 
ccs

pap  is the probability of an individual in age-sex group a within postcode p responding 

to the CCS, 
cen

pap  is the corresponding probability for the census. Under independence the joint 

probability of being counted is the product of the two marginal probabilities, and if at least one 
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of these is constant [34, 35] across individuals by age-sex group a within postcode p, the 

homogeneity assumption in dual-system estimation is satisfied. From (11), we can see that the 

basic dual-system estimator is approximately unbiased, and the bias coming from the 

approximation in (10) tends to zero as the population counts being estimated increase. 

Applying the Chapman correction [36] corrects for the small sample bias and is exactly 

unbiased provided Spa + Xpa ≥ Ypa [33, p60]. However, to consider the impact of combining 

the ratio model in (6) with dual-system estimation via (9) we need to consider  

 
pa pa pa pa pa pa

pa pa pa

pa pa pa

E S |Y ,X E X |Y ,X
ˆE Y |Y ,X   

E B |Y ,X

        
    

     (12) 

that applies the same approximation as in (10) but now conditioning on both the true population 

count Y and the achieved census count X. Given that the CCS response S is independent of the 

census count X, and the matched count B can only be a sub-sample of the census count X that 

is being conditioned on, we get   

 
 ccs

pa pa pa

pa pa pa paccs

pa pa

Y p X
ˆE Y |Y ,X Y

X p

 
   
  

.      (13) 

Therefore, the unbiased result in (11) still holds after the additional conditioning on the census 

count X, provided the CCS response probability is homogeneous for age-sex group a within 

postcode p. We can now combine (13) with the model expectation in (6) via a double 

expectation such that  

 
pa pa pa pa pa pa

ˆ ˆE Y |X  E E Y |Y ,X | X    
    

.      (14) 

Plugging in the result from (13) into (14) we now get  

 p

pa pa pa pa eha pa
ˆE Y |X E Y |X R X      

       (15) 

showing that the expectation in (6) still holds approximately when we replace the true postcode 

counts with their dual-system estimates; and any bias tends to zero as the postcode counts 
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increase. Also, by applying the Chapman correction we can protect against the small sample 

bias of dual-system estimation, see Appendix for approximations of the equivalent results of 

(12) and (13). 

 

We can also apply dual-system estimation at higher levels of aggregation. Using the cluster of 

postcodes rather than individual postcodes and following (12) and (13) we get  

 o o

o

o

ccs

pa oa pa
p s p s

oa pa pa paccs
p spa oa

p s

Y p X

ˆE Y |Y ,X Y
X p

 





 
  

    
  

 




.    (16) 

Remembering that the estimator for the coverage ratio (8) depends on the sum of the true 

postcode counts in the sample, we can now estimate that sum as 

 o o

eh

o

pa pa
p s p s

eha
o s pa

p s

S X

t̂   
B

 









 



        (17) 

and applying the result (16) within the sum (17) we get  

 
eh o

eha pa pa pa eha
o s p s

ˆE t | Y ,X   Y  t
 

       .      (18) 

Therefore, applying the dual-system estimator at the cluster level does not impact on the 

approximate un-biasedness of the ratio model (6) and the estimator of the coverage ratio (8). 

However, we can see that in (16) we are now assuming the response probability for the CCS 

given  by ccs

oap  is constant across the individuals in the cluster of postcodes selected from OA o 

within age-sex group a, while (13) only makes that homogeneity assumption at the level of the 

individual postcodes. OAs were designed to be homogeneous aggregations of postcodes based 

on the 2001 Census [37], and the CCS uses clusters of postcodes within OAs for design and 

data collection, so assuming homogeneity for the CCS response within age-sex group a at this 

level of aggregation seems reasonable.    
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Following the results in (16) to (18) we can move up to the level of the hard-to-count stratum 

h within an estimation area e 

 eh o eh o

eh o

eh o

ccs

pa ha pa
o s p s o s p s

eha pa pa paccs
o s p spa ha

o s p s

Y p X

ˆE Y |Y ,X Y
X p

   

 

 

 
  

    
  

   

 
 

.   (19) 

but we are now making the homogeneity assumption across the hard-to-count stratum h within 

an estimation area e controlling for age-sex group a. The approach in (19) looks like the 

approach developed in [11] and used by the US Census Bureau, without the corrections for 

erroneous inclusions, as combining (19) with (8) leads to an estimator of the population total 

given by 

 

eh o eh o

eh o eh o

eh o eh o

pa pa
o s p s o s p s

pa pa eha
o s p s o s p s

eha eha

pa pa
o s p s o s p s

S X

B S X

T̂ X
X B

   

   

   





  

   

   

   
.    (20) 

The approach outlined in [14] and [6] is essentially (20) but includes the survey weights in the 

sample-based sums. These are important in the US context as their estimation strata, equivalent 

to our age-sex a by hard-to-count h by estimation area e (approximately 35 by 3 by 100 = 

10,500 in the case of the CCS) strata, are post-strata, potentially using any collected variables. 

This helps to ensure the homogeneity assumption is well approximated and therefore the 

sampling weights for units being combined can be very different. For 2010, the US Census 

Bureau further extended their approach to allow for continuous variables through use of logistic 

regression so that variables such as age did not need to be grouped when approximating the 

homogeneity assumption [16]. 
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Both the US approach [14, 15] and the approach outlined for the 2011 Census are based on 

both the Census and the CCS applying a usual residence rule as per Census Night. In Australia, 

the Census uses a person present base for enumeration while the coverage survey (PES) is 

based on usual residence for the production of official population estimates adjusted for census 

coverage errors. Therefore, the approach taken by the Australian Bureau of Statistics varies 

slightly but is still based on dual-system estimation as an estimate of the Census count based 

on the PES respondents is calibrated to the actual Census counts and this is then used to adjust 

the PES for non-response. This conceptually is like writing (20) as 

 
eh o

eha pa pa
o s p s

T̂ w S
 

            (21) 

where 

eh o

eha
pa pa

pa pa
o s p s

X
w w

w B
 

 
 

 is a calibration weight that ensures the PES correctly 

estimates the known census totals and wpa is the original sampling weight associated with the 

PES sample design. As with the US approach, post-strata are formed using a variety of 

characteristics not restricted to low level geography, and this is embedded within the 

generalized regression framework (GREG) outlined in [31] rather than as a series of separate 

ratio estimators. Further adjustments to the definition of paw  incorporate directly an 

adjustment for over-count when estimating the total population. Full details are given in [17, 

18].  

 

2.3) Summary of the Estimation Framework 

 

The approach to estimation outlined in Sections 2.1 and 2.2 that combines ratio estimation with 

dual-system estimation at the level of the postcode or cluster of postcodes builds directly on 

the approach taken in 2001 [38, 5]. The difference between this approach and the application 
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of dual-system estimation in the US, and to some extent Australia, is the use of low level 

geography in combination with age-sex groups to approximate the homogeneity assumption 

rather than a detailed cross-classification of characteristics within wide geographic areas. For 

2011, the approach adopted also had the advantage of allowing sequential processing and 

estimation by geographic area rather than requiring all the data to be processed before 

estimation could commence. However, prior to 2011, there was a decision to make regarding 

the ultimate level of clustering for the dual-system estimator as well as whether to implement 

ratio estimation as outlined above or the more complex approach from 2001. The 2001 

approach [38] used the cluster of postcodes but then implemented a robust approach to the out-

of-sample predictions requiring the cluster to be broken-down into the constituent postcodes. 

The next section will explore these issues using a simulation study built on the extensive data 

available from 2001.    

 

 

3) Simulation Study 

 

For the 2001 Census, extensive simulations were used to evaluate the approach to estimation 

and coverage adjustment [3, 38, 4, 5]. These used coverage probabilities developed in [38] that 

were based on the limited knowledge of census coverage in 1991 to simulate censuses and 

CCSs. However, when developing the 2011 methods, it was possible to use the actual patterns 

found in 2001 for both the census and the CCS to define detailed coverage probabilities for 

both households and individuals. In this section we outline the simulation approach used for 

2011 and its use in testing the estimation approach outlined in Section 2. 

 

3.1) Design of the Simulation Study 
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A series of multilevel logistic regression models [39] were fitted at the national (England and 

Wales) level to the linked 2001 Census and CCS data. The model levels reflected the 

geographical hierarchy of the census with LAs and then OAs. Four logistic models were fitted 

using the matched data; one for coverage of households in the census as measured by the CCS 

responses, one for coverage of individuals in the census as measured by the CCS responses, 

one for coverage of households in the CCS as measured by the census responses, one for 

coverage of individuals in the CCS as measured by the census responses. The characteristics 

used in the models are given in Table 1. In general the patterns observed for the variables were 

as expected; lower coverage of private rented households, lower coverage of young adults and 

particularly young men, lower coverage for higher levels of the hard-to-count index (captured 

by a continuous hard-to-count score). Also, CCS coverage tends to vary less than census 

coverage, apart from household size, which is more important for the household coverage in 

the CCS than for household coverage in the census. This is likely due to it being an interview 

rather than self-completion of a questionnaire delivered by an enumerator, with contact being 

more difficult for smaller households. Full details of the models can be found in [40]. 

 

Insert Table 1 around here 

 

The models were used to predict a household coverage probability and an individual coverage 

probability for every responding household and individual in the 2001 Census database for 

both the census and the CCS. The estimated LA random effects were used directly within each 

LA to represent residual variation in coverage at the LA level. At the OA level, only a sample 

of OAs had an observed random effect based on the 2001 CCS sample. Therefore, sampling 

with replacement from the estimated OA random effects within region by hard-to-count classes 
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was used to assign a random effect to all OAs that would represent reasonable residual variation 

at the OA level. This was done so that all four estimated random effects from a single sampled 

OA provided the random effects for an OA in the full database to preserve any relationships 

between the random effects at an OA level. Within the simulation, the household probabilities 

were used to simulate whether a household was covered in either the census or CCS. As a 

default this was decided independently for the two outcomes. Then, if a household was 

simulated as being counted in either the census or CCS, within household coverage of 

individuals was simulated using a conditional probability defined by the individual’s overall 

coverage probability divided by their household coverage probability with a maximum of one. 

Finally, households were removed if all the individuals over 15 were missed at the within 

household stage to avoid coverage of households without any adults. 

 

Four hundred simulations were undertaken across the country. Each iteration simulated the 

coverage of individuals and households for the whole database and selected the CCS sample 

for that iteration. The design of the CCS was a simplified version of the 2011 design based on 

stratifying by LA, then by hard-to-count index within each LA, and then selecting a simple 

random sample of OAs in each stratum. Finally, three postcodes per OA were selected. The 

choice of OA and postcode for the structure are discussed in more detail in [24]. For this 

evaluation the allocation of OAs was proportional to the number of OAs meaning that at 

estimation sample design effects do not interfere with using model (3) and coverage estimator 

(4) when dealing with an estimation area based on several LAs. 

 

3.2) Simulation Results 
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Summary results at the level of the total population are presented in Table 2 for a set of four 

EAs that cover a range of coverage scenarios as well as being a combination of a single LA per 

EA and multiple LAs per EA. The EA coded LJ covers a set of LAs in London and was a lower 

coverage area in 2001. The EA coded NX is a single LA area and covers a large metropolitan 

city. This is included both as an example of a single LA area and also because such cities were 

problematic for the 2001 Census coverage assessment [41]. The EA coded KO has two urban 

LAs and had an average level of coverage in 2001. Finally, the EA coded NA has multiple LAs 

mixing urban and rural populations with a higher 2001 coverage. The four EAs combined cover 

a population of 1.98 million with simulated census coverage of around 90.8%, which is lower 

than was anticipated for the national population in 2011.   

 

The simulation results in Table 2 cover a variety of scenarios including a perfect CCS (model 

(3) with (4) as the coverage ratio) and adjustments for survey non-response using the dual-

system estimator (DSE) at the level of the postcode, cluster of postcodes, and at the hard-to-

count level. Results are also presented for the robust ratio approach implemented in 2001 (see 

[38] for full details) that reduced the influence of outliers when making out-of-sample 

predictions. Performance is assessed in terms of the empirical relative bias, empirical relative 

root mean square error (RRMSE), and empirical relative standard error (RSE) as estimated by 

the 400 iterations of the simulation. The empirical bias for the simulated census is also 

presented and compared to the estimated census bias for each EA in 2001. In general, the 

empirical bias for the simulated census tracks the estimated 2001 coverage. The noticeable 

exception is for estimation area NX, which is the large metropolitan city, where the simulated 

census coverage, based on the modelling of the 2001 CCS data from the whole country, is 

lower than the estimated coverage for 2001. The difference makes sense in this case as 

additional adjustments were made to the population estimate of NX post-2001 due to concerns 
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about the performance of the CCS sample in that specific estimation area, implying that census 

coverage in 2001 was worse than the original estimate reported in Table 2. 

 

Insert Table 2 around here 

 

The results in Table 2 for the perfect CCS give a bench-mark to compare to as well as 

demonstrating the technical bias of ratio estimation under repeated sampling. The first term in 

this bias [30, p161] has the form 

  2

y y x2

1 - f
RS  - S S

nX
           

where f is the sampling fraction, n is the sample size, and R is the ratio of Y/X. It implies that 

in our case a slight positive bias from the ratio estimator is to be expected, assuming the 

variability of the counts in the CCS (Sy) and census (Sx) are of the same order of magnitude, as 

the ratio R of the CCS counts to census counts is always greater than one. It tends to be slightly 

higher with lower census coverage (LJ with low coverage compared to KO with better coverage) 

due to a weaker correlation between the true counts and the Census when census coverage is 

poorer, and R will consequently also be further from one. 

 

As CCS non-response is allowed for, Table 2 confirms previous work for 2001 [38] that at the 

postcode level the DSE tends to under-estimate, even with the Chapman correction. This ties 

in with the discussion of the properties of the Chapman correction [33] when the condition Spa 

+ Xpa ≥ Ypa for an unbiased estimate is not met. The result is a negative bias with the 

recommendation that Bpa should be greater than 6 to minimise the impact of the bias. In the 

case of the postcode level DSE small populations will result in a failure of the condition by 

chance with a correspondingly small value for the matched count. As the population size 

increases by aggregating postcodes this issue reduces. At the cluster and hard-to-count levels 
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the results are very similar across the EAs in terms of bias (slight under-estimation relative to 

the small positive biases for a perfect CCS), variation measured by the RSE, and overall 

performance measured by the RRMSE. Therefore, the choice between them is not obvious 

from the simulation performance. Intuitively, the cluster level DSE should more closely 

approximate the homogeneity assumptions behind the DSE, as it is using very local geography 

as well as groups defined by age and sex. Specifically, the unbiasedness result in (13) depends 

on the homogeneity of the CCS response probability, after controlling for age-sex group, at the 

level of the DSE calculation; and given that the cluster is also related to interviewer workloads 

in the design of the CCS (see [24]) it makes sense that CCS response will be relatively 

homogenous at this level. Finally, the cluster level was the basis for 2001 so these simulations 

do not provide evidence to change when considering 2011. 

 

The 2001 robust ratio approach also performs generally as expected; it induces a negative bias 

but reduces the RSE so that the overall RRMSE is not compromised. However, these more 

detailed simulations than were possible prior to 2001 suggest that the simple ratio is not as 

sensitive to extreme estimates; and the simpler approach has the attraction of being more 

transparent to users while not inducing negative bias. There was also less concern coming in 

to 2011 regarding extreme over-estimates as there was more confidence in the quality assurance 

process and its ability to detect a gross error, positive as well as negative. Fig. 2 provides further 

evidence to support simple ratio estimation rather than the robust approach showing 

performance for males by age-group comparing to a perfect CCS across the four EAs. For the 

estimation area NX, Fig. 3 demonstrates how the robust approach reduces the impact of the 

extreme errors for both males and females, but this reduction is not as visually obvious as in 

the simulation results in [38] undertaken prior to 2001. 
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Insert Fig.s 2 and 3 around here 

 

Taking the results of Table 2 with Fig. 2 and Fig. 3, the findings supported adopting an 

estimation strategy using cluster level DSE with simple ratio estimation as developed in Section 

2 for the 2011 Census. Fig. 4 shows the average error in the sex ratio for the simulated census 

enumeration compared with the error for this estimation strategy across age groups for the four 

EAs. This adds to the results for males in Fig. 2 to demonstrate that estimation with the CCS 

not only reduces the bias in the age-sex estimates but also corrects for the differential nature of 

the bias in the census leading to a more plausible sex ratio. Therefore, pulling together the 

simulation results with the other issues discussed earlier led to the adoption of cluster level 

DSE with simple ratio estimation to produce the age-sex population estimates at the EA level 

for the 2011 Census in England and Wales. Based on this work the same basic strategy was 

also implemented for Scotland and Northern Ireland within their EA and hard-to-count 

structures. 

 

Insert Fig. 4 around here 

 

 

4) Extending the Estimation Strategy 

 

The simulation results in Section 3 demonstrate that the framework for estimation proposed in 

Section 2, building on the 2001 approach [38], has good properties with respect to both bias 

and variability when combining cluster level dual-system estimation, (16), (17) and (18), with 

simple ratio estimation. However, to implement the framework for the 2011 Census, several 

additional issues needed to be dealt with. In this section we consider variance estimation, 
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adjusting for dependence, adjusting for over-count, the issue of movers and the practical issue 

of collapsing age-sex categories when estimating in specific estimation areas. 

 

 

 

4.1) Variance Estimation 

 

For the 2001 Census estimates, a jackknife approach was developed to produce variance 

estimates for the main age-sex outputs [38]. While this approach performed well under 

simulation, it was difficult to reflect fully all the sources of variation, such as the dependence 

adjustments that were made to the final estimates, although simulations suggested that any 

increase in variability was marginal [5]. The alternative bootstrap approach [42] was not 

explored for 2001 but advances in computing, as well as more practical applications of 

bootstrapping in finite population sampling [43], made this an attractive proposition for 2011. 

The work on bootstrapping also explored the practical application of asymmetric empirical 

confidence intervals with bias corrections [44] as this is attractive in the context of estimating 

the population total based on a coverage ratio that is intrinsically greater than one, especially 

when the ratio gets close to one. 

 

Insert Table 3 around here 

 

Results presented in [45] were based on the same simulations as used in Section 3, with the 

addition of 2000 replicates when implementing the bootstrap methods. Table 3 reproduces the 

performance for estimating total population for KO, one of the EAs used in Section 3. In terms 

of estimating the variance, the average of the bootstrap estimates is close to the empirical 
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variance given by the simulation, while the jack-knife approach is a little conservative. Note 

that a variance of around 20 million for the total population corresponds to a standard error of 

less than 5,000 and an RSE of less than one per cent. In terms of confidence interval coverage, 

all the approaches give slight under-coverage. As might be expected, using a t-distribution with 

approximate degrees of freedom based on the number of OAs sampled gives slightly higher 

coverage than using the standard normal distribution. The empirical confidence intervals, both 

with a bias correction and one corrected for skewness in the tails, also show lower than the 

desired coverage for the confidence interval. The bias corrected interval (BC) simply adjusts 

the empirical distribution so that its centre corresponds to the original estimate. The bias 

corrected interval (BCA) makes an additional adjustment to the tails of the empirical 

distribution using a jack-knife estimate of bias within each bootstrap sample; the extra loop 

within each bootstrap replicate makes this expensive in processing time. Looking across age-

sex groups, Fig. 5, reproduced from [45], demonstrates an advantage of the BCA empirical 

interval, especially for older age-groups, although for most age-sex groups there is little to 

choose between the approaches.  

 

Insert Fig. 5 around here 

 

The development work suggested that a bootstrap approach was plausible and the independent 

review of the 2011 methodology by [46] supported both the use of bootstrap and the 

development of asymmetric empirical confidence intervals. Adopting the approach also gave 

flexibility to estimate confidence intervals for the population estimates of those LAs produced 

using small area approaches [25]; and bootstrap methods are now common when estimating 

variances [47] for estimates produced using small area methods [48].   
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4.2) Adjusting for Dependence 

 

Key to the application of DSE is independence between the counts for the two sources. This is 

evident in (11), where the joint probability of coverage is the product of the two marginal 

probabilities; while in (13) it is the assumption that the CCS coverage for those counted in the 

census is equal to the overall coverage of the CCS. The independence assumption is likely to 

fail for one of three reasons: a lack of operational independence between the census and CCS; 

an individual or household’s conditional response to the CCS depending directly on their 

known response status in the census; or apparent dependence due to a failure of the 

homogeneity assumption of the DSE. 

 

The first is tackled by ensuring CCS operations, staffing and fieldwork period are independent 

of the census; and in 2011 this was further strengthened as the data collection approach for the 

CCS, with a field-listing of households followed by door-step interview, was quite different to 

the census using a post-out, post-back approach with follow-up based on an address register. 

The second is minimised by ensuring the CCS interviewers do not focus on the CCS as a check 

on the census enumeration for the household, but rather an independent check on the 

performance of ONS. Any reverse dependence, referring to a household being prompted to 

post-back a census form after completing the CCS interview, was also removed, as late returns 

for the census were not allowed into the data used for DSE and ratio estimation. 

 

Despite these efforts, and the use of localised DSEs in estimation to approximate homogeneity, 

there is always the risk of some residual dependence (actual or apparent). An approach using 

national sex ratios, with the assumption of a correct female count, was proposed by [49]. This 

was applied by the US Census Bureau to assess the sensitivity of the 1990 Census results [50]; 
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and extended to a Bayesian framework in [51]. It also features in the evaluation of the 2010 

Census [16]. In England and Wales post 2001, a dependence adjustment was made and 

reflected in the published estimates. The approach was developed and implemented in [5] and 

differs from the US Census Bureau approach of using national sex ratios. Instead it relied on 

an alternative count of the number of households for a region and consequently made specific 

adjustments within each region. 

 

For 2011 we developed the 2001 approach to build on its successful implementation while also 

taking advantage of additional information available in 2011. In particular, we assumed the use 

of post-out for the actual 2011 Census would strengthen estimation of an alternative household 

count based on the postal system at the level of each EA, allowing the odds ratios to vary across 

EAs within the same region. We also explored direct estimation (for each EA within broad age-

sex groups) of the parameters α and γ in the synthetic model in [5], used to adjust the odds ratio 

from households to individuals. Both parameters represent the odds ratio of a missed individual 

being in a counted household relative to being in a missed household, α for the census and γ 

for the CCS. These changes allowed the adjustment to react to differing levels of the household 

odds ratios across EAs, as well as differing coverage patterns in census and CCS for individuals 

missed by missing households relative to individuals missed within counted households by 

age-sex across EAs. 

 

Insert Table 4 around here  

 

To test the ideas the simulation approach of Section 3 was extended to allow for dependence 

at the household level, similar to the simulation approach in [5]. The odds ratios used in each 

EA by HtC came from the estimated odds ratios for the appropriate regions in 2001 to ensure 
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they were plausible and are shown in Table 4, along with the distribution of OAs by HtC within 

each EA. Therefore, the main comparisons are within an EA where other features remain 

constant, rather than between EA; although between EA we can get a sense of performance for 

differing scenarios. Table 5 then gives the performance of different estimation strategies for 

the total population. The perfect CCS and independence scenarios with cluster level DSE are 

also shown as benchmarks. Once dependence is introduced the unadjusted scenario shows the 

potential bias in the estimates; particularly when lower census coverage is combined with 

higher levels of dependence as demonstrated by LJ and NX. This confirms the results presented 

in [5] where the simulation study has a more extensive set of scenarios for the odds ratios. The 

2001 adjustment uses the same fixed parameters as were used in the actual 2001 approach, and 

as observed in [5] reduces the bias relative to no adjustment for only a small increase in the 

RSE relative to the DSE under independence. The revised approach refines this adjustment to 

directly estimate the parameters α and γ within the adjustment and gets even closer to the bias 

performance of the independence results. In fact, Table 5 shows that for NX the revised 

approach gets closer to the perfect CCS than standard DSE with independence; indicative of 

the fact that the dependence adjustment can also correct for some residual heterogeneity as well 

as structural dependence. The price for making an adjustment is a noticeable increase in 

variability, as shown by the RSEs in EAs where the impact from dependence is greatest. 

However, moving to a bootstrap approach for variance estimation as discussed in Section 4.1 

allows this increase in variability to be captured. In addition, extending beyond the 2001 

approach to include estimating the parameters α and γ does not add further to the variability 

but does deliver a greater bias reduction. Therefore, the overall error as measured by the 

RRMSE in Table 5 supported extending the 2001 approach.    

 

Insert Table 5 around here 
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4.3) Adjusting for Over-count 

 

In 2001, with a traditional census delivery and follow-up after post-back, it was expected that 

over-count would be a very minor issue relative to under-count; and therefore the estimation 

from the CCS for over-count was more of a quality measure than part of the main estimation. 

The level estimated by the CCS was around 0.1% and subsequent work by ONS suggested it 

may have been closer to 0.4% (as reported in [52]). However, with the 2011 Census moving to 

a post-out model similar to that used in the US it was recognised that over-count was potentially 

a larger consideration than in 2001 and needed to be directly adjusted for in the coverage 

estimation. The US-based E-sample approach, as outlined in [6], was rejected as additional 

fieldwork would require too much additional resource. Therefore, it was not possible to directly 

adjust the X counts in the cluster level DSE (see (17) in Section 2.2) for over-count. However, 

[52] evaluated a framework to estimate over-count adjustments to be applied to the X counts 

within the cluster level DSE with just the single fieldwork exercise for the CCS. The approach 

in [17] achieves this for Australia, but in the context of a census based on persons-present rather 

than usual-residence. The key difference between adding an E-sample phase and a single 

fieldwork operation is that completely erroneous or fictitious individuals cannot be detected 

with the single fieldwork because they cannot be distinguished from genuine non-response in 

the CCS. The single fieldwork can only find genuine members of the census population that 

have either returned once in the wrong location or have multiple returns. In the US it is known 

that fictitious returns, often created by the enumerator curb-stoning, and proxy returns filled-

in using a neighbour cause such problems. In the UK there is no evidence to support this as an 

issue, with enumerators using dummy forms if they believe a household exists rather than 

attempting to complete the census form by other means. 
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Using an extension to the simulations presented in Section 3, [52] demonstrated that the 

approach was effective at removing bias due to over-count, and like the dependence 

adjustments in Section 4.2, had only a small impact on the RSEs of population estimates. The 

bootstrap approach to variance estimation also offered the flexibility to reflect this increase in 

variability in the estimated RSEs. 

 

4.4) Issue of Movers 

 

One of the assumptions behind DSE is that both the census and survey are measuring the same 

(closed) population. However, in reality, the CCS took place a short period after Census Day 

so the household population could change due to ‘births’ or ‘deaths’. Births created by literal 

births, or individuals joining a household, are dealt with as the CCS explicitly collected data 

relating to the usually resident population on Census Day. Likewise, ‘deaths’ can be identified 

provided at least one member of the Census Day household remained to respond to the CCS. 

However, moves by complete households essentially created ‘deaths’ in the area where they 

were on Census Day and ‘births’ in the new area for the CCS. Using the analysis of movers 

undertaken by the US Census Bureau in [53], which treats movers as a source of heterogeneity 

bias and therefore apparent dependence, leads to a bias given by 

1)dcm)(d  (1

m)-c)(1-Td(1
 -


         (22) 

where T is the total population being estimated, 
number of movers

d  
number of non-movers

 , 

census coverage for movers
c  

census coverage for non-movers
 , and 

CCS coverage for movers
m  

CCS coverage for non-movers
 . In 2001 

we judged that with the intensive Census fieldwork and the 4 week gap between Census and 
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CCS the bias (22) would not be an issue as the out-movers would be a minor increase in CCS 

non-response; while the Census would count them as well as those that did not move implying 

a small increase in variance but no bias. Looking at (22) we can see that this was equivalent to 

assuming c = 1 resulting in no bias, even if m = 0 (all movers are missed by the CCS). 

 

Assuming c ≈ 1 was not unreasonable given the short and intensive nature of the field activity 

for the Census in 2001. Even when c did not exactly equal one any bias would have been small 

because the short gap between Census Day and CCS fieldwork would also make d close to 

zero. However, in 2011 both became slightly less realistic assumptions. The 2011 Census had 

a more spread-out fieldwork process, so could miss those moving in the weeks just after Census 

Day at a higher rate than those that did not move, although post-out with post-back made it 

possible for those moving still to respond as they were not reliant on an enumerator for either 

the delivery or collection of the questionnaire. There was also an increase from four to six 

weeks between Census Day and the commencement of the CCS fieldwork making d, the 

exposure to bias from movers, slightly greater. Therefore, if the out-movers are treated as non-

response in the CCS, which will also be higher because of the increased gap, it would 

potentially result in bias. In response to this, for in-mover households the CCS collected data 

on where the household had moved from so that the census response ratio c could be estimated 

by matching back to the alternative census location, along with an estimate of d. 

 

The aim was not to use (22) directly to adjust for heterogeneity bias caused by movers, but as 

a quality check on the household level dependence adjustments outlined in Section 4.2. As it 

was only whole households moving that caused an issue, the impact would be an apparent 

dependence at the household level; and that is exactly the level at which the dependence 

adjustment framework was targeted.   
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4.5) Collapsing Categories 

 

An additional issue that required consideration for full-scale implementation was the treatment 

of age-sex categories when the sample numbers were small. Where the census or CCS sample 

counts were small in any age-sex group cell, this could result in unstable estimates. This can 

be a particular problem when working with some of the older age-sex groups and specially 

defined age-sex groups, which do not follow the standard five year pattern, to deal with the 

change from schooling to work or student status over the range 16 to 19, as well as the high 

under-count for babies. ONS implemented a strategy to deal with this issue by collapsing age-

groups in different dimensions to ensure sufficient sample counts in each cell, reduce the 

variance of estimates, and therefore reduce the relative width of confidence intervals; while 

reflecting expected differences in coverage patterns by age, sex, and HtC. 

 

Age-sex categories were collapsed to deal with inconsistencies in the estimated coverage rates 

by HtC, specifically when they did not follow the pattern of increasing estimated coverage rates 

for more difficult HtC groups – for example: a low, medium and high pattern for estimated 

coverage rates in HtC 3, 2 and 1 respectively. In some cases, a large differential in estimated 

coverage rates between adjacent age groups was plausible. Where this was not the case, the age-

sex groups were collapsed. For example, large differences were observed between student 

populations and an adjacent age group such as male 25 to 29 year-olds, but it was less plausible to 

observe a large difference between the male 40 to 44 and male 45 to 49 age groups.  

 

Occasionally, it was necessary to correct implausible sex ratio patterns by collapsing age-sex 

groups to smooth the sex ratio. Collapsing across sex was recommended for young age groups 
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because coverage rates should be more similar across sex, rather than across age groups. In other 

words the expectation was that coverage for male and female 0-2s would be similar – there was no 

reason why one gender was missed more than the other at these ages. Additionally, collapsing 

student age groups (18 year-olds, 19 to 24 year-olds) with younger age groups (8 to 17 year-olds) 

was avoided wherever possible, usually by collapsing 18 year-olds with 19 to 24 year-olds, or by 

collapsing across sexes.  

 

 

5) Discussion 

 

This paper covers the development of the estimation strategy that was used to produce the key 

age-sex estimates following the 2011 Census of England and Wales. The approach built on the 

2001 estimation strategy but refinements were made based on the more extensive simulation 

work that was possible. The estimation strategy was also developed to fit with the revised 

design for the 2011 Census Coverage Survey [24]. The simulations presented here demonstrate 

the appropriateness of the general estimation framework as well as the performance of 

developments to reflect adjustments for dependence and the approach to variance estimation. 

This, along with the work to develop over-count adjustments created the information that led 

to the framework being the basis of the 2011 estimation strategy following an endorsement by 

the independent review [46]. 

 

Subsequent to the implementation of the estimation framework following the 2011 Census, the 

quality assurance process reported in the evaluation report [54] shows it performed well to 

produce the basic population estimates. A small additional dependence adjustment was made 

at the national level using an agreed sex ratio based on administrative sources external to the 
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census process. This was likely due to residual within household dependence amongst young 

adult males that would not have been removed by the dependence adjustment based on a 

household count. The report also explains some additional adjustments that were made to the 

ratio estimation framework when administrative data suggested the CCS sample was not well 

distributed within an estimation area. 

 

Looking forward to the 2021 Census and beyond, further developments can be made to more 

closely integrate administrative data. Linkage at the unit record level, even for a small sub-

sample, presents opportunities to further enhance the dependence adjustments as three sources 

allow for the direct estimation of the dependence relationship between the census and the 

coverage survey. As mentioned, the final implementation of the estimation framework [54] 

included as an addition the potential to adjust the estimates if administrative data suggested the 

CCS sample was poorly distributed. Going forward, this should be more fully integrated into 

the estimation framework, as over-count and dependence adjustments were in 2011, and greater 

use of administrative data at the design stage of the CCS would also help to ensure the sample 

is distributed as effectively as possible. Finally, although the bootstrap approach was 

successfully implemented for the 2011 estimates, the confidence intervals were not based on 

the empirical distribution. Further work is needed to explore the use of empirical confidence 

intervals as originally planned for 2011.    

 

 

 

 

 

 



34 

 

Acknowledgements 

The authors thank the members of the various census committees that have commented on this 

work as it has developed. They would specifically like to acknowledge the contribution and 

support of Dr Frank Nolan from ONS, who passed away unexpectedly in 2012, in the 

development of the coverage assessment plans for the 2011 Census.  

  



35 

 

References 

[1] OPCS. Rebasing the annual population estimates. Population Trends 1993; 73: 22-5. 

[2] Heady P, Smith S, Avery V. 1991 Census Validation Survey: Coverage Report. London: 

Her Majesty’s Stationery Office; 1994. 

[3] Brown JJ, Diamond ID, Chambers RL, Buckner LJ and Teague AD. A methodological 

strategy for a one-number census in the UK. J. R. Statist. Soc. A 1999; 162: 247–267. 

[4] Steele F, Brown J, Chambers R. A controlled donor imputation system for a one-number 

census. Journal of the Royal Statistical Society, Series A 2002; 165: 495-522. 

[5] Brown J, Abbott O, Diamond I. Dependence in the 2001 one-number census project. J. R. 

Statist. Soc. A 2006; 169: 883–902. 

[6] United Nations. Post Enumeration Surveys; Operational guidelines. New York: United 

Nations; 2010 [cited 2017 Oct 1]. Available from: 

http://unstats.un.org/unsd/demographic/standmeth/handbooks/Manual_PESen.pdf  

[7] Isaki CT, Ikeda MM, Tsay JH, Fuller WA. An estimation file that incorporates auxiliary 

information. Journal of Official Statistics 2000; 16: 155-172. 

[8] Marks ES, Parker Mauldin W, Nisselson H. The post-enumeration survey of the 1950 

census: a case history in survey design. Journal of the American Statistical Association 

1953; 48: 220-243. 

[9] Coale AJ. The population of the United States in 1950 classified by age, sex, and color – a 

revision of census figures. Journal of the American Statistical Association 1955;  50: 16-

54.  

[10] Bailar BA, Jones CD. The evaluation of the 1980 decennial census. The Statistician 1980; 

29: 223-235. 

[11] Wolter KM. Some coverage error models for census data. Journal of the American 

Statistical Association 1986; 81: 338-346. 

http://unstats.un.org/unsd/demographic/standmeth/handbooks/Manual_PESen.pdf


36 

 

[12] Sekar CC, Deming WE. On a method of estimating birth and death rates and the extent of 

registration. Journal of the American Statistical Association 1949; 44: 101-115. 

[13] Hogan H. The 1990 post-enumeration survey: an overview. The American Statistician 

1992; 46: 261-269. 

[14] Hogan H. The 1990 post-enumeration survey: operations and results. Journal of the 

American Statistical Association 1993; 88: 1047-1060. 

[15] Hogan H. The accuracy and coverage evaluation: theory and design. Survey Methodology  

2003; 29: 129-138. 

[16] US Census Bureau. 2010 Census Coverage Measurement (CCM) Workshop, January 12-

13, 2009, Washington, D.C. Washington: US Census Bureau; 2009 [updated 2015 Aug 

21; cited 2017 Oct 1].  Available from 

https://www.census.gov/coverage_measurement/post-

enumeration_surveys/2010_ccm_workshop.html 

[17] Bell P, Clarke C, Whiting J. An estimating equation approach to census coverage 

adjustment. ABS Research Paper 1351.0.55.019; 2007. 

[18] Chipperfield J, Brown J, Bell P. Estimating the count error in the Australian census. 

Journal of Official Statistics 2017; 33: 43-59. 

[19] Renaud A. Estimation of the coverage of the 2000 census of population in Switzerland: 

Methods and results. Survey Methodology 2007; 33: 199-210. 

[20] Kamen CS. The 2008 Israel integrated census of population and housing. Statistical 

Journal of the United Nations ECE 2005; 22: 39-57. 

[21] Belley C, Clark C, Ha B, Switzer K, Tourigny J. Coverage: 1996 census technical reports. 

Ottawa: Statistics Canada; 1999. Catalogue No. 92-370-XIE. 

[22] Office for National Statistics. Census 2001 review and evaluation: One Number Census 

evaluation report. London: Office for National Statistics; 2005 [cited 2017 Oct 1]. 



37 

 

Available from http://www.ons.gov.uk/ons/guide-method/census/census-2001/design-

and-conduct/review-and-evaluation/evaluation-reports/one-number-census/evaluation-

report.pdf  

[23] Abbott O. 2011 UK Census Coverage assessment and adjustment strategy. Population 

Trends 2007; 127: 7-14. 

[24] Brown J, Abbott O, Smith PA. Design of the 2001 and 2011 census coverage surveys for 

England and Wales. Journal of the Royal Statistical Society Series A 2011; 174: 881-906. 

[25] Baffour B, Silva D, Veiga A, Sexton C, Brown J. Small area estimation strategy for the 

2011 Census in England and Wales. Submitted to Statistical Journal of the International 

Association of Official Statistics; 2018. 

[26] Brown J, Sexton C, Taylor A, Abbott O. Coverage adjustment methodology for the 2011 

Census. Titchfield: Office for National Statistics; 2011 [cited 2017 Oct 1].  Available 

from http://www.ons.gov.uk/ons/guide-method/census/2011/the-2011-

census/processing-the-information/statistical-methodology/coverage-adjustment-

methodology-for-the-2011-census.pdf  

 [27] Abbott O, Compton G. Counting and estimating hard-to-survey populations in the 2011 

Census. In: Tourangeau R, Edwards B, Johnson TP, Wolter KM, Bates NA, editors.  

Hard-to-Survey Populations.  Cambridge:  Cambridge University Press; 2014. 

[28] Hansen MH, Hurwitz WN. The problem of non-response in sample surveys. Journal of 

the American Statistical Association 1946; 41: 517-529.  

[29] Royall RM. On finite population sampling under certain linear regression models. 

Biometrika 1970; 57: 377-387. 

[30] Cochran WG. Sampling techniques, 3rd edition. New York: Wiley & Sons; 1977. 

[31] Särndal C-E, Swensson B, Wretman J. Model Assisted Survey Sampling. New York: 

Springer-Verlag; 1992. 

http://www.ons.gov.uk/ons/guide-method/census/census-2001/design-and-conduct/review-and-evaluation/evaluation-reports/one-number-census/evaluation-report.pdf
http://www.ons.gov.uk/ons/guide-method/census/census-2001/design-and-conduct/review-and-evaluation/evaluation-reports/one-number-census/evaluation-report.pdf
http://www.ons.gov.uk/ons/guide-method/census/census-2001/design-and-conduct/review-and-evaluation/evaluation-reports/one-number-census/evaluation-report.pdf
http://www.ons.gov.uk/ons/guide-method/census/2011/the-2011-census/processing-the-information/statistical-methodology/coverage-adjustment-methodology-for-the-2011-census.pdf
http://www.ons.gov.uk/ons/guide-method/census/2011/the-2011-census/processing-the-information/statistical-methodology/coverage-adjustment-methodology-for-the-2011-census.pdf
http://www.ons.gov.uk/ons/guide-method/census/2011/the-2011-census/processing-the-information/statistical-methodology/coverage-adjustment-methodology-for-the-2011-census.pdf


38 

 

[32] Scott AJ, Holt D. The effect of two-stage sampling on ordinary least squares methods. 

Journal of the American Statistical Association 1982; 77: 848-854. 

[33] Seber GAF. The estimation of animal abundance and related parameters, 2nd edition. 

London: Charles Griffin & Company Ltd; 1982. 

[34] Chao A, Tsay P, Lin S, Shau W, Chao D. The applications of capture-recapture models 

to epidemiological data. Statistics in Medicine 2001; 20: 3123-3157. 

[35] Van der Heijden PGM, Whittaker J, Cruyff M, Bakker B, Van der Vliet R. People born 

in the middle east but residing in the Netherlands: Invariant population size estimates 

and the role of active and passive covariates. The Annals of Applied Statistics 2012: 6 

831-852. 

[36] Chapman DG. Some properties of the hypergeometric distribution with applications to 

zoological censuses. Univ. Calif. Public. Stat. 1951; 1: 131-160. 

[37] Martin D. Geography for the 2001 Census in England and Wales. Population Trends 2002;  

108: 7–15. 

[38] Brown JJ. Design of a census coverage survey and its use in the estimation and adjustment 

of census underenumeration. PhD Thesis. Southampton: University of Southampton; 

2000. 

[39] Goldstein H. Multilevel Statistical Models, 4th edn. Chichester: Wiley; 2011. 

[40] Brown J, Sexton C. Estimates from the census and census coverage survey. GSS 

Methodology Conference, London, June 2009. ONS; 2009  [cited 2017 Dec 18]. 

Available from https://www.ons.gov.uk/ons/media-centre/events/past-

events/conference/population-estimates-from-the-census-and-census-coverage-survey-

paper.pdf 

[41] Office for National Statistics. 2001 Census: Manchester and Westminster matching studies 

full report. London: Office for National Statistics; 2004 [cited 2017 Oct 1]. Available 

https://www.ons.gov.uk/ons/media-centre/events/past-events/conference/population-estimates-from-the-census-and-census-coverage-survey-paper.pdf
https://www.ons.gov.uk/ons/media-centre/events/past-events/conference/population-estimates-from-the-census-and-census-coverage-survey-paper.pdf
https://www.ons.gov.uk/ons/media-centre/events/past-events/conference/population-estimates-from-the-census-and-census-coverage-survey-paper.pdf


39 

 

from http://www.ons.gov.uk/ons/guide-method/method-quality/specific/population-

and-migration/pop-ests/local-authority-population-studies/2001-census---manchester-

and-westminster-matching-studies-full-report.pdf. 

[42] Efron B, Tibshirani RJ. An introduction to the bootstrap. Boca Raton: Chapman & 

Hall/CRC; 1993. 

[43] Wolter K. Introduction to variance estimation, second edition. New York: Springer; 2007. 

[44] Efron B. Better bootstrap confidence intervals. Journal of the American Statistical 

Association 1987; 82: 171–185. 

[45] Baillie M, Brown J, Taylor A, Abbott O. Variance estimation. Titchfield: ONS; 2011 

[cited 2017 Oct 1]. Available from 

https://www.ons.gov.uk/file?uri=/census/2011census/howourcensusworks/howweplann

edthe2011census/independentassessments/independentreviewofcoverageassessmentadj

ustmentandqualityassurance/imagesvarianceestimationv1tcm774049_tcm77-

224787(1).pdf  

[46] Plewis I, Simpson L, Williamson P. Census 2011: independent review of coverage 

assessment, adjustment and quality assurance. Titchfield: ONS; 2011 [cited 2017 Oct 1]. 

Available from www.ons.gov.uk/ons/guide-method/census/2011/the-2011-census/the-

2011-census-project/independent-assessments/independent-review-of-coverage-

assessment--adjustment-and-quality-assurance/independent-review-final-report.pdf 

[47] Lahiri P. On the impact of bootstrap in survey sampling and small-area estimation.  

Statistical Science 2003; 18: 199-210. 

[48] Rao JNK, Molina I. Small area estimation, 2nd edition. New York: Wiley; 2015. 

[49] Wolter K. Capture-recapture estimation in the presence of a known sex ratio. Biometrics 

1990; 50: 1219-1221. 

http://www.ons.gov.uk/ons/guide-method/method-quality/specific/population-and-migration/pop-ests/local-authority-population-studies/2001-census---manchester-and-westminster-matching-studies-full-report.pdf
http://www.ons.gov.uk/ons/guide-method/method-quality/specific/population-and-migration/pop-ests/local-authority-population-studies/2001-census---manchester-and-westminster-matching-studies-full-report.pdf
http://www.ons.gov.uk/ons/guide-method/method-quality/specific/population-and-migration/pop-ests/local-authority-population-studies/2001-census---manchester-and-westminster-matching-studies-full-report.pdf
https://www.ons.gov.uk/file?uri=/census/2011census/howourcensusworks/howweplannedthe2011census/independentassessments/independentreviewofcoverageassessmentadjustmentandqualityassurance/imagesvarianceestimationv1tcm774049_tcm77-224787(1).pdf
https://www.ons.gov.uk/file?uri=/census/2011census/howourcensusworks/howweplannedthe2011census/independentassessments/independentreviewofcoverageassessmentadjustmentandqualityassurance/imagesvarianceestimationv1tcm774049_tcm77-224787(1).pdf
https://www.ons.gov.uk/file?uri=/census/2011census/howourcensusworks/howweplannedthe2011census/independentassessments/independentreviewofcoverageassessmentadjustmentandqualityassurance/imagesvarianceestimationv1tcm774049_tcm77-224787(1).pdf
https://www.ons.gov.uk/file?uri=/census/2011census/howourcensusworks/howweplannedthe2011census/independentassessments/independentreviewofcoverageassessmentadjustmentandqualityassurance/imagesvarianceestimationv1tcm774049_tcm77-224787(1).pdf
http://www.ons.gov.uk/ons/guide-method/census/2011/the-2011-census/the-2011-census-project/independent-assessments/independent-review-of-coverage-assessment--adjustment-and-quality-assurance/independent-review-final-report.pdf
http://www.ons.gov.uk/ons/guide-method/census/2011/the-2011-census/the-2011-census-project/independent-assessments/independent-review-of-coverage-assessment--adjustment-and-quality-assurance/independent-review-final-report.pdf
http://www.ons.gov.uk/ons/guide-method/census/2011/the-2011-census/the-2011-census-project/independent-assessments/independent-review-of-coverage-assessment--adjustment-and-quality-assurance/independent-review-final-report.pdf


40 

 

[50] Bell RB. Using information from demographic analysis in post-enumeration survey 

estimation. Journal of the American Statistical Association 1993; 88: 1106-1118.  

[51] Elliott MR, Little RJA. A Bayesian approach to combining information from a census, a 

coverage measurement survey and demographic analysis. Journal of the American 

Statistical Association 2000; 95: 351-362. 

[52] Large A, Brown J, Abbott O, Taylor A. Estimating and correcting for over-count in the 

2011 Census. Survey Methodology Bulletin 2011; 69: 35-48. 

[53] Griffin, R. Accuracy and coverage evaluation: dual system estimation. DSSD Census 2000 

Procedures and Operations Memorandum Series, Q-20. Washington: US Census Bureau; 

2000. 

[54] Office for National Statistics. 2011 census evaluation report: coverage assessment and 

adjustment evaluation. London: Office for National Statistics; 2013 [cited 2017 Oct 1]. 

Available from http://www.ons.gov.uk/ons/guide-method/census/2011/how-our-census-

works/how-did-we-do-in-2011-/index.html.    

.  

  

http://www.ons.gov.uk/ons/guide-method/census/2011/how-our-census-works/how-did-we-do-in-2011-/index.html
http://www.ons.gov.uk/ons/guide-method/census/2011/how-our-census-works/how-did-we-do-in-2011-/index.html


41 

 

Appendix 
 

Taking the same approach as in Section 2.2, we can look at the conditional expectation of the 

postcode level dual-system estimator with the Chapman correction as 
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Applying the approximation in (12) and the resulting conditional expectations as in (13) we 

get 
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which tends to paY  as the coverage in the CCS tends to one, demonstrating that the 

approximate results still hold when we apply the Chapman correction. 
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Table 1. Description of the variables included in the four models for census and CCS by 

individual and household coverage 

Variables included in the models for coverage at the individual level 

Variable Name Categories 

Age-sex 

Babies, Males 1 to 4, Males 5 to 9, Males 10 to 14, Males 

15 to 19, …, Males 85+, Females 1 to 4, Females 5 to 9, 

Females 10 to 14, Females 15 to 19, …, Females 85+ 

Marital Status Single, Married, Remarried, Separated, Divorced, Widowed 

Primary Activity Last Week 

Working ft/pt or temp sick, Looking for work, Waiting to 

start work, Full time education, Perm. sick or disabled, 

Retired, Looking after home / family or none, Under 16 / 

over 75 

Variables included in the models for coverage at both the individual and household level 

Household Tenure 

Owns outright, Owns with mortgage, Part rent/part 

mortgage, Rents from council, Rents from housing 

association, Rents from private landlord, Other 

Household Ethnicity 
All any white, All any black / black British, All any Asian, 

All Chinese or other, Any other combination 

Household Structure 

Single male 15-34, Single female 15-34, Single person 80+, 

Other single person, Single parent < 35, Single parent 35+, 

Couple, both under 35, Couple, both 80+, Couple other, 

Family all < 35, Family other, Unrelated adults 

Household Size Continuous with linear and quadratic terms 

Hard-to-Count Score for OA Continuous with linear and quadratic terms 

Government Office Region 

North East, North West, Yorkshire and the Humber, East 

Midlands, West Midlands, East of England, London 

(Outer), London (Inner), South East, South West, Wales 
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Table 2. Performance estimating the population total using ratio estimation combined with DSEs at 

various levels 

 Overall Relative Bias (%) Overall RRMSE (%) Overall RSE (%) 

 Estimation Area Estimation Area Estimation Area 

DSE Level LJ NX KO NA LJ NX KO NA LJ NX KO NA 

Perfect CCS 0.28 0.14 0.07 0.20 1.43 1.37 0.89 0.84 1.40 1.36 0.89 0.82 

Postcode -0.56 -0.84 -0.14 0.00 1.48 1.56 0.88 0.78 1.36 1.32 0.87 0.78 

Cluster -0.08 -0.29 -0.01 0.08 1.44 1.41 0.90 0.80 1.43 1.38 0.90 0.79 

Hard to Count -0.08 -0.16 -0.03 0.10 1.43 1.40 0.89 0.81 1.43 1.39 0.89 0.80 

2001 robust ratio -0.42 -0.62 -0.20 0.43 1.35 1.43 0.83 0.94 1.28 1.29 0.81 0.84 

Simulated Census -13.33 -12.23 -6.08 -4.85         

2001 Undercount -12.90 -8.50 -5.90 -3.40         
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Table 3. Estimates of the variance of the population total estimator with corresponding coverage for 

95% confidence intervals. 

  Bootstrap 

 Simulation Jack Knife z-intervala t-intervala BC intervala BCA intervala 

Variance 19,683,414 21,418,196 19,468,872 

Coverage of 

95% CI 
- 93.00 91.75 92.25 92.50 91.75 

Figures extracted from [45], Tables 1 and 2 

a. The z-interval and t-interval are confidence intervals based on the standard normal and t distributions 

constructed with the estimated standard error from the bootstrap re-samples. BC and BCA are empirical 

confidence intervals with bias correction (BC) and bias correction plus acceleration to cope with skewness 

(BCA). 
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Table 4. Odds Ratios applied to Simulations to induce Dependence 

Estimation Area 

Odds ratios applied to simulations by 

Hard-to-Count level Simulation 

Census coverage (%) Easya Mediuma Harda 

LJ (Outer London area) 2.2 (18) 3.8 (41) 3.3 (41) 86.7 

NX (North-West area) 1.0 (13) 4.4 (48) 1.5 (39) 87.8 

KO (Midlands area) 1.0 (44) 5.6 (43) 4.4 (13) 93.9 

NA (North-West area) 2.2 (59) 1.0 (33) 1.0 (8) 95.2 

a. Percentage of Output Areas assigned to each Hard-to-Count level in the Estimation 

Area is reported in the parentheses.  
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Table 5. Performance estimating the population total using ratio estimation combined with DSEs for 

different scenarios relating to dependence 

 Overall Relative Bias (%) Overall RRMSE (%) Overall RSE (%) 

 Estimation Area Estimation Area Estimation Area 

CCS Scenarios LJ NX KO NA LJ NX KO NA LJ NX KO NA 

Perfect CCS 0.28 0.14 0.07 0.20 1.43 1.37 0.89 0.84 1.40 1.36 0.89 0.82 

Independence -0.08 -0.29 -0.01 0.08 1.44 1.41 0.90 0.80 1.43 1.38 0.90 0.79 

Unadjusted -2.14 -1.50 -0.57 -0.01 2.48 2.00 1.02 0.78 1.25 1.33 0.84 0.78 

2001 adjustment -0.63 -0.48 -0.14 0.11 1.56 1.53 0.93 0.81 1.43 1.45 0.92 0.80 

Revised approach -0.10 -0.18 -0.05 0.11 1.47 1.48 0.90 0.80 1.47 1.47 0.90 0.80 
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Fig. 1.  Overview of the 2011 Coverage Assessment and Adjustment process   
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Fig. 2. Relative bias and RRMSE for males by age group for a perfect CCS, and DSE applied 

at cluster level with both simple ratio estimation and 2001 robust ratio method. 
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Simple Ratio Estimation 

    

2001 Robust Ratio 

    

Fig. 3. Relative error distributions by age and sex for estimation area NX with the cluster level 

DSE. 
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Estimation Area LJ 

 

Estimation Area NX 

    

Estimation Area KO 

    

Estimation Area NA 

    

Fig. 4. Mean sex ratios for simple ratio estimation with the cluster level DSE and the census 

compared to the truth. 
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Reproduced from [45], Appendix.  

Fig. 5. Coverage of 95% confidence intervals by age sex group for estimation area KO.  

 


