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Abstract: We theoretically investigate a new class of silicon waveguides for achieving Stimulated
Brillouin Scattering (SBS) in the mid-infrared (MIR). The waveguide consists of a rectangular
core supporting a low-loss optical mode, suspended in air by a series of transverse ribs. The ribs
are patterned to form a finite quasi-one-dimensional phononic crystal, with the complete stopband
suppressing the transverse leakage of acoustic waves, confining them to the core of the waveguide.
We derive a theoretical formalism that can be used to compute the opto-acoustic interaction in
such periodic structures, and find forward intramodal-SBS gains up to 1750 m−1W−1, which
compares favorably with the proposed MIR SBS designs based on buried germanium waveguides.
This large gain is achieved thanks to the nearly complete suppression of acoustic radiative losses.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Stimulated Brillouin Scattering (SBS), which describes the coherent nonlinear interaction between
optical and acoustic fields [1,2], is a key effect for a wide range of photonics capabilities, including
wideband tunable, ultra-narrow RF filters [3, 4], acousto-optical storage [5, 6], non-reciprocal
photonic elements [7] and new laser sources [8]. The ability to bring in the advantages of
Brillouin interaction into integrated systems, and generate a useful level of SBS gain in a short,
on-chip waveguide is especially important in the mid-IR, where there is particular demand for
broadband, tuneable filters for spectroscopy or IR sensors [9, 10]. Furthermore, by migrating
nonlinear photonics towards mid-IR range, the unwanted two-photon absorption (TPA) in the
two key CMOS compatible materials: silicon and germanium, can be eliminated [10, 11].
A central challenge in harnessing on-chip SBS is to design a waveguide which confines both

the optical and acoustic waves. The obvious approach to this task is to confine both waves using
total internal reflection (TIR) — this approach requires materials with both a high refractive
index and low stiffness, and while realizations of this scheme have been reported, they are limited
to a small range of materials [12] that require specialized fabrication techniques. TIR can also be
achieved by geometric softening of the guided acoustic modes [13] to reduce their phase velocities
below that of the substrate and surface waves, thereby prohibiting acoustic loss. Another class of
strategies relies on geometric isolation of the acoustic modes from the substrate, for example,
by designing suspended waveguides with few, spatially-separated supports [14–16], or using
phoxonic crystals [17, 18] which guide both photons and phonons along line defects. Each of
these strategies has advantages and drawbacks. Two-dimensional phoxonic crystals offer a unique
control over the propagation and co-localization of photons and phonons along line and point
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defects, but they require simultaneous designing of optical and acoustic bandgaps. Suspended
structures, while simpler to design and fabricate, inevitably suffer from losses through the points
of contact, which are rigidly clamped to the substrate and allow radiative loss of the acoustic
mode [16].
Here we propose a new class of silicon suspended structures which can be used to achieve

high intra-mode forward SBS (FBS [19], also referred to as intra-modal FSBS [14]) gains of up
to 1750 m−1W−1 over broad bandwidths in the mid-IR. The structure achieves acoustic isolation
via a combination of TIR and geometrical shielding of the acoustic modes: the central idea is to
confine the acoustic modes by suspending the waveguide with an array of flexible ribs, with each
rib structured to induce a phononic stopband in the transverse direction. By tuning the stopband
to the frequency of the acoustic mode we suppress the transmission of acoustic waves into the
substrate through the ribs, and simultaneously reduce the clamping losses [20]. This strategy
was recently reported in two studies, which experimentally realized nanoresonators in silicon
nitride membranes (fabricated in films with thickness from 35 nm) [21] and nanobeams [22] to
isolate and focus strain and displacement fields. Furthermore, similar two-dimensional snowflake
crystals with feature sizes comparable to those discussed in our work, were reported in studies
on radiation pressure coupling in phoxonic silicon systems [23]. In this contribution, we find that
the phononic bandgap engineering provides acoustic waveguides with mechanical quality factors
Qm close to 90% of those found for unsupported acoustic waveguides.

Simultaneously, the ribs form a subwavelength grating (SWG) for mid-IR light propagating in
the waveguide. Such a grating can be seen as an effective cladding layer with refractive index
very close to unity, and can provide TIR guidance for the optical field.

We present here a proof-of-concept design for this new structure, and provide design rules for
the extension of the concept to different regimes of wavelength and material parameters. We
discuss the mechanisms of optical guidance in these waveguides and formulate constraints on the
structure’s geometric characteristics, such as the required spacing between suspending ribs. We
discuss the creation of acoustic stopband at the frequency of the mechanical vibrations of the
waveguide by patterning of the ribs, compute the resulting acoustic confinement and investigate
the geometrical dependence of the acoustic loss. This results in a set of design guidelines for
creating these types of suspended, softly-clamped waveguides for SBS applications over a broad
range of wavelengths. Finally, we present the formalism for Brillouin gain computations in a
periodic system, and use this to estimate SBS gain for a realistic silicon platform. We find that
these structures exhibit gains that are comparable with the predicted gains for mid-IR structures
in germanium [9], and so represent a viable alternative for harnessing SBS in this spectral range.

1.1. Suspended MIR waveguides

Suspended waveguides for low-loss mid-IR light guiding in silicon rely on the suspending ribs
forming a subwavelength grating (SWG) [27,28]. In SWG guidance, the spacing between ribs
(the pitch of the structure Λ, see schematics in Fig. 1(a)) must be smaller than half of the effective
wavelength of light λ0/neff. While in general the optical dispersion relation of the waveguide
depends on Λ, here we assume that the ribs do not strongly modify the optical response of the
structure, and estimate the upper limit for Λ from the dispersion relation of the unsupported
waveguide. For example, for a rectangular silicon waveguide in air similar to the one reported
by Penandes et al. [28], and shown in Fig. 2(a), with cross section dimensions (1.2, 0.3) µm
and operating at 4 µm mid-IR wavelength, we find for the fundamental TE mode neff ≈ 1.4
and, consequently, Λ < 1.3 µm. Therefore, throughout this work, we will consider suspended
waveguides with pitch Λ = 1.25 µm. We should note that compared to the structure discussed by
Penandes et al. [28], our waveguide has a significantly larger aspect ratio, exhibits a significantly
lower effective index neff of the fundamental mode, and consequently, puts less stringent condition
on the pitch Λ. Nevertheless, the limit for Λ sets up a critical obstacle for translating our designs
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Fig. 1. (a) A section of the suspended waveguide setup, with 4 unit cells along ẑ axis, and
a zoomed in section of the waveguide. Patterned ribs, spaced by Λ, connect the central
waveguide with rectangular cross section (ax × ay), with the slab region. While the entire
structure is made of silicon (Si), Matching Layers (ML) are introduced in the slab region,
using built-in COMSOL procedures for optics [24], and following the method described
in [25] for acoustics. Unless otherwise specified, throughout this work we will be discussing
structures with (ax, ay,Λ) = (1.2, 0.3, 1.25) µm (see the discussion in the main text), and
ribs with square cross section (0.18 µm)2. The patterning of ribs is discussed in Section
2. (b) Phase-matching in intra-mode Forward Stimulated Brillouin Scattering (intra-mode
FBS [14, 19]). Coupling between the optical pump and Stokes waves is mediated by the
co-propagating acoustic wave, fulfilling the phase-matching conditions kS + q = kp and
ωS +Ω = ωp . (c) Cartoon representations of the electric field E of the fundamental optical
TE fields of the pump and Stokes waves (upper panel), and the displacement field u of the
lowest-order symmetry-allowed acoustic mode [26], associated with lateral stretching of the
waveguide (lower panel). Exact profiles of the two modes are discussed in the following
figures.

towards near-IR and visible spectral ranges, since shorter effective optical wavelengths would
require smaller pitch. This in turn would result in more perturbation, and consequently, larger
clamping losses suffered by the acoustic mode.
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Fig. 2. Optical waveguiding inside the central bar. (a,b) Spatial distribution of the dominant
Ex component of the electric field (upper panel) and the Pz component of the Poynting
vector (lower panel) in the planes marked in the panels on the right. (c) Dispersion relation
of the rectangular silicon waveguide with dimensions (1.2, 0.3) µm, unsupported (dashed
blue line) and supported by the unpatterned ribs spaced by Λ = 1.2 µm (solid orange line).
The horizontal line denotes the λ0 = 4 µm waveguiding wavelength.

Comparison of calculations for a waveguiding structure with and without the ribs (see Fig. 2)
confirms that the transverse supporting structures introduce a very small modification to the
optical response of the waveguide. In particular, the calculated dispersion relation (orange
lines in Fig. 2(c)) and field profiles (Fig. 2(b)) of the TE mode in the suspended structure with
simplified, unstructured square ribs with (0.18 µm)2 cross section (see schematic in Fig. 2(a))
follow closely those found for unsuspended structures (see Fig. 2(a)). The particular design of the
ribs (i.e. patterning) does not influence the guiding properties significantly, because light cannot
be efficiently guided out of the central bar through the ribs. On the other hand, the ribs do induce
a small change of the average refractive index of the environment, red-shifting the dispersion
relation slightly (Fig. 2(c)). Furthermore, they form a strong Bragg grating, and introduce a
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partial photonic stopband of width 1 THz, centered at 77.9 THz - an effect which could be used
to further enhance, or suppress the Brillouin gain [29].
We have characterized the optical response of unsupported and supported waveguides by

implementing 2D and 3D models, respectively, in the RF module of the COMSOL software [24].
The refractive index of silicon in the mid-IR was taken as constant n = 3.42 [30], and perfectly
matching layers were used in the slab region (marked in red in Fig. 1(a)). In 3D systems, we
applied Floquet boundary conditions [31] along the ẑ axis with period Λ.

2. Acoustic response

Acoustic response of the suspended structure can be largely controlled by engineering the
capabilities of ribs to guide elastic waves away from the central waveguide. In particular, by
patterning the ribs, we can form a complete acoustic stopband, and forbid acoustic waves from
dissipating through the ribs. We illustrate this concept in Fig. 3 by considering an infinite one-
dimensional phononic crystal forming the ribs, periodic along the x̂ axis, with the unit cell shown
schematically in Fig. 3(a). The asymmetry along ŷ in the grating structure is included to simplify
the fabrication process, and induces the splitting of flexural modes polarized along ŷ and ẑ
directions (see schematic in Fig. 3(b)). In Fig. 3(c), we plot the dispersion diagram (qribs,Ωribs) of
the particular design of patterned ribs ((dx, dy, dz,wy,wz, L) = (340, 120, 120, 180, 180, 2250) nm),
which we use throughout the rest of this work. This plot reveals a complete stopband centered at
3.35 GHz, with the 0.28 GHz width determined by the flexural modes (blue lines) shown in the
bottom row of Fig. 3(b). The complete stopband of the one-dimensional phononic crystal can be
tuned over a broad spectral range to match the mechanical frequency of the central waveguide,
e.g. by changing the length L of the unit cell, as shown in Fig. 3(d). Furthermore, the bandwidth
of the stopband can be controlled by adjusting the depth (defined as wy − dy = wz − dz) or
width (dx) of the grating structure, a parameter likely to suffer from the largest infidelity in the
experimental realization. However, as we have verified through numerical calculations (results
not shown here), the stopband is resilient to even significant reduction of the grating depth. For
example, a reduction of this parameter from 60 to 50 nm yields a one-dimensional phononic
crystal with bandwidth of over 5% of the acoustic frequency (down from 8%). The effect of a
similar reduction of the grating width, from 340 to 320 nm, is negligible.
All the numerical calculations of mechanical response were carried out using the Structural

Mechanics module of the COMSOL software [24]. Silicon was described by stiffness and
acoustic loss cubic tensors with numerical values taken from [32], with the principal axes of the
crystal coinciding with the x̂ ŷ ẑ axes. In the calculations of the response of the entire structure,
we include elastic matching layers, marked in Fig. 1(a) as red volumes, implementing the method
described in [25]. The periodicity — both of the phononic crystal forming ribs (along axis x̂), as
well as the entire waveguiding system (along axis ẑ) — was accounted for by imposing Floquet
boundary conditions [31] along the direction of the periodicity.
We can now consider the elastic mode of the entire waveguiding structure, which mediates

the SBS interaction between two optical waves in TE modes propagating in the suspended
waveguide. We choose to study intra-mode Forward SBS (see Fig. 1(b)) [14, 19], in which
mechanical modes characterized by longitudinal wavenumber and frequency (q,Ω) mediate the
interaction between co-propagating optical beams (pump and Stokes, denoted by subscripts
p and S, respectively) characterized by (kp, ωp) and (kS, ωS). From the phase matching
conditions, we find that the magnitude of the mechanical wavenumber q is given approximately
by q = kS − kp ≈ (ωS −ωp)neff/c = Ωneff/c, where neff is the optical mode index near ωp . Since
the typical vibrational frequencies are of the order of GHz, we can take q = 0. Furthermore, we
focus on the lowest-order acoustic mode associated with lateral stretching mode of the waveguide,
depicted schematically in Fig. 1(c) [14, 16]. For reference, we have calculated the characteristics
of this mode in an experimentally unfeasible unsupported waveguide, and found its frequency
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Fig. 3. Engineering acoustic stopband by patterning ribs. (a) Schematic of a unit cell of the
phononic crystal. (b) Acoustic modes of the one-dimensional phononic crystal, calculated at
positions marked with colored dots in (c). (c) Dispersion diagram of the one-dimensional
phononic crystals for periodicity L = 2.25 µm and (dx, dy, dz ) = (340, 120, 120) nm
along the x̂ axis, patterned in the rib with square cross-section (wy,wz ) = (180, 180) nm,
used throughout the rest of the work. Green, blue and red lines denote the longitudinal
(compressional), flexural and torsional modes, marked on the dispersion diagrams with
dots. Hybridization is marked by intermediate colors. Lines are guides only. The complete
acoustic stopband is centered at 3.35 GHz, and can be tuned to overlap with the mechanical
resonance of the central waveguide by changing the length of the unit cell L, as shown in (d),
where we mark the stopbands as shaded areas.

Ω/2π = 3.69 GHz, and mechanical quality factor Qm = 2970 (limited by the viscosity of silicon).
The displacement field of that mode is shown in (Fig. 4(a)).

Apart from the viscous losses in silicon, the mechanical quality factor of a more realistic,
supported structure is, as discussed earlier, determined by the ability of the ribs to guide acoustic
waves into the substrate (or slab region). We can demonstrate that effect by detuning the acoustic
mode of the waveguide across the stopband of the phononic crystal, and calculating the mechanical
quality factor Qb of the entire structure (accounting for both the viscosity and dissipation into the
slab region). To this end, we change the width ax of the central core (see Fig. 1(a))), and find the
frequencyΩ (Fig. 4(b)) and quality factor Qb (Fig. 4(c)) of the fundamental acoustic mode. These
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Fig. 4. (a) Displacement field distribution of a lateral stretching mode of an unsupported
waveguide. (b) Frequency and (c) mechanical quality factor Qm of the waveguide suspended
by patterned ribs as a function of the core width ax . Stopband of the phononic crystal is
marked as the gray area. The ribs comprise 4 unit cells of the phononic crystal on each side
of the waveguide. (d,e) Schematics of the displacement fields in the unit cell, associated
with modes marked in (a) as A and B. Plots in (e) demonstrate the displacement field |u|
calculated along the x̂ axis, passing through the centres of the ribs. For the mode A with
resonance within the stopband the displacement field decays exponentially over the length of
the unit cells of the phononic crystal.

calculations are carried out assuming that the ribs include 4 unit cells of the one-dimensional
phononic crystal discussed earlier. As the core width ax increases, the mode frequency redshifts
and passes through the stopband of the phononic crystal. For a system with resonance inside the
stopband (i.e. between 3.21 and 3.48 GHz), the displacement field is localized inside the central
waveguide, and the energy does not propagate towards the clamps (see the displacement field
distribution at point A, calculated for ax = 1.2 µm, shown in Figs. 4(d) and (e)). Consequently,
the system exhibits large quality factors, comparable to those of the unsupported waveguide.
As we increase the core width, the resonances shift outside of the stopband, and the quality
factor drops rapidly. For this structure, the ribs oscillate along their entire length and, through
clamping, transfer the energy into the slab region. An example displacement field distribution,
calculated for ax = 1.275 µm, is shown in panel B in Figs. 4(d) and (e). We should note that the
effect of suppression of energy dissipation is not limited to the particular lateral stretching mode
discussed above, but should be observed for any acoustic mode of the central waveguide, tuned
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to the stopband.
Alternatively, the suppression of acoustic dissipation could be attributed to the reduced

transmission of mechanical energy through the narrower parts of the structured ribs. We can
dismiss this explanation by noting that the three families of elastic modes carrying energy through
the ribs exhibit no cutoff, and would be supported also by the thin sections of the ribs.

3. Estimating FBS gain

We now calculate the Brillouin gain Γ in the suspended structure, by extending the formalism
originally developed to treat translationally invariant systems, introduced by Wolff et al. [33].
To this end we consider the Bloch picture of the acoustic modes of the quasi-one-dimensional
system:

U(r) = b(z)uq(r) = b(z)ũq(r)eiqz, (1)

where ũ is a periodic function along the z coordinate

ũq(r + Λẑ) = ũq(r), (2)

and b(z) is a slowly varying envelope with ∂zb � Λ−1. Similarly, we write down the electric
fields for the two optical modes (pump E(1) and Stokes E(2)) as

E(i)(r) = a(i)(z)e(i)
k(i)
(r) = a(i)(z)ẽ(i)

k(i)
(r)eik

(i)z, (3)

with e(i)
k(i)
(r + aẑ) = e(i)

k(i)
(r), and ∂za � Λ−1. In intra-mode FBS, we consider the pump and

Stokes beams to propagate in the same mode [14,19]. In Appendix A we provide a full derivation
of the approximate Brillouin under perfect phase-matching k(2) + q = k(1) condition:

Γ ≈ 4ω
Qm

���〈Q(PE)
1 + Q

(MB)
1

〉���2
〈Eb〉〈P

(1)〉〈P(2)〉
, (4)

where the averages 〈.〉 are carried out over the unit cell, e.g. 〈P(i)〉 describes the z component of
the average flux of optical energy through the waveguide (see Eq. (9,14)) and 〈Eb〉 describes
the acoustic energy density (Eq. (18)). The overlap integral between unnormalized optical and
acoustic modes Q(PE)

1 due to the photoelastic effect is defined by

Q
(PE)
1 (z) = −ε0

∫
d2rε2

a

∑
i jkl

[e(1)i ]
∗e(2)j pi jkl∂ku∗l , (5)

where pi jkl is the Pockels tensor, and integration is carried out in a x̂ ŷ plane, determined by
argument z. The effect of moving boundaries is expressed through overlap integral Q(MB)

1 (z)
calculated as integral over the boundaries between materials (with relative permittivities εa and
εb) in the same x̂ ŷ plane:

Q
(MB)
1 (z) =

∫
A

dr(u∗ · n̂)
[
(εa − εb)ε0

(
n̂ × e(1)

)∗ (
n̂ × e(2)

)
−

(
1
εa
−

1
εb

)
1
ε0

(
n̂ · d(1)

)∗ (
n̂ · d(2)

)]
.

(6)

Results of the calculation of Brillouin gain are shown in Fig. 5, as a function of the number N
of unit cells (alternatively, length of the ribs N × Λ). As the ribs become longer, the mechanical
frequencies (a) of structures (see Fig. 5(b)) with patterned (orange crosses) and unpatterned
ribs (green dots) decrease. As we show in the inset, the peculiar splitting of modes in the latter
case is due to the anti-crossing between two modes of structure with unpatterned ribs of length
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Fig. 5. Acoustic frequencies (a), mechanical quality factors Qm (b), and Brillouin gain
coefficients Γ (c), of suspended waveguide systems, calculated for the ribs comprised of
an increasing number of unit cells of the phononic crystal. Orange crosses and green dots
represent systems with patterned, and unpatterned ribs, respectively. Inset in (a) traces
two anti-crossing mechanical modes, while the inset in (b) shows the calculated radiative
mechanical quality factor Qm,rad of patterned waveguide, as a function of the ribs length,
with an exponential fit. The dashed blue lines in (b) and (c) denote the values obtained for
unsupported waveguides.

around 5Λ = 11.25 µm. Simultaneously, the mechanical quality factors Qm (b) grow from 440
(140) to 2600 (360) for patterned (unpatterned) structures. This change, by factors of about
6 (2.5) is mostly responsible for the simultaneous increase in the Brillouin gain coefficient Γ
shown in Fig. 5(c). This confirms our expectation that, since the optical field is largely confined
inside and near the waveguide, neither the overlap integrals Q(PE)

1 and Q(MB)
1 , nor the averaged

optical fluxes 〈P(i)〉 depend strongly on the length of the ribs. Furthermore, the average acoustic
energy density 〈Eb〉 depends very weakly on the rib length due to their small volume - even in
the case of unpatterned systems. We also find that the two contributions to the Brillouin gain -
photoelasticity and radiation pressure - retain the similar ratio for every investigated structure
〈Q

(PE)
1 〉/〈Q

(MB)
1 〉 ≈ 0.6. These observations simplify Eq. (4) to Γ ∝ Qm, a relationship we

recover in Fig. 5.
Furthermore, by tracing the dependence ofQm on the number of patterned ribs, we can estimate

the non-radiative contribution to the acoustic decay. If we insist that the radiative mechanical
quality factor Qm,rad should grow exponentially with the number of ribs N [34], we can estimate
the mechanical quality factor due to the viscous losses Qm,visc from

Q−1
m = Q−1

m,visc +Q−1
m,rad. (7)

Fitting the dependence of Qm,rad on N to the numerical results (see inset in Fig. 5(b)), we find
Qm,visc ≈ 2700. The difference between this magnitude and the quality factor Qm,0 = 2970 of
the unsupported structure (marked as blue dashed line in Fig. 5(b)) quantifies the viscous losses
in the ribs.
The mechanical quality factors and Brillouin gain coefficients we discuss above compare

favorably with those reported for the few realistic designs for near- and mid-IR systems proposed
to date. These include germanium waveguides buried in silicon nitride [9, 35] operating at 4 µm,
which enable backwards SBS with similar mechanical quality factors, and Brillouin gain up
to 1000 m−1W−1. In an experimental realization of a rib waveguide [12] operating in near-IR,
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backward-SBS gain coefficients were reported as about 300 m−1W−1.
We now briefly discuss the applicability of our design to backwards SBS. BSBS employs

mechanical oscillations with wavenumber q approximately twice as large as that of the optical
modes k, suggesting that the wavelength for the mechanical mode would be similar to the pitch Λ
of the structure. Such a system would therefore operate near the X-point of the one-dimensional
phononic crystal formed by the central waveguide and ribs serving as a grating, and the mechanical
mode of interest could be tuned to fall into the partial bandgap of the phononic crystal, or onto its
edge. This can be seen as a realization of the phononic analogue of the SBS suppression scheme
demonstrated by Merklein et al. [29].

4. Summary and outlook

We have proposed a novel type of silicon waveguides capable of supporting both low-loss
MIR optical and GHz acoustic waves. Our design is based on previous proposals for optical
subwavelength guidance in siliconwaveguides suspended in air by periodic ribs. To simultaneously
confine the acoustic waves inside the waveguide, we structured the supporting ribs to exhibit a
complete acoustic stopband. The mechanical quality factor of such structures can reach about
90% of the viscosity-limited quality factor of an unsupported waveguide, indicating that we can
almost completely eliminate the dissipation of acoustic waves into the slab region. This isolation
also boosts the forward intramodal Brillouin gain coefficient, which can reach 1750 m−1W−1.
This design can be further refined to explore its applicability to the backwards SBS, or the

efficiency of acoustic isolation through 1D phononic crystals with partial stopband (see e.g. [22]).
Besides further enhancing the Brillouin gain, enhanced control over the channels of acoustic
dissipation and propagation might also pave the way to designing novel acoustic beam splitters or
couplers.

A. Forward Stimulated Brillouin Scattering in periodic structures

In a periodic opto-acoustic system, such as the suspended waveguide discussed in this work,
Brillouin gain can be calculated by adopting a Bloch picture mode for the quasi-1D system
with period Λ. In this formalism, we write the displacement field and the electric field in the
Bloch form given in Eqs. (1) and (3). For simplicity, we drop subscripts q and β characterizing
wave numbers. Furthermore, while in this contribution we focus on FSBS (where q ≈ 0), the
derivation shown below will be general, as to be applicable to BSBS (where q ≈ 2β).
Modes uq(r) and e(i)β (r) can be found by solving linear elastic, and Maxwell equations,

respectively, by enforcing Floquet boundary conditions [31] to the z-normal faces of a unit cell.

A.1. Formulating dynamical equations

To derive the expression for the Brillouin gain in this periodic structure, let us revisit the
corresponding derivation for a waveguide-like, translationally-invariant system where functions
ũ(r) and ẽ(r) are functions of transverse r⊥ = (x, y) coordinates only.
For the periodic structure, the electromagnetic energy density and the z component of the

energy flux for a fixed z coordinate can be calculated as:

E(i)(z) = 2ε0

∫
d2rε(r)[e(i)(r)]∗ · e(i)(r), (8)

P(i)(z) = 2
∫

d2r ẑ · ([e(i)(r)]∗ × h(i)(r)). (9)

where the integration is carried in the transverse x̂ ŷ plane. It should be noted that in the discussed
system, the flux density will have small, but non-vanishing components in x̂ ŷ plane associated
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with the energy leaking out from the waveguide into radiation modes. Nevertheless, for systems
optimized to serve as low-loss optical waveguides, these terms should be negligible.
In the limit of longitudinally-invariant structures, E(i) and P(i) are constant, and their ratio

describes the energy transport velocity of the mode (energy velocity) [33]

vE =
P(i)

E(i)
. (10)

In the absence of material losses, this is equal to the group velocity.
For a periodic structure, the energy velocity vE can be obtained by separately averaging these

magnitudes over the volume of the unit cell (UC) [36]

vE =
〈P(i)(z)〉
〈E(i)(z)〉

. (11)

In a lossless system, this velocity is again equal to the group velocity of the mode. We have
verified that both Eqs. (10) and (11) provide good estimates of the group velocity read out from
the dispersion relations of the waveguides without and with ribs, respectively, discussed in Fig. 2.

A.1.1. Effective dynamics of optical envelopes

Using these definitions of energy density and flux, we can repeat the entire derivation presented
by Wolff et al. [33] up to Eq. (26):

−iω(1)
[
P(1)(z)∂za(1)(z) + E(1)(z)∂ta(1)(z)

]
= a(2)(z)b∗(z)

(
−iω(1)

)2
Q1(z), (12)

where

Qi(z) =
∫

d2r
[
[e(i)(r)]∗ · ∆d(i)(r) − [d(i)(r)]∗ · ∆e(i)(r) − µ0[h(i)(r)]∗ · ∆h(i)(r)

]
. (13)

Here, fields denoted with ∆ describe the thus-far-unspecified perturbations giving rise to the
coupling between the optical and acoustic fields. The photoelastic and moving boundary effects
governing this coupling are discussed in Section 3.
Equation (12) mixes the slow evolution of the envelope functions a(i)(z) and b(z) with the

rapidly changing, periodic functions P(i)(z), E(i)(z) and Q1(z) defined by the Bloch modes of
the system. We can separate the two, to arrive at the evolution equations for the envelopes, by
averaging both sides of Eq. (12) over the length of the unit cell Λ, and assuming that over that
distance the envelopes are almost constant∫ z+Λ

z

dz′
[
∂za(1)(z)

]
z=z′
P(1)(z′) ≈ ∂za(1)(z)

∫ z+Λ

z

dz′P(1)(z′) = ∂za(1)(z)〈P(1)〉Λ, (14)

arriving at:

∂za(1)(z) +
1
v(1)

∂ta(1)(z) = −iω(1)a(2)(z)b∗(z)
〈Q1〉

〈P(1)〉
, (15)

where v(1) is the energy velocity of the mode defined in Eq. (11).
The analogous equation for the other optical envelope reads

∂za(2)(z) +
1
v(2)

∂ta(2)(z) = −iω(2)a(1)(z)b(z)
〈Q2〉

〈P(2)〉
, (16)

where the velocity v(2) and integrated flux 〈P(2)〉 are defined similarly as for the first optical
mode. From the definition of the PE contribution to the overlap integral Q(PE)

1 (z), one can directly

find that Q(PE)
1 (z) =

[
Q

(PE)
2 (z)

]∗
.
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A.1.2. Effective dynamics of acoustic envelopes

To derive the dynamic equations for the vibrations, we take Eq. (43) from [33]:

−iΩ
∑
jkl

[(cizkl∂k + ∂jci jzl)ul(r)∂zb(z) − 2iΩρ(r)ui(r)∂tb(z) (17)

+ (∂jηi jkl∂kul(r))b(z) + [a(1)(z)]∗a(2)(z) fi] + c.c. = 0.

Multiplying both sides by u∗, integrating over the transverse plane and using the definitions of
acoustic energy density and flux:

Eb(z) = 2Ω2
∫

d2rρ(r)|u(r)|2, Pb(z) = −2iΩ
∫

d2r
∑
ikl

czikl[ui(r)]∗∂kul(r), (18)

we arrive at

Pb(z)∂zb(z) + Eb(z)∂tb(z) + b(z)αPb (z) = −iΩ[a(1)(z)]∗a(2)(z)Qb(z), (19)

where
Qb(z) =

∫
d2r[u(x, y; z)]∗ · f(x, y; z) (20)

governs the coupling between the acoustic field and applied force density f, and

αPb (z) = Ω
2
∫

d2r
∑
i jkl

[∂ju∗i (r)]ηi jkl∂kul(r), (21)

describes acoustic loss. In the translationally invariant case, αPb is defined simply as a product
of the inverse of the acoustic dissipation length α (i.e. the RHS of Eq. (21) divided by Pb) and
acoustic energy flux Pb . As in the optical case, we introduce the spatially averaged quantities by
integrating both sides of Eq. (19) over the volume of the unit cell, arriving at

∂zb(z) +
1
vb
∂tb(z) +

〈αPb 〉

〈Pb〉
b(z) = −iΩ[a(1)(z)]∗a(2)(z)

〈Qb〉

〈Pb〉
, (22)

where vb = 〈Pb〉/〈Eb〉 is defined similarly as for the optical fields in periodic structure.

A.2. Brillouin gain

In the steady-state, Eq. (22) can be solved approximately in a similar way as we would for the
regular waveguide:

b(z) ≈ −iΩ[a(1)(z)]∗a(2)(z)
〈Qb〉

〈αPb 〉
, (23)

giving

∂za(1)(z) = ω(1)Ωa(1)(z)|a(2)(z)|2
〈Q1〉

∗〈Qb〉

〈P(1)〉〈αPb 〉
, (24)

∂za(2)(z) = −ω(2)Ωa(2)(z)|a(1)(z)|2
〈Q2〉〈Qb〉

∗

〈P(2)〉〈αPb 〉
. (25)

We now approximate ω(1) ≈ ω(2) ≡ ω and, follow our earlier observation that 〈Q1〉 = 〈Q2〉
∗.

Furthermore, these overlap integrals can be equated to 〈Qb〉 by following the same arguments as
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in Refs. [33,37]. We can finally define an effective Brillouin gain in an almost identical way as is
done for the waveguide:

Γ = 2ωΩ
<[〈Qb〉

∗〈Q1〉]

〈αPb 〉〈P
(1)〉〈P(2)〉

. (26)

Moreover, in the calculations we approximate 〈αPb 〉 as α〈Pb〉, where the spatial dissipation rate
α is given by

Qb =
<(Ω̃)

2=(Ω̃)
→ α ≈

=(Ω̃)

vb
=
<(Ω̃)

2Qbvb
=

Ω

2Qbvb
, (27)

giving

Γ ≈ 2ωΩ
<[〈Qb〉

∗〈Q1〉]

α〈Pb〉〈P(1)〉〈P(2)〉
= 4ω

Qbvb<[〈Qb〉
∗〈Q1〉]

〈Pb〉〈P
(1)〉〈P(2)〉

= 4ω
Qb |〈Q1〉|

2

〈Eb〉〈P
(1)〉〈P(2)〉

. (28)
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