
35

Algorithmic Analysis of Termination Problems forQuantum
Programs

YANGJIA LI, Institute of Software, Chinese Academy of Sciences, China
MINGSHENG YING, University of Technology Sydney, Australia, Institute of Software, Chinese Academy
of Sciences, China, and Tsinghua University, China

We introduce the notion of linear ranking super-martingale (LRSM) for quantum programs (with nonde-
terministic choices, namely angelic and demonic choices). Several termination theorems are established
showing that the existence of the LRSMs of a quantum program implies its termination. Thus, the termination
problems of quantum programs is reduced to realisability and synthesis of LRSMs. We further show that the
realisability and synthesis problem of LRSMs for quantum programs can be reduced to an SDP (Semi-Definite
Programming) problem, which can be settled with the existing SDP solvers. The techniques developed in this
paper are used to analyse the termination of several example quantum programs, including quantum random
walks and quantum Bernoulli factory for random number generation. This work is essentially a generalisation
of constraint-based approach to the corresponding problems for probabilistic programs developed in the
recent literature by adding two novel ideas: (1) employing the fundamental Gleason’s theorem in quantum
mechanics to guide the choices of templates; and (2) a generalised Farkas’ lemma in terms of observables
(Hermitian operators) in quantum physics.

CCS Concepts: • Theory of computation→ Program analysis;

Additional Key Words and Phrases: Quantum programming, termination, ranking function, super-martingale,
SDP (Semi-Definite Programming), quantum random walk, quantum Bernoulli factory

ACM Reference Format:
Yangjia Li and Mingsheng Ying. 2018. Algorithmic Analysis of Termination Problems for Quantum Programs.
Proc. ACM Program. Lang. 2, POPL, Article 35 (January 2018), 29 pages. https://doi.org/10.1145/3158123

1 INTRODUCTION
Quantum Programming: Quantum programming research has been extensively conducted

for two decades, including design and implementation of quantum programming languages as
well as their operational and denotational semantics and type systems. For example, the first
quantum programming language QCL was presented by Ömer [2003], a quantum extension qGCL
of Dijkstra’s guarded-command language GCL was proposed by Sanders and Zuliani [2000], a
model of quantum computing embedded in Haskell was developed by Sabry [2003], and the first
two quantum languages QPL and QML of the functional programming paradigm were defined by
Selinger [2004b] and Altenkirch and Grattage [2005], respectively. In the last few years, several
more practical and scalable quantum programming languages have been defined and their compilers
have been implemented, including Quipper [Green et al. 2013], Scaffold [JavadiAbhari et al. 2012],

Authors’ addresses: Yangjia Li, State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of
Sciences, Beijing, 100190, China, yangjia@ios.ac.cn; Mingsheng Ying, University of Technology Sydney, Sydney, Australia,
Mingsheng.Ying@uts.edu.au, State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing, 100190, China , Tsinghua University, Beijing, 100084, China.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
2475-1421/2018/1-ART35
https://doi.org/10.1145/3158123

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

https://doi.org/10.1145/3158123
https://doi.org/10.1145/3158123

35:2 Yangjia Li and Mingsheng Ying

Microsoft’s LIQUi|⟩ [Wecker and Svore 2014] and QWIRE [Paykin et al. 2017]. For a detailed survey,
see [Gay 2006; Seinger 2004a; Ying 2016].

Verification of Quantum Programs: Various program logics and model-checking techniques
have also been extended for verification of quantum programs [Baltag and Smets 2006; Brunet
and Jorrand 2004; Chadha et al. 2006; Feng et al. 2007, 2013; Gay et al. 2008; Kakutani 2009;
Ying et al. 2014a] . For example, a Hoare-like logic for reasoning about both partial and total
correctness of quantum programs was developed and its (relative) completeness was proved by
Ying [2011]. A theorem prover was implemented by Liu et al. [2016] for quantum Hoare logic
based on Isabelle/HOL. The notion of invariants for quantum programs was introduced, and an
SDP (Semi-Definite Programming) algorithm for generating invariants of quantum programs was
presented by Ying et al. [2017].

Termination Analysis of Quantum Programs: The termination problems of quantum pro-
grams have also received a fair amount of attention. Expected running time of quantum programs
written in Scaffold was considered and its implications to the compiler ScaffCC of Scaffold was
discussed by JavadiAbhari et al. [2015]. Termination of quantum while-loops with a unitary trans-
formation as the loop body was studied by Ying and Feng [2010] using Jordan decomposition of
complex matrices, and several major results in [Ying and Feng 2010] were extended by Ying et
al. [2013a] to quantum loops where the loop body can be a general super-operator. Furthermore,
termination of nondeterministic and concurrent quantum programs was examined by Li et al.
[2015] and Yu and Ying [2012] as a reachability problem of quantum Markov systems.

Synthesis of Ranking Functions: The idea of using ranking function in proving termination
of classical programs is traced back to the seminal paper [Floyd 1967]. Recently, this idea has been
generalised to probabilistic programs. For example, a ranking function of the Lyapunov style was
employed by Bournez and Garnier [2005] to prove finite termination of probabilistic programs
without nondeterministic choices. The notion of ranking super-martingale was introduced by
Chakarov and Sankaranarayanan [2013] and Fioriti and Hermanns [2015] for proving almost-sure
and finite termination of probabilistic programs without and with nondeterminism, respectively.
One of the main techniques for synthesis of ranking functions and super-martingales is the

constraint-based approach, of which the basic idea is to use a template of ranking functions or
super-martingales that is constrained by the desired termination properties and then to find a
solution to the constraint system. This approach was originally proposed by Colón et al. [2001,
2003] and Podelski and Rybalchenko [2004] for invariant generation and synthesis of ranking
function for classical programs; for a series of successful examples, see [Rybalchenko 2010]. In the
last few years, it has been extended by Chakarov and Sankaranarayanan [2013] and Chatterjee et
al. [2016] to synthesis of ranking super-martingales of probabilistic programs.

Contributions of This Paper: The aim of this paper is to extend the constraint-based approach
to synthesis of ranking functions for termination analysis of quantum programs (with angelic and
demonic choices). Our contributions includes:

• The notion of ranking function for quantum programs was already introduced in quantum
Hoare logic [Ying 2011] in order to guarantee termination for total correctness of quantum
programs. In this paper, we define the notion of ranking super-martingale (LRSM) for quantum
programs as a generalisation of ranking functions. Thenwe establish two termination theorems
showing that the existence of the LRSMs of a quantum program guarantees its termination.

• As mentioned above, the constrain-based approach was already used in [Ying et al. 2017]
where an SDP (Semi-Definite Programming) algorithm was found for generating invariants
of quantum programs. In this paper, we prove that the realisabilty and synthesis problem

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

Algorithmic Analysis of Termination Problems for Quantum Programs 35:3

of LRSMs for quantum programs with angelic and demonic choices can be reduced to an
SDP problem. The novelty of this work are: (i) A fundamental theorem, namely Gleason’s
theorem [Dvurečenskij 1993; Gleason 1957] from quantum mechanics, is employed to guide
the choice of templates of LRSMs; and (ii) The reduction of synthesising LRSMs of quantum
programs with angelic choices requires a new generalisation of Farkas’s lemma in the form of
observables in quantum physics (modelled as Hermitian operators), which does not appear
in the previous literature.

• As applications of the techniques developed in this paper, we present several case studies of
the termination analysis of example quantum programs, including quantum random walks
and quantum Bernoulli factory [Dale et al. 2015] for randomness generation and processing,
by using the existing SDP solvers.

Organisation of The Paper: We assume that the reader is familiar with the basics of quantum
theory, which can be found in previous literature on quantum programming like [Selinger 2004b]
and the recent book [Ying 2016]. In Section 2, we define the quantum programming language used
in the paper. The notion of quantum game structure is introduced in Section 3 as a semantic model
of quantum programs. In Section 4, we define the termination problems for quantum programs. In
Section 5, we introduce the notion of LRSM and prove two termination theorems. The reduction of
realisability and synthesis problem of LRSMs for quantum programs to SDP is presented in Section
6. The case studies are given in Section 7. A brief conclusion is drawn in Section 8.

2 QUANTUM PROGRAMS
In this section, we define the quantum programming language used in this paper. It is obtained by
adding angelic and demonic choices to the quantum extension of while-language studied in [Ying
2011, 2016].

2.1 Syntax ofQuantum Programs
We assume a set Var of quantum variables. For each q ∈ Var , its state Hilbert space is denoted by
Hq .

Definition 2.1 (Syntax). Quantum programs are defined by the following grammar:

P ::= skip | P1; P2 | P1 ⊔ P2 | P1 ⊓ P2 (1)
| q := |0⟩ (2)
| q := U [q] (3)
| if (�m M[q] =m → Pm) fi (4)
| whileM[q] = 1 do P od (5)

Let us give a brief explanation to the program constructs introduced in the above definition.
Variable q ∈ Var and q ⊆ Var . The constructs in (1) are similar to their counterparts in a classical or
probabilistic programming language: P1; P2, P1 ⊔ P2, P1 ⊓ P2 stand for the sequential composition,
angelic choice and demonic choice, respectively. The initialisation (2) sets quantum variable q to
a basis state |0⟩. The statement (3) means that unitary transformation U is applied to register q,
leaving the states of the variables not in q unchanged. The construct (4) is a quantum generalisation
of classical case statement. In executing it, measurementM = {Mm} is performed on q, and then
a subprogram Pm is selected to be executed next according to the outcome of measurement. We
assume that the set {m} of measurement outcomes is finite or countably infinite. An essential
difference between (4) and a classical case statement is that the state of program variables is changed
after performing the measurement in the former, whereas it is not changed after checking the

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

35:4 Yangjia Li and Mingsheng Ying

guards in the latter. The statement (5) is a quantum generalisation of while-loop. The measurement
in (5) has only two possible outcomes 0, 1. If the outcome 0 is observed, then the program terminates,
and if the outcome 1 occurs, the program executes the subprogram P and continues. The only
difference between quantum loop (5) and a classical loop is that checking the loop guard in the
latter does not change the state of program variables, but it is not the case in the former.

Remark 2.1. It is worth noting that the angelic and demonic choices ⊔,⊓ in (1) are classical rather
than quantum features. As in classical programming, they are introduced mainly for specifying and
reasoning about the behaviour of a program without having to consider its details of implementation.
The usefulness of nondeterministic choices in quantum computation was first noticed by Zuliani [2004],
where a nondeterministic choice was added into quantum programming language qGCL and used
to formalise counterfactual computation [Mitchison and Jozsa 2001] and quantum systems in mixed
states.

2.2 Illustrative Examples
To illustrate the program constructs defined in Definition 2.1, we present three simple examples
of quantum programs. Their termination will be considered in Section 7 as case studies of the
techniques developed in this paper.

Let us first consider a quantum program without angelic and demonic choices, namely a quantum
walk on a circle with an absorbing boundary. Its termination was analysed first in [Ying et al. 2013a]
by a direct matrix analysis (rather than a ranking function as we do in this paper).

Example 2.1. (Quantum walk on an n-circle with an absorbing boundary at position 1) Let Hc be
the coin space, the 2-dimensional Hilbert space with orthonormal basis state |L⟩ and |R⟩, indicating
directions Left and Right, respectively. LetHp be the n-dimensional Hilbert space with orthonormal
basis states |0⟩, |1⟩, ..., |n − 1⟩, where vector |i⟩ denotes position i for each 0 ≤ i < n. The state space of
the walk is thenH = Hc ⊗Hp . The initial state is assumed to be |L⟩|0⟩. Each step of the walk consists
of:
(1) Measure the position of the system to see whether it is 1. If the outcome is “yes”, then the walk

terminates; otherwise, it continues. The measurement can be described as M = {Myes,Mno},
where the measurement operators are:

Myes = |1⟩⟨1|, Mno = Ip −Myes =
∑
n,1

|n⟩⟨n |

and Ip is the identity operator in the position space Hp ;
(2) The Hadamard “coin-tossing” operator

H =
1
√
2

(
1 1
1 −1

)
is applied in the direction space Hc ;

(3) A shift operator

S =
n−1∑
i=0

|L⟩⟨L| ⊗ |i ⊖ 1⟩⟨i | +
n−1∑
i=0

|R⟩⟨R | ⊗ |i ⊕ 1⟩⟨i |

is performed on the space H . Here, ⊕ and ⊖ stand for addition and subtraction modulo n,
respectively.

Intuitively, operator S means that the system walks one step left or right according to the direction
state. A major difference between a quantum walk and a classical random walk is that a superposition

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

Algorithmic Analysis of Termination Problems for Quantum Programs 35:5

of movement to the left and a movement to the right can happen in the former; for example, the coin is
in one of the following states:

1
√
2
(|L⟩ + |R⟩),

1
√
2
(|L⟩ − |R⟩)

This walk can be written as the quantum program QW:

c := |L⟩;p := |0⟩;
whileM[p] = no do c := H [c]; c,p := S[c,p] od

Next we consider a more complicated quantum walk with demonic choice:

Example 2.2. (Demonic quantum walk) Let quantum variables c,p and their state Hilbert spaces
be the same as in Example 2.1. The quantum walk is written as the program DQW:

c := |L⟩;p :=
1
√
3
(|0⟩ + |1⟩ + |2⟩)

whileM[p] = no do if N [p] = yes →W1 ⊓W2

� = no →W1 ⊓W3

fi od

where measurementM is as in Example 2.1, N = {Nyes,Nno} is the measurement to see whether the
position is 2, i.e.

Nyes = |2⟩⟨2|, Nno = Ip − Nyes =
∑
n,2

|n⟩⟨n |

and subprogramsW1,W2 are given as follows:

W1 ≡ c := H [c]; c,p := S[c,p]

W2 ≡ c := Y [c]; c,p := S[c,p]

W3 ≡ c := Z [c]; c,p := S[c,p]

OperatorW1 is indeed the same as the single-step walk in Example 2.1, butW2,W3 use the Pauli
operators Y ,Z , respectively, rather than the Hadamard operator H as their coin-tossing operator. The
Pauli operators are given as follows:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

We see in the above example that a demonic choice between using the Hadamard operator and
the Pauli operator(s) to toss the coin.

Finally, we consider a quantum program with both angelic and demonic choices:

Example 2.3. (Angelic and demonic rotations) Let q and c be two qubits. Their state spaces are
the 2-dimensional Hilbert space with orthonormal basis states |0⟩, |1⟩. The program ADR is given as
follows:

q := |1⟩; c := |1⟩;
whileM[q] = 1 do c,q := C(X)[c,q];q, c := C(H)[q, c];

if N [c] = 0 → q := Rx (α)[q] ⊔ q := Rz (β)[q]

� = 1 → q := Rx (α)[q] ⊓ q := Rz (β)[q]

fi od

where:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

35:6 Yangjia Li and Mingsheng Ying

• Rx ,Rz are rotations around the x and z-axis, respectively, on the Bloch sphere:

Rx (α) = cos
α

2
I − i sin

α

2
X =

(
cos α

2 −i sin α
2

−i sin α
2 cos α

2

)
,

Rz (β) = cos
β

2
I − i sin

β

2
Z =

(
e−iβ/2 0
0 eiβ/2

)
• For any gate A, C(A) is the controlled A gate:

C(A) =

(
I 0
0 A

)
with 0, I being the 2×2 zero and unit matrices, respectively, and we simply writeC := C(H)C(X);

• M = {M0,M1}, N = {N0,N1} are both measurements in the computational basis |0⟩, |1⟩, but
performed on two different qubits q and c ; that is,M0 = |0⟩q ⟨0|,M1 = |1⟩q ⟨1|, N0 = |0⟩c ⟨0| and
N1 = |1⟩c ⟨1|.

3 QUANTUM GAMES
In this section, we introduce a quantum extension of stochastic games defined by Chatterjee et al.
[2016]. Then we use it to serve as a semantic model of quantum programs, which in turn provides
us with a basis for studying termination problems and ranking super-martingales of quantum
programs.

3.1 Quantum Game Structures
We write D(H) for the set of partial density matrices (i.e. positive semi-definite matrices with
traces ≤ 1), respectively, in a Hilbert space H . In particular, if ρ ∈ D(H) and tr(ρ) = 1, then ρ
is a density operator, denoting a mixed state in H . As in [Selinger 2004b; Ying 2011, 2016; Ying
et al. 2017], we use super-operators (completely positive maps between operators) to represent
the semantic functions of quantum programs. Two super-operators E,F are said to be equivalent
[Feng et al. 2013], written E ≈ F , if we have:

tr(E(ρ)) = tr(F (ρ))

for all density operators ρ ∈ D(H).

Definition 3.1 (Game Structure). A quantum game structure in a Hilbert space H is a 4-tuple
G = ⟨L, l0, ρ0,→⟩, where:
(1) L is a finite set of locations partitioned into disjoint subsets LA, LD , LS of angelic, demonic, and

standard locations, respectively;
(2) l0 ∈ L is the initial location;
(3) ρ0 ∈ D(H) is a density operator. It is called the initial state of quantum variables;

(4) → is a transition relation, whose all elements are of the form l
E
→ l ′, where l , l ′ are locations,

and E is a super-operator operator inH , satisfying the following conditions:

• if l ∈ LA ∪ LD and l
E
→ l ′, then E = I (the identity super-operator inH);

• if l ∈ LS , then ∑
{|E : l

E
→ l ′ for some l ′ |} ≈ I. (6)

The symbol {| · |} in equation (6) stands for multi-set. We always assume that the transition
relation→ is countably branching; that is, for every l ∈ L, the set {|E : l

E
→ l ′ for some l ′ |} is finite

or countably infinite. Therefore, the summation in the left-hand side of equation (6) is well-defined.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

Algorithmic Analysis of Termination Problems for Quantum Programs 35:7

Sometimes, we write l
E
→ l ′ for l

E
→ l ′ whenever E is defined by an operator E, i.e. E = E ◦ E† or

more precisely, E(ρ) = EρE† for all density operators ρ. In particular, we write l
I
→ l ′ instead of

l
I
→ l ′, where I is the identity operator in H . If for every transition l

E
→ l ′, super-operator E is

defined by an operator E, then G is called an operator-valued game.

Remark 3.1. Essentially, a quantum game structure is a super-operator valued Markov chain
defined in [Feng et al. 2013; Gudder 2008]. The only difference between them is that locations in a game
are partitioned into the angelic, demonic and standard. An operator-valued graph (i.e. game without
partition of angelic, demonic and standard locations) is called a quiver in representation theory [Dersen
and Weyman 2005].

A configuration of quantum game structure G is a pair (l , ρ), where l ∈ L and ρ ∈ D(H).
A path in G is a finite sequence of transitions

π = l1
E1
→ l2

E2
→ · · ·

En−1
→ ln .

We use Eπ to denote the composition of the super-operators along the path, i.e. Eπ = En−1 ◦

· · · E2 ◦ E1.

Definition 3.2 (Runs). A run of game G is a finite or an infinite sequence of configurations

θ = (l0, ρ0), (l1, ρ1), (l2, ρ2), ...

(starting from the initial configuration) such that for each i ≥ 0, we have a transition li
Ei
→ li+1 in G

with ρi+1 = Ei (ρi).

The game G is played between two players, angel and demon, according to their respective
schedulers.

Definition 3.3 (Schedulers). (1) An angelic (resp. a demonic) scheduler is a function that
assigns to every finite run ending in a configuration with an angelic (resp. a demonic) location l
a transition outgoing from l .

(2) Let σ , τ be an angelic and a demonic schedulers, respectively. We say that a run θ satisfies σ
and τ if the transitions in θ outgoing from all angelic locations are chosen according to σ , and
those outgoing from all demonic locations are chosen according to τ .

Remark 3.2. There are two different ways to define a scheduler in a quantum Markov decision
processes: the choice of next action depends on either the quantum states occurred previously [Barry et
al. 2014] or the outcomes of measurements performed previously [Ying et al. 2014b]. But in achieving
termination of quantum programs, their abilities are exactly the same, as will be seen in Section 5.
Here, we follow the way used in [Barry et al. 2014], because in this way we only need to consider the
angelic schedulers that are independent of histories in the termination proofs.

3.2 Game Representation ofQuantum Programs
Now a quantum program P can be modelled by a quantum game GP . We write var(P) for the set of
quantum variables occurring in P and

HP =
⊗

q∈var(P)

Hq

for the state Hilbert space of P . Then GP can be defined in HP by induction on the length of P .
This game has two designated locations lPin, l

P
out , with the latter being a special location that has no

outgoing transitions. Its initial location is lPin. We assume that the initial state ρ0 is specified in the
preamble of the program P .

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

35:8 Yangjia Li and Mingsheng Ying

• P ≡ skip. Then GP has only two locations lPin, l
P
out and a single transition lPin

I
→ lPout , where

both lPin and l
P
out are standard locations;

• P ≡ q := |0⟩. Let {|n⟩} be an orthonormal basis ofHq . Then GP has locations lPin, l
P
out together

with ln for each basis state |n⟩. All of them are standard locations. The transitions are lPin
En
→ ln

and ln
I
→ lPout for every basis state |n⟩, where En = |0⟩⟨n |.

• P ≡ P1; P2. Suppose that GP1 ,GP2 are the games for subprograms P1, P2, respectively. Then
GP is constructed as follows: we identify lP1out = l

P2
in , and it is deemed to be angelic, demonic

or standard if so is lP2in . We further concatenate P1 and P2, and put lPin = l
P1
in and lPout = l

P2
out ;

• P ≡ if (�m M[q] =m → Pm) fi. Suppose that GPm is the game for subprogram Pm for every
m. Then GP is constructed as follows: we add a new standard location lPin and a transition

lPin
Mm
→ lPmin for everym. Furthermore, we identify lPout = l

Pm
out for allm;

• P ≡ while M[q] = 1 do Q od. We construct GP from the game GQ for subprogram Q as

follows: we add two new standard locations lPin, l
P
out and two transitions lPin

M0
→ lPout , lPin

M1
→ l

Q
in .

We identify lQout = lPin.
• P ≡ P1 ⊔ P2. We construct GP from the games GP1 and GP2 for subprograms P1 and P2 as
follows: we add a new angelic location lPin and a transition lPin

I
→ lPiin (i = 1, 2), and identify

lPout = l
P1
out = l

P2
out .

• P ≡ P1 ⊓ P2. The same as the above item, but with lPin being demonic.

Remark 3.3. Actually, GP defined above is an operator-valued game rather than a general quantum
game. However, for initialisation P ≡ q := |0⟩, we can define GP as a quantum game (but not an
operator-valued game) in a way much simpler than above: GP has only two locations lPin, l

P
out and a

single transition lPin
E∗
→ lPout , where both l

P
in and l

P
out are standard locations, and super-operator E∗ is

given as

E∗(ρ) =
∑
n

|0⟩⟨n |ρ |n⟩⟨0|

for all density operators ρ. In this paper, we choose to use an operator-valued game GP rather an a
general quantum game in modelling quantum program P because it significantly simplify the synthesis
problem of ranking super-martingales.

Example 3.1. The game structures of example programs in Subsection 2.2 are shown in Fig. 1. For
clarity, the initialisation of the programs are simply represented by transitions valued by super-operators
E0, E1 and E2, respectively.

4 TERMINATION PROBLEMS
Now we can formally define the termination problems for a quantum program P based on its game
representation GP . They are straightforward quantum generalisations of the termination problems
for probabilistic programs considered in [Chatterjee et al. 2016].

Definition 4.1. (1) A terminating run of game GP is a finite run ending at location lPout ; that is,
a run of the form

θ = (lPin, ρ0), (l1, ρ1), ..., (lk−1, ρk−1), (l
P
out , ρk)

with l1, ..., lk−1 , lPout . The running time of θ is T (θ) = k , and the probability associated to θ is
Pr(θ) = tr(ρk).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

Algorithmic Analysis of Termination Problems for Quantum Programs 35:9

lin

E0
��

l2

H
��

l1
Mnooo

Myes

��
l3

S
>>

lout

(a) QW

lin
E1

!!

lout

l5
W1 // l1

Myes
==

Mno

��

l7
W1oo

l6

W2

==

l8

W3

aa

l3(⊓)

RR

KK

l2
Nyesoo Nno // l4(⊓)

LL

SS

(b) DQW

lin
E2

!!

lout

l6
Rx (α) // l1

M0

==

M1
��

l8
Rx (α)oo

l7

Rz (β)
==

l2

C
��

l9

Rz (β)
aa

l4(⊔)

RR

KK

l3
N0oo N1 // l5(⊓)

LL

SS

(c) ADR

Fig. 1. Game structures of example programs

(2) For an infinite run θ = (lPin, ρ0)..., (lk , ρk), ... of game GP , its running time is T (θ) = ∞, and the
probability associated to it is:

Pr(θ) = lim
k→∞

tr(ρk).

Definition 4.2. Given an angelic scheduler σ , a demonic scheduler τ in game GP and a constant
x ≥ 0.

(1) The termination probability of program P according to σ and τ , and the probability that the
termination time of P according to σ and τ exceeds x are:

Pr(P |σ ,τ) =
∑
θ

Pr(θ);

Pr(P |σ ,τ ;T > x) =
∑

θ s.t. T(θ)>x
Pr(θ),

respectively, where θ ranges over all terminating runs of game GP satisfying σ and τ .
(2) The expected running time of P according to σ and τ is:

ET (P |σ ,τ) =
∑
θ

Pr(θ) ·T (θ),

where θ ranges over all runs of game GP satisfying σ and τ .

Definition 4.3 (Almost-sure termination, finite-termination). (1) Aprogram P is almost-
surely terminating if there exists an angelic scheduler σ such that Pr(P |σ ,π) = 1 for all demonic
schedulers τ .

(2) A program P is finite-terminating if there exists an angelic scheduler σ such that ET (P |σ ,τ) < ∞

for all demonic schedulers τ .

Definition 4.4 (Expected running time). The expected running time of a program P is defined
as:

ET (P) = inf
σ

sup
τ

ET (P |σ ,τ)

where σ ,τ ranges over all angelic and demonic schedulers of P , respectively.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

35:10 Yangjia Li and Mingsheng Ying

5 LINEAR RANKING SUPER-MARTINGALES
In this section, we first introduce the notion of linear ranking super-martingales for quantum
program. Then we show that existence of linear ranking function of a quantum program with a
supporting invariant guarantees its finite termination.

5.1 Definitions
First, let us recall the notion of invariant from [Ying et al. 2017]. Let P be a given quantum program
and GP a game representation of P . A set Π of paths in GP is said to be prime if for each

π = l1
E1
→ ...

En−1
→ ln ∈ Π

its proper initial segments

l1
E1
→ ...

Ek−1
→ lk < Π

for all k < n. Moreover, a Hermitian operator H is called a quantum predicate if 0 ⊑ H ⊑ I .

Definition 5.1 (Invariant). (1) A multiplicative invariant of program P is a set O = {Ol }l ∈L
of quantum predicates inHP labelled by locations in GP satisfying the condition: for every l ∈ L,
for any input density operator ρ, and for every path π from l0 to l ,

tr(Ol0ρ) ≤
tr (OlEπ (ρ))

tr (Eπ (ρ))
. (7)

(2) A set O = {Ol }l ∈L of quantum predicates is termed an additive invariant of program P if for
every l ∈ L, for any input density operator ρ, and for any prime set Π of paths from l0 to l , we
have:

tr(Ol0ρ) ≤ 1 − tr (EΠ(ρ)) + tr (OlEΠ(ρ)) (8)

where EΠ =
∑
{|Eπ : π ∈ Π |} .

It is easy to see that every multiplicative invariant is an additive invariant. However, whenever
it exists, a multiplicative invariant is easy to use because only a single path π appears in its
definition equation (7) and in contrast a set Π of paths is involved in the definition equation (8) of a
additive invariant. It is worth noting that there are two trivial multiplicative (and thus also additive)
invariants: the identity invariant Ol = I for all l ∈ L and the zero invariant Ol = 0 for all l ∈ L.

Definition 5.2 (Pre-expectation). Letη : L×D(HP) → R be a function. Then the pre-expectation
induced by η in game GP is the function preη : L × D(HP) → R defined as follows:

preη(l , ρ) =

min{η(l ′, ρ)|l

I
→ l ′} if l ∈ LA;

max{η(l ′, ρ)|l
I
→ l ′} if l ∈ LD ;∑

{η(l ′, E(ρ))|l
E
→ l ′} if l ∈ LS .

Definition 5.3 (Linear ranking super-martingale). Let ϵ,K ∈ R be two constants with ϵ > 0.
A function η : L × D(HP) → R is called a (K , ϵ)-linear ranking super-martingale (LRSM for short)
for program P with respect to (a multiplicative or an additive) invariant O = {Ol }l ∈L if:

(1) for each l ∈ L, function η(l , ·) : D(H) → R is linear over partial density operators in H , i.e.,
η(l ,pρ1 + qρ2) = pη(l , ρ1) + qη(l , ρ2) for any p,q ≥ 0 and ρ1, ρ2 ∈ D(H);

(2) for all l ∈ L and density operators ρ, tr(Olρ) + K − 1 ≤ η(l , ρ);
(3) for all l , lPout and density operators ρ, tr(Olρ) + preη(l , ρ) ≤ η(l , ρ) + 1 − ϵ .

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

Algorithmic Analysis of Termination Problems for Quantum Programs 35:11

The above definitions are the quantum generalisations of Definitions 6, 7 and 8 in [Chatterjee et
al. 2016]. Definition 5.3 also generalises Definition 9.1 in [Ying 2011] where a ranking function was
defined to be always nonnegative integer-valued.

Remark 5.1. For the identity invariant (i.e. Ol = I for all l ∈ L), conditions (2) and (3) in the above
become a regular form: K ≤ η(l , ρ) and preη(l , ρ) ≤ η(l , ρ) − ϵ . In this case, we only need to consider
(0, 1)-LRSM, since η is a (K , ϵ)-LRSM if and only if ηK,ϵ is a (0, 1)-LRSM, where

ηK,ϵ (l , ρ) :=
η(l , ρ) − Ktr(ρ)

ϵ
.

But for non-trivial invariants, we have to consider the (0, ϵ)-LRSM for generality, due to the restriction
Ol ⊑ I for quantum predicates Ol .

5.2 Termination Theorems
Now we are ready to establish two termination theorems for quantum programs. The main mathe-
matical tool needed in proving them is the following well-known theorem in probability theory,
which were used for the same purpose in the studies of probabilistic programming.

Theorem 5.1 (Foster’s Theorem [Bournez and Garnier 2005; Foster 1953]). Given a Markov
chain over a finite or countably infinite space S with matrix (Pst)s,t ∈S of transition probabilities. Then
the Markov chain almost surely reaches a subset X ⊆ S with finite expected time if and only if there
exist constants ϵ > 0 and K ∈ R and a function V : S → R satisfying the following conditions:
(1) for all s ∈ S , V (s) ≥ K ;
(2) for all s < X , the mean drift

∆V (s) =
∑
t ∈S

Pst ·V (t) −V (s) ≤ −ϵ .

Moreover, for a given initial state s0 ∈ S , we have:

the expected running time ≤
V (s0) − K

ϵ
.

Based on the concept of LRSM introduced in Definition 5.3, we have a quantum generalisation
of the Foster’s theorem.

Theorem 5.2. [Quantum Generalisation of Foster’s Theorem] A quantum program without angelic
or demonic choices is finite-terminating for every initial configuration if and only if it has a (K , ϵ)-LRSM
η with respect to some additive invariant, and some constants ϵ > 0 and K ∈ R.

Proof. (Sketch) We omit the proof of the “if” part, since a more general form of it will be proved
as the termination theorem in the remainder of this section.

To prove the “only if” part, we assume that the program is finite-terminating. Then we can use
the assumed finite expected running time ET (·) to define an LRSM by:

η(l , ρ) := tr (ρ) · ET
(
P

(
l ,

ρ

trρ

))
where P(l , ρ) is the quantum program obtained from P by replacing the initial configuration (lPin , ρ0)
by (l , ρ). According to the finite-termination of the program η is well defined. Then following
immediately from the definition of expected running time, it holds that

η(l , ρ) ≥ 0 = η(lout , ρ)
for all location l and all partial density operators ρ. The fact that preη(l , ρ) ≤ η(l , ρ) − 1 for all
density operators ρ is easily derived from the definition of expected running time and equation (6).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

35:12 Yangjia Li and Mingsheng Ying

Furthermore, the absence of angelic or demonic choices in P implies the linearity of η(l , ·). Thus, η
is actually a (0, 1)-LRSM with respect to the identity invariant. �

Remark 5.2. Quantum Markov chains defined studied in [Ying et al. 2013a,b] can be regarded as a
special type of quantum games without angelic or demonic choices. For a quantum Markov chain in a
Hilbert spaceH with the transition super-operator E, the initial state ρ, and a measurement {M0,M1}

for termination checking, we can construct a corresponding quantum game structure G as follows:

• it has only two locations, the initial location l0 and the final location l1;
• there are two transitions from l0:

l0
E(M1 ·M

†
1)

→ l0, l0
M0 ·M

†
0

→ l1

(Note that E(M1 ·M
†
1) +M0 ·M

†
0 ≈ I. So, the normalisation condition (6) is satisfied);

• the execution starts from location l0 in state ρ, and terminates when reaches location l1. Thus,
Theorem 5.2 can be directly applied to quantum Markov chains.

Due to the angelic and demonic choices in general case, the expected running time ET (P(l , ·)) of
a quantum program may not be linear for partial density operators and thus could not be an LRSM.
On the other hand, whenever an LRSM exists, termination of the program is guarantted. We first
prove this fact for the case of LRSMs with additive invariants.

Theorem 5.3 (Termination Theorem with Additive Invariants). Suppose that quantum
program P has a (K , ϵ)-LRSM η with respect to an additive invariant O = {Ol }l ∈L . Then P is finite-
terminating with any initial state ρ0 satisfying tr (ρ0Ol0) = 1, and the expected running time:

ET (P) ≤
η(lPin, ρ0) − K

ϵ
.

Proof. Given a (K , ϵ)-LRSM η for P with respect to multiplicative invariant O = {Ol }l ∈L , we
define an angelic scheduler σ as follows: for each finite run θ ending at configuration (l , ρ) with
l ∈ LA, σ (θ) is the transition l

I
→ l ′ that minimises η(l ′, ρ):

l ′ = argmin
l ′

{η(l ′, ρ) : l
I
→ l ′}.

Note that the transition relation→ is finitely branching at angelic (and demonic) locations because
the syntax of programs only allows finite angelic (and demonic) choice. Thus, σ (θ) is well-defined.

Now by definition, it suffices to show that for any demonic scheduler τ , we have:

ET (P |σ ,τ) ≤
η(lPin, ρ0) − K

ϵ
.

We note that under the schedulers σ and τ , a transition (l , ρ)
I
→ (l ′, ρ) from a angelic or demonic

location l ∈ LA ∪ LC always satisfies η(l ′, ρ) ≤ preη(l , ρ). Now, consider the paths π = l1
E1
→ ...

En−1
→

ln under σ and τ . We write |π | for their length n and L(π) for their last location ln . Let

Πter =

{
l1

E1
→ ...

En−1
→ ln | l1 = l

P
in, ln = outP

}
Πnter =

{
l1

E1
→ ...

En−1
→ ln | l1 = l

P
in, ln , l

P
out

}
Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

Algorithmic Analysis of Termination Problems for Quantum Programs 35:13

be the set of terminating and non-terminating paths from the initial location, respectively. Define
Πter,n = {π ∈ Πter | |π | ≤ n}, Πnter,n = {π ∈ Πnter | |π | = n}, and Πn = Πter,n ∪ Πnter,n . It is easy
to verify that

tr(EΠn (ρ)) = tr(EΠter,n (ρ)) + tr(EΠnter,n (ρ)) = 1,
for any density operator ρ and any n. Then,∑

π ∈Πn

η(L(π),Eπ (ρ0)) −
∑

π ∈Πn+1

η(L(π), Eπ (ρ0))

=
∑

π ∈Πnter,n

[
η(L(π), Eπ (ρ0)) −

∑
{η(l ′, (E ◦ Eπ)(ρ)) | L(π)

E
→ l ′}

]
≥

∑
π ∈Πnter,n

[
η(L(π), Eπ (ρ0)) − preη(L(π), Eπ (ρ0))

]
≥

∑
π ∈Πnter,n

(
ϵtr(Eπ (ρ0)) + tr(OL(π)Eπ (ρ0)) − tr(Eπ (ρ0))

)
=ϵtr(EΠnter,n (ρ0)) − tr(EΠnter,n (ρ0)) +

∑
π ∈Πnter,n

tr(OL(π)Eπ (ρ0))

=ϵtr(EΠnter,n (ρ0)).

Here the last equation is due to∑
π ∈Πnter,n

tr(OL(π)Eπ (ρ0)) = tr(EΠnter,n (ρ0))

which follows from the condition tr(ρ0Ol0) = 1 and equation (8). In fact, divide the set Πnter,n
according to the last location of the paths, namely Πnter,n = ∪l ∈LΠl where Πl = {π ∈ Πnter,n |

L(π) = l}. It suffices to prove that tr(OlEΠl (ρ0)) = tr(EΠl (ρ0)) for all l ∈ L due to the linearity of tr .
tr(OlEΠl (ρ0)) ≤ tr(EΠl (ρ0)) is obvious sinceOl ⊑ I . Note that all the Πl are prime sets as Πnter,n is
prime, then from equation (8),

tr(OlEΠl (ρ0)) ≥ tr(Ol0ρ0) − 1 + tr(EΠl (ρ0)) = tr(EΠl (ρ0)).

For convenience, we write a partial density operator ρn := EΠter,n (ρ), then tr(EΠnter,n (ρ0)) = 1− trρn .
We have:

ϵ
n∑

k=1
(1 − trρk) =

n∑
k=1

ϵtr(EΠnter,k (ρ0))

≤

n∑
k=1

(∑
π ∈Πk

η(L(π), Eπ (ρ0)) −
∑

π ∈Πk+1

η(L(π), Eπ (ρ0))

)
=

∑
π ∈Π1

η(L(π), Eπ (ρ0)) −
∑
π ∈Πn

η(L(π), Eπ (ρ0))

= η(l0, ρ0) −
∑
π ∈Πn

η(L(π), Eπ (ρ0)),

combining it with the fact that∑
π ∈Πn

η(L(π), Eπ (ρ0)) ≥
∑
π ∈Πn

(
Ktr(Eπ (ρ0)) + tr(OL(π)Eπ (ρ0)) − tr(Eπ (ρ0))

)
=

∑
π ∈Πn

Ktr(Eπ (ρ0)) = KtrEΠn (ρ0) = K ,

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

35:14 Yangjia Li and Mingsheng Ying

we obtain:

ϵ
n−1∑
k=1

(1 − trρk) ≤ η(l0, ρ0) − K . (9)

Note that
∑n−1

k=1(1 − trρk) has an upper bound independent of n. Thus, limn→∞ trρn = 1, which
means that P is almost terminating. It further implies that ET (P) =

∑∞
n=1(1 − trρn) converges.

Therefore, P is finite-terminating, and from inequality (8), we have:

ET (P) ≤
η(lPin, ρ0) − K

ϵ
.

�

Remark 5.3. For the identity invariant, the condition tr(Ol0ρ0) = 1 is satisfied for all initial state
ρ0. So, the existence of LRSMs in this case actually implies termination independent of initial states. Of
course, many programs only terminate for some initial states (and does not terminate for other initial
states). So, one has to find LRSMs for non-trivial invariants rather than the identity one.

Now we establish a termination theorem based on LRSMs with multiplicative invariants.

Theorem 5.4 (Termination Theorem with Multiplicative Invariants). Suppose that quan-
tum program P has a (K , ϵ)-LRSM η with respect to a multiplicative invariant O = {Ol }l ∈L . If
ϵ + tr

(
Ol0ρ0

)
> 1, then P is finite-terminating and

ET (P) ≤
η(lPin, ρ0) −

[
K − 1 + tr

(
Ol0ρ0

)]
ϵ − 1 + tr

(
Ol0ρ0

) .

Proof. We first define an angelic scheduler σ as the same as in the proof of Theorem 5.3. Then,
it suffices to show that for any demonic scheduler τ , we have:

ET (P |σ ,τ) ≤
η(lPin, ρ0) −

[
K − 1 + tr

(
Ol0ρ0

)]
ϵ − 1 + tr

(
Ol0ρ0

) .

The single-path properties of multiplicative invariants enable us to prove the result in a more
explicit approach, namely, by an application of the (classical) Foster’s Theorem. We first construct a
(classical) Markov chain from the quantum game GP . A configuration (l , ρ) is said to be normalised
if ρ is a density operator, i.e. tr(ρ) = 1. A normalised configuration is reachable in GP if there
exists a finite run (l0, ρ0), (l1, ρ1), ..., (lk , ρk) of satisfying σ and τ such that lk = l and ρ =

ρk
tr(ρk)

.
We write Ω for the set of all reachable configurations. Obviously, (l0, ρ0) ∈ Ω. It is easy to see that
Ω is a finite or countably infinite set because the transition relation is countably branching. For
any configurations c = (l , ρ), c ′ = (l ′, ρ ′) ∈ Ω, we define the transition probability from c to c ′ as
follows:

Pcc ′ =

{
tr(E(ρ)) if l

E
→ l ′ and ρ ′ =

E(ρ)
tr(E(ρ)) ,

0 otherwise.

Claim 1: For each c ∈ Ω, it holds that
∑
c ′∈Ω Pcc ′ = 1.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

Algorithmic Analysis of Termination Problems for Quantum Programs 35:15

In fact, if c = (l , ρ) and l ∈ LA ∪ LD , it is obvious because σ ,τ are fixed, and thus there exists
only one transition l

I
→ l ′ leading to c ′ = (l ′, ρ). If l ∈ LS , then by definition we have:∑

c ′∈Ω

Pcc ′ =
∑ {

|tr(E(ρ)) : l
E
→ l ′ for some l ′ |

}
= tr

[(∑
{|E : l

E
→ l ′ for some l ′ |}

)
(ρ)

]
= tr(I(ρ)) = 1.

Here, the second equality follows from linearity of tr(·) and E, and the third equality comes from
equation (6).

The above claim shows that aMarkov chain is defined over the spaceΩwith thematrix (Pcc ′)c,c ′∈Ω
of transition probabilities.

Claim 2: η(c) ≥ K − 1 + tr
(
Ol0ρ0

)
for all c ∈ Ω.

Indeed, if c = (l , ρ), then there exists a path π from l0 to l such that ρ = Eπ (ρ0)
tr(Eπ (ρ0))

. Then it follows
from equation (7) that

tr (Olρ) = tr
[
Ol

Eπ (ρ0)

tr (Eπ (ρ0))

]
=

tr (OlEπ (ρ0))

tr (Eπ (ρ0))
≥ tr

(
Ol0ρ0

)
. (10)

Consequently, using condition 2 in Definition 5.3 we have:

η(c) = η(l , ρ) ≥ K − 1 + tr(Olρ) ≥ K − 1 + tr
(
Ol0ρ0

)
.

We now write X for the set of configurations (l , ρ) in Ω with l = lPout .
Claim 3: ∆η(c) − η(c) ≤ −

[
ϵ − 1 + tr

(
Ol0ρ0

)]
for any c < X .

Indeed, if c = (l , ρ) and l , lPout , then we have:

preη(l , ρ) − η(l , ρ) ≤ −
[
ϵ − 1 + tr

(
Ol0ρ0

)]
from equation (10) and condition 3 in Definition 5.3. So, it suffices to show that

∑
c ′ Pcc ′ · η(c

′) ≤

preη(l , ρ).
• If l ∈ LA, let l ′ be the location chosen by the angelic scheduler σ at (l , ρ), then∑

c ′
Pcc ′ · η(c

′) = tr(ρ) · η(l ′, ρ) = η(l ′, ρ)

= min{η(l ′′, ρ) : l
I
→ l ′′} = preη(l , ρ).

• If l ∈ LD , let l ′ be the location chosen by the demonic scheduler τ at (l , ρ), then∑
c ′

Pcc ′ · η(c
′) = tr(ρ) · η(l ′, ρ) = η(l ′, ρ)

≤ max{η(l ′′, ρ) : l
I
→ l ′′} = preη(l , ρ).

• If l ∈ LS , then we have:∑
c ′

Pcc ′ · η(c
′) =

∑
{|tr(E(ρ)) · η

(
l ′,

E(ρ)

tr(E(ρ))

)
: l

E
→ l ′ |}

=
∑

{|η(l ′, E(ρ)) : l
E
→ l ′ for some l ′ |} = preη(l , ρ)

because η(l ′, ·) is linear.
Combining the above arguments, we complete the proof by Foster’s Theorem. �

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

35:16 Yangjia Li and Mingsheng Ying

Remark 5.4. It is worthy to carefully compare the above theorem with Theorem 5.3. As pointed
out before, multiplicative invariants are a special type of additive invariants. So, Theorem 5.3 applies
to LRMSs with multiplicative invariants. On the other hand, Theorem 5.4 only consider LRMSs with
multiplicative invariants but it allows a larger class of initial states ρ0, noting that

(ϵ > 0 ∧ tr
(
Ol0ρ0

)
= 1) ⇒ ϵ + tr

(
Ol0ρ0

)
> 1,

but the inverse is not true.

6 REALISABILITY AND SYNTHESIS OF LINEAR RANKING SUPER-MARTINGALES
Theorem 5.4 shows that existence of LRSMs for a quantum program with respect to an invariant
guarantees finite-termination of the program. The problem of invariant generation for quantum
programs was discussed in [Ying et al. 2017]. In this section, we further consider the problem of
realizability and synthesis of LRMSs with respect to a given invariant O, precisely stated as follows:

Problem 6.1 (Realizability and Synthesis). Given a quantum program P and an invariant
O = {Ol }l ∈L for P , does there exist an LRSM for P with respect to O? If so, how to construct it?

In particular, we extend the constrain-based approach to synthesis of linear ranking functions for
classical programs [Colón et al. 2001, 2003; Podelski and Rybalchenko 2004] and for probabilistic
programs [Chakarov and Sankaranarayanan 2013; Chatterjee et al. 2016] in order to solve Problem
6.1 for quantum programs.

6.1 Templates of LRSMs and Gleason’s Theorem
The first step of the constraint-based approach is to choose an appropriate template of LRSMs.
For both classical and probabilistic programs, the template of linear ranking functions can be
straightforward taken as an affine expression over program variables. However, a reasonable
template of linear ranking functions for quantum programs is determined by a fundamental theorem
in quantum mechanics. LetH be a Hilbert space. We write S(H) for the set of all closed subspaces
ofH . Recall from [Dvurečenskij 1993] that a state in S(H) is a mappingm : S(H) → [0, 1] such
thatm(H) = 1 and

m

(
∞∨
i=0

Xi

)
=

∞∑
i=0

m (Xi)

for any family {Xi }
∞
i=0 of mutually orthogonal subspaces of H , where

∨∞
i=0Xi stands for the

smallest closed subspace of H that contains all Xi (i ≥ 0). The following fundamental theorem
gives an elegant characterisation of states in S(H).

Theorem 6.1 (Gleason’s Theorem [Dvurečenskij 1993; Gleason 1957]). If H is separable and
dimH > 2, then for each statem in S(H), there exists a unique positive Hermitian matrix R with
tr(R) = 1 such that

m(X) = tr(RPX)
for all X ∈ S(H), where PX is the project onto X .

The conclusion of the above theorem is not true when dimH = 2 (see [Dvurečenskij 1993], page
130 for a counter-example).

As we will see in the proofs of Theorems 6.2 and 6.3, Gleason’s theorem plays an essential role
in determining the form of templates of LRSMs for quantum programs. The basic idea is as follows:
Gleason’s theorem, together with the definition conditions of an LRSM, implies that each LRSM η
can be written in a trace form

η(l , ρ) = tr(Rlρ)

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

Algorithmic Analysis of Termination Problems for Quantum Programs 35:17

where for any l , Rl is a Hermitian trace class operator. For a finite dimensional Hilbert spaceH , the
operator (matrix) Rl can be derived directly from the theorem: define a mappingm : S(H) → R by

m(X) = dimX · η

(
l ,

PX
dimX

)
− tr(OlPX) + (1 − K) · dimX ,

then ifm(H) = 0, let Rl = Ol + (K − 1) · I ; otherwise, m
m(H)

is a state in S(H) due to the linearity
of η(l , ·), and thus letm(X) = tr(RPX) and Rl = R +Ol + (K − 1) · I . When the state Hilbert space
H is infinite dimensional, the projection of operator Rl onto any finite dimensional subspaces can
be defined as above. In particular, the proof can be achieved by considering the projection onto one
dimensional subspaces, just like the proof of Gleason’s theorem [Gleason 1957]. This argument
shows that it is sufficient to use the trace form tr(Rlρ) as a template of the LRSM η(l , ρ).

6.2 Reduction to SDP (Semi-Definite Programming) Problem
Of course, for a quantum program P with a 2-dimensional state Hilbert space, Problem 6.1 can
be easily solved. In this subsection, using Gleason’s Theorem, we are able to reduce Problem 6.1
to a constraint satisfaction problem in the case where the dimension of the state Hilbert space of
program P : dimHP > 2. Before doing it, let us first introduce a notation. For any super-operator E,
we write E∗ for its dual, i.e. if E has the Kraus operator-sum representation E(ρ) =

∑
i EiρE

†
i , then

E∗(A) =
∑
i

E†iAEi

for every operator A.
Let us first consider quantum programs that contains no angelic choices but may have demonic

choices. In this case, the following theorem shows that Problem 6.1 can be reduced to an SDP
(Semi-Definite Programming) problem.

Theorem 6.2. Let P be a quantum program without angelic choice. Given an invariant O = {Ol }l ∈L
for P . If n := dimHP > 2, then the realizability and synthesis problem with respect to O is equivalent
to the following constraint satisfaction problem:

• arbitrarily fix the value ofK , then find a real number ϵ > 0 (or > 1− tr
(
Ol0ρ0

)
for multiplicative

invariants) and complex Hermitian matrices Rl (l ∈ L) satisfying the constraint:(∧
l ∈L

γl

)
∧

©«
∧

l ∈L\{lPout }

δl
ª®¬

where:
(1) for each l ∈ L,

γl := 0 ⊑ Rl −Ol − (K − 1) · I ;
(2) for each l ∈ LD ,

δl :=
∧
l
I
→l ′

(0 ⊑ Rl − Rl ′ −Ol + (1 − ϵ) · I) ;

(3) for each l ∈ LS \ {l
P
out},

δl := 0 ⊑ Rl −
∑
l
E
→l ′

E∗ (Rl ′) −Ol + (1 − ϵ) · I .

Proof. We reduce the realizability and synthesis problem to the constrain satisfaction problem
in two steps.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

35:18 Yangjia Li and Mingsheng Ying

Step 1: With Definition 5.3, we see that Problem 6.1 can be equivalently stated as the following
constraint satisfaction problem: for some K > −∞ (which is usually chosen as K = 0), find a
real number ϵ > 0 (or > 1 − tr

(
Ol0ρ0

)
for multiplicative invariants) and linear functions η(l , ·) :

D(HP) → R (l ∈ L) satisfying the constraint:(∧
l ∈L

µl

)
∧

©«
∧

l ∈L\{lPout }

νl
ª®¬

where

µl := (∀ρ ∈ D(HP) with tr(ρ) = 1) [tr(Olρ) + K − 1 ≤ η(l , ρ)] ,

νl := (∀ρ ∈ D(HP) with tr(ρ) = 1)ξ (l , ρ),

and
ξ (l , ρ) := tr(Olρ) + preη(l , ρ) ≤ η(l , ρ) + 1 − ϵ .

Furthermore, with Definition 5.2 we have:
• if l ∈ LD , then

ξ (l , ρ) ⇔
∧ {

tr(Olρ) + η(l
′, ρ) ≤ η(l , ρ) + 1 − ϵ : l

I
→ l ′

}
.

• if l ∈ LS \ {l
P
out}, then

ξ (l , ρ) ⇔ tr(Olρ) +
∑ {

|η(l ′, E(ρ)) : l
E
→ l ′ |

}
≤ η(l , ρ) + 1 − ϵ .

Step 2: For each l ∈ L, since dimHP > 2, by Gleason’s Theorem it is easy to see that there exists
a Hermitian matrix Rl such that η(l , ρ) = tr(Rlρ) for all ρ ∈ D(H). Then we assert:
(1) for each l ∈ L,

µl ⇔ (∀ρ ∈ D(HP) with tr(ρ) = 1){tr [(Rl −Ol − (K − 1) · I) ρ] ≥ 0}
⇔ 0 ⊑ Rl −Ol − (K − 1) · I .

(2) for each l ∈ LD ,

νl ⇔ (∀ρ ∈ D(HP) with tr(ρ) = 1)
∧
l
I
→l ′

{tr [(Rl − Rl ′ −Ol + (1 − ϵ) · I) ρ] ≥ 0}

⇔
∧
l
I
→l ′

(0 ⊑ Rl − Rl ′ −Ol + (1 − ϵ) · I) .

(3) for each l ∈ LS \ {l
P
out},

νl ⇔ (∀ρ ∈ D(HP) with tr(ρ) = 1)

tr

©«Rl −

∑
l
E
→l ′

E∗ (Rl ′) −Ol + (1 − ϵ) · I
ª®®¬ ρ

 ≥ 0

⇔ 0 ⊑ Rl −

∑
l
E
→l ′

E∗ (Rl ′) −Ol + (1 − ϵ) · I

�

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

Algorithmic Analysis of Termination Problems for Quantum Programs 35:19

For quantum programs with angelic choices, a constraint satisfaction problems can be derived
in the same way as in the proof of the above theorem. However, such a constraint satisfaction
problem cannot directly be solved by SDP solvers because the constraint at each location l ∈ LA is
a disjunction of matrix positivity restrictions. In fact, a similar situation happens in termination
analysis of classical programs with linear ranking functions, where the celebrated Farkas’s lemma
has been employed to transform it into a standard form of Linear Programming. We are going
to solve our problem for quantum programs with the same strategy. But first of all, we have to
establish a generalisation of Farkas’s lemma in terms of observables (Hermitian operators) in
quantum physics.

Lemma 6.1 (Generalized Farkas’ Lemma for SDP). Let H1, · · · ,Hn be a finite number of Her-
mitian operators in a finite-dimensional Hilbert space H . Then the following two statements are
equivalent:
(1) For any ρ ∈ D(H), ∨

k

(tr (ρHk) > 0);

(2) There exist non-negative numbers p1 ≥ 0, · · · ,pn ≥ 0, such that p1 + · · · + pn > 0 and

p1H1 + p2H2 + · · · + pnHn A 0.

Proof. It is obvious that statement 2 implies statement 1. We prove the converse in a similar
way to the original Farkas’s lemma, namely by invoking the Hyperplane Separation Theorem.
Specifically, let d be the dimension of H . We note that the set of all Hermitian operators of H ,
denoted by L, is in fact a d (d+1)

2 -dimensional Hilbert space over reals, i.e.

L ≃ R
d (d+1)

2

where the inner product of two Hermitian operators A,B ∈ L is naturally defined as tr(AB), and
an orthonormal basis of L is

{|k⟩⟨k | | 0 ≤ k ≤ d − 1} ∪
{
|i⟩⟨j | + |j⟩⟨i |

2
| 0 ≤ i < j ≤ d − 1

}
.

Now denote by P the set of all positive definite operators in H , and define

A := {p1H1 + · · · + pnHn | p1 ≥ 0, · · · ,pn ≥ 0,p1 + · · · + pn > 0}.

We assume by contradiction that A ∩ P = ∅. Noting that both P and A are nonempty convex sets
in L. Then following the Hyperplane Separation Theorem, there exists a hyperplane to separate
them; that is, there is a real number d ∈ R and a nonzero Hermitian operator C ∈ L such that:
(1) tr (CP) + d ≥ 0 for all P ∈ P; and
(2) tr (CA) + d ≤ 0 for all A ∈ A.

Thus, d = 0 follows immediately from these two conditions since the zero matrix 0 is in both of the
closure of P and the closure of A. Then the first condition implies that C is positive semi-definite.
Consequently, the second condition implies that C/trC is a density matrix that makes the first
statement of the lemma unsatisfied. �

Now with the help of the above lemma, we are able to find an SDP problem for realisation and
synthesis of LRSMs for general quantum programs (with both angelic and demonic choices).

Theorem 6.3. Let P be a quantum program (with angelic choice in general). Given an invariant
O = {Ol }l ∈L for P . If n := dimHP > 2, then the realizability and synthesis problem with respect to O
is equivalent to the following constraint satisfaction problem:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

35:20 Yangjia Li and Mingsheng Ying

• arbitrarily fix the value of K , then find real numbers ϵ > 0 (or > 1− tr
(
Ol0ρ0

)
for multiplicative

invariants), pl,l ′ ≥ 0 for all l ∈ LA, l
I
→ l ′ with

∑
l ′ pl,l ′ = 1 for all l , and complex Hermitian

matrices Rl (l ∈ L) satisfying the constraint:(∧
l ∈L

γl

)
∧

©«
∧

l ∈L\{lPout }

δl
ª®¬

where:

(1) for each l ∈ L,
γl := 0 ⊑ Rl −Ol − (K − 1) · I ;

(2) for each l ∈ LA,

δl := 0 ⊑ Rl −
∑
l
I
→l ′

pl,l ′Rl ′ −Ol + (1 − ϵ) · I ;

(3) for each l ∈ LD ,

δl :=
∧
l
I
→l ′

(0 ⊑ Rl − Rl ′ −Ol + (1 − ϵ) · I) ;

(4) for each l ∈ LS \ {l
P
out},

δl := 0 ⊑ Rl −
∑
l
E
→l ′

E∗ (Rl ′) −Ol + (1 − ϵ) · I .

Proof. The constraint for linear functions η(l , ·) can be characterised by(∧
l ∈L

µl

)
∧

©«
∧

l ∈L\{lPout }

νl
ª®¬

where µl and νl are almost the same as in the proof of Theorem 6.2. The only difference comes
from the treatment of ξ (l , ρ). For l ∈ LA, we have:

ξ (l , ρ) ⇔
∨ {

tr(Olρ) + η(l
′, ρ) ≤ η(l , ρ) + 1 − ϵ : l

I
→ l ′

}
.

Then by using Gleason’s Theorem η(l , ρ) can be replaced by tr (Rlρ) in the constraints for Hermitian
matrices Rl . We particularly consider the constraint for each l ∈ LA:

νl ⇔ (∀ρ ∈ D(HP) with tr (ρ) = 1)
∨
l
I
→l ′

[ϵ − 1 ≤ tr (ρ (Tl −Ol −Tl ′))]

⇔ (∀ϵ ′ ∈ [0, ϵ))
∨
l
I
→l ′

[0 < tr (ρ (Tl −Ol −Tl ′ + (1 − ϵ ′) · I))]

⇔ 0 @
∑
l
I
→l ′

pl,l ′ (Tl −Ol −Tl ′ + (1 − ϵ ′) · I) (for some pl,l ′ ≥ 0).

Note that the last step is from Lemma 6.1. It actually means that if a (K , ϵ)-LRSM exists, then
the constraints of γl and δl are satisfiable for (K , ϵ ′), where ϵ ′ can be arbitrarily close to ϵ ; and
conversely, if the constraints of γl and δl are satisfiable for (K , ϵ), then a (K , ϵ)-LRSM exists. So, the
proof is completed. �

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

Algorithmic Analysis of Termination Problems for Quantum Programs 35:21

Remark 6.1. Essentially, the application of the generalized Farkas’s lemma for angelic locations
in the proof of the above theorem implies that if a quantum program has an LRSM, then it is finite-
terminating under a probabilistic angelic scheduler: at each location l ∈ LA, randomly choose the

transitions with probability distribution {pl,l ′ | l
I
→ l ′}. We note that this scheduler is not only

independent of the history, but also independent of the current state.

6.3 Discussions
In this subsection, we briefly discuss the complexity of the realisability and synthesis problem
of LRSMs for quantum programs. First of all, we note that this problem is generally undecidable
for programs that contains variables with infinite-dimensional state Hilbert spaces, since with
Theorem 5.2 we see that it is equivalent to the undecidable termination problem. So, here we only
consider the complexity of solving the constraint problems in the case of finite-dimension. The
constraint problem in Theorem 6.3 can be precisely solved by Quantifier Elimination (QE), but
usually requires double exponential time complexity by popular algorithms such as Cylindrical
Algebraic Decomposition (CAD). However, if certain errors of the results are allowed, then better
time complexity may be achieved for many cases by efficient SDP algorithms. The method is
outlined into three cases as follows:
(1) For a quantum program without angelic choice, we find a (0, 1)-LRSM with respect to the

identity invariant. The constraint problem in this case can be expressed as a standard SDP
problem, which can be solved in polynomial time with respect to any given error ε . In other
words, a point xn that approximates some solution x∗ of the problem (if exists) with precision
ε , i.e. ∥xn − x∗∥ < ε , can be computed within polynomial time in log(1/ε) and the size of
input. Infeasibility can also be detected if no points in the ε-ball {y | ∥xn − y∥ < ε} satisfies
the constraint.

(2) For a quantum program without angelic choice, we find a (0, ϵ)-LRSM with respect to a
general invariant. Since the constraint problem can be solved by SDP in polynomial time
for a fixed ϵ > 0, the optimal value of feasible ϵ can be approximated by binary search in
polynomial time with respect to any given error.

(3) For the most general quantum programs (with both angelic and demonic choices), we find the
values of probabilities pl,l ′ for all l ∈ LA and l

I
→ l ′. By uniform sampling in the value space

of all pl,l ′ with a sufficiently large sampling density, feasible values can be approximated
with any precision. Then one can solve the SDP constraint for each sample point. However,
this algorithm requires exponential time since the number of sample points are exponential
in the number of angelic transitions l

I
→ l ′. So, this method would be more applicable when

there are few angelic locations and transitions.
The time complexity of realisability and synthesis problem of ranking super-martingales for

probabilistic programs is given in [Chatterjee et al. 2016]. A comparison between the probabilistic
case and the quantum case is shown in Table 1:

Table 1. A comparison between probabilistic and quantum programs

Probabilistic Quantum
The General Problem PSPACE 2-EXPTIME by QE with CAD

Without Angelic Choice PTIME PTIME w.r.t. an error
With Angelic Choice NP-hard EXPTIME w.r.t. an error

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

35:22 Yangjia Li and Mingsheng Ying

7 CASE STUDIES
In this section, we apply the method based on LRSMs developed in the last two sections to prove
termination of the example quantum programs presented in Subsection 2.2. In addition, we use
this method to the termination analysis of quantum Bernoulli factory [Dale et al. 2015] which is a
celebrated quantum algorithm for randomness generation and processing.
For each quantum program, we first reduce the realizability and synthesis of its LRSMs to a

specific SDP problem by Theorem 6.2 and Theorem 6.3 and then show the experimental result of
solving this SDP. In order to do it in a more effective and simpler way, we adopt the strategy which
has been widely used in analysis and verification of classical programs: instead of considering
all locations in L, we only set the template matrices Rl for the so-called significant locations l , i.e.
entrances of while loops. Then the matrices Rl for other locations can be defined as a minimal one
satisfying the SDP constraints according to the control flow (as shown by the game structure) of
the program.
This section is organised as follows. The constraints for the programs from Subsection 2.2

are derived in Subsection 7.1, and the constraints for quantum Bernoulli factory are derived in
Subsection 7.2. The experimental results of solving these constraints are presented in Subsection
7.3.

7.1 IllustrativeQuantum Programs
In this subsection, we deal with the termination of the illustrative programs presented in Subsection
2.2 by generating the SDP constraints for them with respect to a given invariant {Ol | l ∈ L}. We
only consider (K , ϵ)-LRAMs with a special value K = 0 without any loss of generality.

Example 7.1. The game structure of the program QW of Example 2.1 has been shown in Fig 1a. We
set a template matrix R1 at the entrance l1 of the while loop. Then the smallest matrices Ri for other
location li can directly obtained from the constraints δl in Theorem 6.2 according to the control flow.
They are specifically computed as follows:

Rout := 0, R3 := S†R1S +O3 + (ϵ − 1) · I ;

R2 := H †R3H +O2 + (ϵ − 1) · I = (SH)†R1SH + H
†O3H +O2 + 2(ϵ − 1) · I ;

Rin := E0(R1) +O0 + (ϵ − 1) · I .

Then the constraint can be obtained at location l1 as

R1 ⊒ O1 − I , and

R1 ⊒ M†
noR2Mno +M

†
yesRoutMyes +O1 + (ϵ − 1) · I

= (SHMno)
†R1(SHMno) + (HMno)

†O3(HMno) +M
†
noO2Mno

+O1 + 2(ϵ − 1) ·M†
noMno + (ϵ − 1) · I .

We particularly aim at proving the program termination for all initial states, i.e. under the identity
invariant, so it suffices to find a Hermitian operator R1 satisfying the following constraint:

R1 ⊒ 0 ∧ R1 ⊒ (SHMno)
†R1(SHMno) + 2ϵ ·M†

noMno + ϵ · I . (11)

Example 7.2. For the program DQW of Example 2.2 with demonic choice, we can obtain the constraints
in a similar way according to the control flow as shown in Fig. 1b. In order to represent the matrix
Rl for l ∈ LD , we simply denote by {A1,A2, · · · ,An} a (minimal) matrix A satisfying A ⊒ Ak for all
k = 1, 2, ...,n. For simplicity, we only consider the constraint for identity invariant. Set the matrix R1

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

Algorithmic Analysis of Termination Problems for Quantum Programs 35:23

for the location l1, then other matrices are computed as follows:

Rout := 0, Rin := E1(R1) + ϵ · I ;

R3 := {W †
1 R1W1 + 2ϵ · I ,W †

2 R1W2 + 2ϵ · I };

R4 := {W †
1 R1W1 + 2ϵ · I ,W †

3 R1W3 + 2ϵ · I };

R2 := {(W1Nyes)
†R1(W1Nyes) + (W1Nno)

†R1(W1Nno) + 3ϵ · I ,

(W1Nyes)
†R1(W1Nyes) + (W3Nno)

†R1(W3Nno) + 3ϵ · I ,

(W2Nyes)
†R1(W2Nyes) + (W1Nno)

†R1(W1Nno) + 3ϵ · I ,

(W2Nyes)
†R1(W2Nyes) + (W3Nno)

†R1(W3Nno) + 3ϵ · I }.

Then the constraint for R1 is

R1 ⊒ 0 ∧
∧
i, j

R1 ⊒ Ai, j (R1), (12)

where

Ai, j (R1) := (WiNyesMno)
†R1(WiNyesMno)

+ (WjNnoMno)
†R1(WjNnoMno) + 3ϵ ·M†

noMno + ϵ · I ,

and (i, j) ranges over {(1, 1), (1, 3), (2, 1), (2, 3)}.

Example 7.3. Similarly, we can obtain the constraint satisfaction problem for the program ADR of
Example 2.3 with respect to a general invariant {Ol | l ∈ L} (according to the control flow shown in
Fig. 1c): find real numbers ϵ > 0, p ∈ [0, 1] and a complex matrix R1 satisfying

(R1 ⊒ 0) ∧ (R1 ⊒ A1(R1)) ∧ (R1 ⊒ A2(R1)), (13)

where

A1(R1) := p[Rx (α)N0CM1]
†R1[Rx (α)N0CM1] + p[N0CM1]

†O6[N0CM1]

+ (1 − p)[Rz (β)N0CM1]
†R1[Rz (β)N0CM1] + (1 − p)[N0CM1]

†O7[N0CM1]

+ [Rx (α)N0CM1]
†R1[Rx (α)N0CM1] + [N1CM1]

†O8[N1CM1]

+ [N0CM1]
†O4[N0CM1] + [N1CM1]

†O5[N1CM1]

+ [CM1]
†O3[CM1] +M

†
1O2M1 +O1 + 4(ϵ − 1) ·M†

1M1 + (ϵ − 1) · I ,

A2(R1) := p[Rx (α)N0CM1]
†R1[Rx (α)N0CM1] + p[N0CM1]

†O6[N0CM1]

+ (1 − p)[Rz (β)N0CM1]
†R1[Rz (β)N0CM1] + (1 − p)[N0CM1]

†O7[N0CM1]

+ [Rz (β)N0CM1]
†R1[Rz (β)N0CM1] + [N1CM1]

†O9[N1CM1]

+ [N0CM1]
†O4[N0CM1] + [N1CM1]

†O5[N1CM1]

+ [CM1]
†O3[CM1] +M

†
1O2M1 +O1 + 4(ϵ − 1) ·M†

1M1 + (ϵ − 1) · I .

We note that the parameter p is involved by Theorem 6.3 to deal with the disjunction constraint for the
angelic location l4.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

35:24 Yangjia Li and Mingsheng Ying

7.2 Quantum Bernoulli Factory
In this subsection, we consider another quantum program, namely quantum Bernoulli factory (QBF).
QBF was proposed in [Dale et al. 2015] as a quantum counterpart of the classical Bernoulli Factory
(CBF) [Keane and O’Brien 1994]. The aim of CBF is to use a coin with an unknown probability p of
heads flipped a finite number of times to simulate a new coin that has probability f (p) of heads for
a given function f : [0, 1] 7→ [0, 1]. For example, a CBF protocol for f (p) = p2 is to flip the given
coin twice, and consider the new coin as showing head when both flips are heads. The function
f (p) = 1

2 can also be achieved in two flips if their outcomes are different (and if the outcomes are
the same, just try it again). QBF is designed for the same purpose, namely generating classical
randomness f (p). In contrast to CBF, QBF uses of quantum coins which can be in a quantum state
like

|p⟩ =
√
p |0⟩ +

√
1 − p |1⟩.

Moreover, it can perform quantum operations on the quantum coins. A significant result proved by
Dale et al. [2015] is that QBF can simulate a strictly larger class of functions f than those simulated
by CBF. An instance is the probability amplification function defined by:

f0 := 1 − |2p − 1| =
{
2p, p ∈ [0, 1/2];
2(1 − p), p ∈ (1/2, 1].

As shown in [Dale et al. 2015], CBF cannot simulate this function, but QBF can. The key of simulating
the function f0 is simulating another function

f1(p) = (1 − f0(p))
2 = (2p − 1)2

since the function 1 − p and √
p can be generated by CBF. To generate f1 by QBF, it suffices to flip

the given quantum coin twice to output the state |p⟩⊗2, and then measure the state in the Bell basis:

{|Φ±⟩ = (|00⟩ ± |11⟩)/
√
2, |Ψ±⟩ = (|01⟩ ± |10⟩)/

√
2}.

In fact, one can first measure it byM = {M0 = I −M1,M1 = |Φ+⟩⟨Φ+ |}, then a quantum randomness

(2p − 1)|Φ−⟩ + 2
√
p(1 − p)|Ψ+⟩

of f0 is obtained with outcome 0. The classical randomness is simply achieved by a further mea-
surement in the basis {|Φ−⟩, |Ψ+⟩}. This QBF protocol can be formalized as the following quantum
program QBF1 with two qubit variables q1 and q2:

q1 := |1⟩;q2 := |1⟩;
while B[q2] = 1 do q1 := |p⟩;q2 := |p⟩;q1,q2 = U [q1,q2];
od

where B = {|0⟩⟨0|, |1⟩⟨1|} is the measurement in the standard basis |0⟩, |1⟩, andU is defined by

U |Φ+⟩ = |01⟩, U |Φ−⟩ = |00⟩, U |Ψ+⟩ = |10⟩, U |Ψ−⟩ = |11⟩.

It is easy to show that when the program terminates, the state of q1 is always

| f1(p)⟩ := (2p − 1)|0⟩ + 2
√
p(1 − p)|1⟩,

e.g. by proving the correctness formula {I }QBF1{| f1(p)⟩⟨f1(p)|} in quantum Hoare logic. However,
termination of the program still remains to be proved for total correctness. To this end, we use the
template tr (R1ρ) for a (0, ϵ)-LRSM at the entrance of the while loop, and then to compute R1 by
solving the constraint problem of

R1 ⊒ 0 ∧ R1 ⊒ N †E∗(U †R1U)N + 2ϵ · N †N + ϵ · I , (14)

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

Algorithmic Analysis of Termination Problems for Quantum Programs 35:25

where N = I1 ⊗ |1⟩⟨1| and

E∗(A) =
∑
i, j

|ij⟩⟨pp |A|pp⟩⟨ij | = ⟨pp |A|pp⟩ · I .

Inequality (14) can be directly solved for any given parameter p. In fact, this parameter can even be
eliminated by a simple transformation. Consider a solution R2 of the following constraint:

R2 ⊒ 0 ∧ R2 ⊒ E∗
[
(NU)†R(NU)

]
+ 3ϵ · N †N . (15)

We put R1 = N †R2N + ϵ · I , then it is easy to verify that R1 must be a solution of inequality (14).
So, it suffices to solve the constraint (15), and more importantly, the parameter p is useless in
computation of the super-operator T(R) := E∗(

[
(NU)†R(NU)

]
). Therefore, termination of the

program as well as the expected running time is independent of the value of p.
Furthermore, the process of generating f0(p), as proposed in [Dale et al. 2015], can be formalized

as a quantum program QBF0, in which QBF1 is invoked as a subprogram. Specifically, there are
four quantum variables in the program: a qubit variable c with basis states {|h⟩, |t⟩} to represent
the results of head and tail of the coin; a quantum integer variable z for a random walk; and two
auxiliary qubit variables q1, q2 for the subprogram QBF1. The program is presented as follows:

QBF0 ≡ c := |h⟩; z := |0⟩;q1 := |0⟩;q2 := |0⟩;
QBF1;
if B[q1] = 0 → c := |t⟩; z := |0⟩;
� = 1 → c := |h⟩; z := |1⟩;
whileM[z] = 1 do

QBF1;
if B[q1] = 0 → c := X [c];

� = 1 → q1 :=
1
√
2
(|0⟩ + |1⟩);

if B[q1] = 0 → z := U [z];
� = 1 → z := D[z];
fi

fi od

Here,M = {M0,M1} is a measurement on z withM0 = |0⟩⟨0|,M1 = I −M0;U and D are the raising
and lowering operators defined by

U |n⟩ = |n + 1⟩, D |n⟩ = |n − 1⟩ for all integers n,

respectively. This program will output c := |h⟩ with probability f0(p) and c := |t⟩ with probability
1 − f0(p).

With the constraint (14) for QBF1, it is not difficult to further compute the constraint for QBF0.
However, since the state Hilbert space of QBF0 is infinite-dimensional, the constraint can hardly be
solved by directly using the SDP solver. In fact, due to the undecidability of general termination
problem, it is impossible to find an universal template with a finite number of parameters. In this
scenario, templates with more detailed structures are usually adopted to deal with special cases.
Here, we prove termination of QBF0 in this way; namely, by assigning a specific structure to the
template matrix R at each location. Put R =

∑
n |n⟩⟨n | ⊗ Sn , where Sn are positive operators on

variables c , q1 and q2. Then the constraint of an infinite-dimensional matrix R can be transformed
into a constraint for the finite-dimensional matrix Sn with a parameter n. We find that termination

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

35:26 Yangjia Li and Mingsheng Ying

of QBF0 can be proved with Sn :=
√
n · S , where S is a finite-dimensional template which can be

solved by SDP. Moreover, the expected running time ET has an O(
√
n) upper bound for the initial

states with z := |n⟩.

7.3 Experimental Results
We have implemented the termination analysis procedures based on LRSM generation in Matlab
for the example programs in the previous two subsections. The procedures first transform the
corresponding constrain problem into a standard SDP form, and then solve it by employing the
solver SDPT3.The output of the solver will be checked again with the constraint due to the allowed
errors of the solver. In particular, we set the objective function of the SDP as

η(lin , ρ0)

ϵ
=
tr (ρ0Rin)

ϵ

which would be minimized. Thus, according to the termination theorems, it is actually an upper
bound of the expected running time ET of the quantum program which can be obtained whenever
a solution has been successfully found. When the solver finds infeasibility of the problem, we will
try to find a counter example, i.e., an non-terminating initial state. The procedures executed on a
64-bit Windows computer with a 2.80GHz Intel Core-i7 processor and 16GB of RAM.

Table 2. Evaluation results of different methods

Name(Para) Para Value Dimension Feasibility ET Time (sec)

QW(n)

4 8 yes 10 0.13
32 64 yes 94 5.57
64 160 yes 190 111.18
100 200 yes 298 978.34
110 220 – – TO

DQW(n)
4 8 yes 9 0.46
32 64 yes 3.94 × 106 1450.00
50 100 yes 3.06×104 426.50
55 110 – – TO

ADR(α , β) I
(π/3,π/2) 4 yes 10 3.96
(π/2, 2π/3) 4 yes 10 3.93
(0,π/2) 4 no – 3.89

O (0,π/2) 4 yes 4 3.88

QBF1(p) Eq. (14)
0.2 4 yes 7 0.08
0.5 4 yes 7 0.09
0.9 4 yes 7 0.08

Eq.(15) ∗ 4 yes 7 0.08
QBF0(p) 0.5 4 yes 14.4 0.09

Legends: the first column indicates the names of the programs, and the parameters (in the parentheses) to which the value
is assigned in the second column. The third column specifies the dimensions of the problem. The fourth column show

feasibility output of the solver, and if it is “yes” (resp. “no”) an upper bound of the expected running time is given (resp. is
marked by “–”) in the fifth column. The last column gives the time (in seconds) taken. Timeouts here are set to 1800 sec (30

minutes) and are represented by TO; and in this case both of the fourth and fifth columns are marked by “–”.

The experimental results of the case studies are illustrated in Table 2 and are specifically explained
as follows:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

Algorithmic Analysis of Termination Problems for Quantum Programs 35:27

(1) Termination of the program QW is proved by the procedures even for the case of more than
one hundred of dimension, which indicates the efficiency of our method for small-scale
quantum programs. When n = 110 the procedure also solves the problem but runs more than
30 minutes. The derived upper bound of ET is precisely 3n − 2, which is tight. It coincides
with the hand-proof result using the method of [Ying and Feng 2010]. For DQW, termination
is perfectly proved for n ≤ 32. The case of n = 50 can also be proved feasible but with
an unavoidable error (although quite small), so the corresponding bound of ET is of low
confidence. The procedure fails for n = 55 due to the out of memory. It seems still possible to
improve the efficiency by further refinement, such as design a specific SDP solver for the
problems in their original form, since representing the constraint problem in a standard SDP
form requires much more memory as well as more processing time.

(2) Termination of program ADR can be proved with the identity invariant (marked by I in Table
2) for almost all parameters (α , β) except the cases of α = 0. A counter example (i.e., a non-
terminating initial state) can be generated by solving the dual SDP. However, the problem
with this kind of parameters can be further solved with a non-trivial invariant (marked by O
in Table 2) such that at the initial location O0 = |11⟩⟨11|. It actually implies that the program
is finite-terminating with the given initial state |1⟩q |1⟩c .

(3) Termination of the Quantum Bernoulli Factory program is proved by the procedures too. For
QBF1, the constraint problem (14) dependent of p and the problem (15) independent of p are
both solved by the procedure and with almost the same experimental results. For QBF0, we
simply choose p = 0.5, but the solution stands uniformly for the parameter n; for example,
the upper bound of ET is shown for n = 1, and should be multiplied by

√
n for general n.

8 CONCLUSION
In this paper, we presented an algorithmic solution to the termination problems of quantum pro-
grams by generalising the constraint-based approach developed in [Colón et al. 2001, 2003; Podelski
and Rybalchenko 2004] for classical and probabilistic programs [Chakarov and Sankaranarayanan
2013; Chatterjee et al. 2016]. The main new ideas proposed in this paper that are not needed in
the case of classical and probabilistic programs are: (1) using the fundamental Gleason’s theorem
in quantum mechanics to guide the choices of templates of LRSMs; and (2) a generalised Farkas’s
lemma in terms of observables (Hermitian operators) in quantum physics. The former shows an
interesting connection between LRSMs and the representation of states of quantum systems. We
believe that the latter will find more applications in analysis and verification of quantum programs,
as the classical Farkas’s lemma did for classical and probabilistic programs.
For future studies, we are going to carefully examine the structure of those SDP problems

in the termination analysis of quantum programs in order to find more efficient algorithms for
solving them so that we can deal with larger quantum programs. Since the dynamics of quantum
systems are always modelled by linear operators, it is especially desirable to prove the completeness
of our method for general quantum programs (if possible), as what was done in [Podelski and
Rybalchenko 2004] for classical linear programs. Recently, the notion of weakest precondition has
been generalised in [Kaminski et al. 2016, 2017; Olmedo et al. 2016] for reasoning about termination
and the expected running time of probabilistic programs. So, another interesting research topic is
to extend the weakest precondition-based reasoning to the quantum setting.

ACKNOWLEDGMENTS
This paper was partly supported by the National Natural Science Foundation of China (Grant
No: 61502467), the Australian Research Council (Grant No: DP160101652) and the Key Research
Program of Frontier Sciences, Chinese Academy of Sciences.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

35:28 Yangjia Li and Mingsheng Ying

REFERENCES
D. Aharonov, A. Ambainis, J. Kempe and U. Vazirani, Quantum walks on graphs, In: Proceedings of the 33rd ACM Symposium

on Theory of Computing (STOC), 2001, 50-59.
T. Altenkirch and J. Grattage, A functional quantum programming language, In: Proceedings of the 20th IEEE Symposium on

Logic in Computer Science (LICS), 2005, 249-258.
A. Baltag and S. Smets, LQP: The dynamic logic of quantum information, Mathematical Structures in Computer Science

16(2006)491-525.
J. Barry, D. T. Barry and S. Aaronson, Quantum partially observable Markov decision processes, Physical Review A, 90(2014)

art. no. 032311.
O. Bournez and F. Garnier, Proving positive almost-sure termination, In: Proceedingds of the 16th International Conference on

Rewriting Techniques and Applications (RTA), 2005, Springer LNCS 3467, 323-337.
A. R. Bradley, Z. Manna and H. B. Sipma, Linear ranking with reachability, In: Proceedings of the 17th International Conference

on Computer Aided Verification (CAV), 2005, Springer LNCS 3576, 491-504.
O. Brunet and P. Jorrand, Dynamic quantum logic for quantum programs, International Journal of Quantum Information,

2(2004)45-54.
R. Chadha, P. Mateus and A. Sernadas, Reasoning about imperative quantum programs, Electronic Notes in Theoretical

Computer Science, 158(2006)19-39.
A. Chakarov and S. Sankaranarayanan, Probabilistic program analysis with martingales, In: Proceedings of the 25th Interna-

tional Conference on Computer Aided Verification (CAV), 2013, Springer LNCS 8044, 511-526.
K. Chatterjee, H. F. Fu, P. Novotný and R. Hasheminezhad, Algorithmic analysis of qualitative and quantitative termination

problems for affine probabilistic programs, In: Proceedings of the 43rd Annual ACM Symposium on Principles of Programming
Languages (POPL), 2016, 327-342.

M. A. Colón and H. B. Sipma, Synthesis of linear ranking functions, In: Proceedings of the 7th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 2001, 67-81.

M. A. Colón, S. Sankaranarayanan and H. B. Sipma, Linear invariant generation using non-linear constraint solving, In:
Proceedings of the 15th International Conference on Computer Aided Verification (CAV), 2003, Springer LNCS, 420-433.

H. Dale, D. Jennings and T. Rudolph, Provable quantum advantage in randomness processing, Nature Communications
6(2015), art. no. 8203.

H. Derksen and J. Weyman, Quiver representations, Notices of the American Mathematical Society 52 (2005) 200-206.
A. Dvurečenskij, Gleason’s Theorem and Its Applications, Kluwer, 1993.
Y. Feng, R. Y. Duan, Z. F. Ji and M. S. Ying, Proof rules for the correctness of quantum programs, Theoretical Computer

Science 386(2007)151-166.
Y. Feng, N. K. Yu and M. S. Ying, Model checking quantum Markov chains, Journal of Computer and System Sciences

79(2013)1181-1198.
L. M. F. Fioriti and H. Hermanns, Probabilistic termination: soundness, completeness, and compositionality. In: Proceedings

of the 42nd Annual ACM Symposium on Principles of Programming Languages (POPL), 2015, 489-501.
R. W. Floyd, Assigning meanings to programs, In: Proceedings of the Symposium on Mathematical Aspects of Computer Science,

1967, 19-33.
F. G. Foster, On the stochastic matrices associated with certain queuing processes, The Annals of Mathematical Statistics

24(1953)355-360.
S. Gay, Quantum programming languages: survey and bibliography,Mathematical Structures in Computer Science 16(2006)581-

600.
S. Gay, R. Nagarajan, andN. Panaikolaou, QMC: Amodel checker for quantum systems, In: Proceedings of the 20th International

Conference on Computer Aided Verification (CAV), Springer LNCS 5123, 2008, 543-547.
A. M. Gleason, Measures on the closed subspaces of a Hilbert space, Journal of Mathematics and Mechanics 6(1957)885-893.
A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger and B. Valiron, Quipper: A scalable quantum programming language, In:

Proceedings of the 34th ACM Conference on Programming Language Design and Implementation (PLDI), 2013, 333-342.
S. Gudder, Quantum Markov chains, Journal of Mathematical Physics 49(2008) art. no. 072105.
A. JavadiAbhari, A. Faruque, M. Dousti, L. Svec, O. Catu, A. Chakrabati, C.-F. Chiang, S. Vanderwilt, J. Black, F. Chong, M.

Martonosi, M. Suchara, K. Brown, M. Pedram and T.Brun, Scaffold: Quantum Programming Language, Technical Report
TR-934-12, Dept. of Computer Science, Princeton University, 2012.

A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong and M. Martonosi, ScaffCC: Scalable compilation and
analysis of quantum programs, Parallel Computing, 45(2015)2-17.

Y. Kakutani, A logic for formal verification of quantum programs, In: Proceedings of the 13th Asian Computing Science
Conference (ASIAN 2009), Springer LNCS 5913, 79-93.

B. L. Kaminski, J. Katoen, C. Matheja and F. Olmedo, Weakest precondition reasoning for expected run-times of probabilistic
programs, In: Proceedings of the 25th European Symposium on Programming Languages and Systems (ESOP 2016), Springer

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

Algorithmic Analysis of Termination Problems for Quantum Programs 35:29

LNCS 9632, 364-389.
B. L. Kaminski and J. Katoen, A weakest pre-expectation semantics for mixed-sign expectations, In: Proceedings of the 32nd

ACM/IEEE Symposium on Logic in Computer Science (LICS 2017), 1-12.
M. S. Keane and G. L. O’Brien, A Bernoulli factory, ACM Transactions on Modelling and Computer Simulation 4(1994) 213-219.
Y. J. Li, N. K. Yu and M. S. Ying, Termination of nondeterministic quantum programs, Acta Informatica 51(2015)1-24.
T. Liu, Y. J. Li, S. L. Wang, N. J. Zhan and M. S. Ying, A theorem prover for quantum Hoare logic and its applications,

http://arxiv.org/pdf/1601.03835.pdf
G. Mitchison and R. Jozsa, Counterfactual computation, Proceedings of the Royal Society of London A 457(2001)1175-1193.
F. Olmedo, B. L. Kaminski, J. Katoen and C. Matheja, Reasoning about recursive probabilistic programs, In: Proceedings of

the 31st ACM/IEEE Symposium on Logic in Computer Science (LICS 2016), 672-681.
B. Ömer, Structured Quantum Programming, Ph.D thesis, Technical University of Vienna, 2003.
J. Paykin, R. Rand and S. Zdancewic, QWIRE: a core language for quantum circuits, In: Proceedings of 44th ACM Symposium

on Principles of Programming Languages (POPL), 2017, 846-858.
A. Podelski and A. Rybalchenko, A complete method for the synthesis of linear ranking functions, In: Proceedings of the 5th

International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI), 2004, 239-251.
A. Rybalchenko, Constraint solving for program verification: theory and practice by example, In:Proceedings of the 22nd

International Conference on Computer Aided Verification (CAV), 2010, 57-71.
A Sabry, Modelling quantum computing in Haskell, Proceedings of the 2003 ACM SIGPLAN workshop on Haskell, 39-49.
J. W. Sanders and P. Zuliani, Quantum programming, In: Proceedings of 5th International Conference on Mathematics of

Program Construction (MPC), Springer LNCS 1837, Springer 2000, 88-99.
P. Seinger, A brief survey of quantum programming languages, In: Proc. of 7th International Symposium on Functional and

Logic Programming, Springer LNCS 2998, 2004, 1-6.
P. Selinger, Towards a quantum programming language, Mathematical Structures in Computer Science 14 (2004), 527-586.
D. Wecker and K. M. Svore, LIQUi | ⟩: A software design architecture and domain-specific language for quantum computing,

http://research.microsoft.com/pubs/209634/1402.4467.pdf.
M. S. Ying, Floyd-hoare logic for quantum programs, ACM Transactions on Programming Languages and Systems 33(2011),

1-49.
M. S. Ying, Foundations of Quantum Programming, Morgan-Kaufmann, 2016.
M. S. Ying and Y. Feng, Quantum loop programs, Acta Informatica 47 (2010), 221-250.
M. S. Ying, Y. J. Li, N. K. Yu and Y. Feng, Model-checking linear-time properties of quantum systems, ACM Transactions on

Computational Logic, 15(2014), art. no. 22.
M. S. Ying, S. G. Ying and X. D. Wu, Invariants of quantum programs: characterisations and generation, In: Proceedings of

the 44th ACM Symposium on Principles of Programming Languages (POPL), 2017, 818-832.
M. S. Ying, N. K. Yu, Y. Feng and R. Y. Duan, Verification of quantum programs, Science of Computer Programming 78(2013)1679-

1700.
S. G. Ying, Y. Feng, N. K. Yu and M. S. Ying, Reachability probabilities of quantum Markov chains, In: Proceedings of the 24th

International Conference on Concurrency Theory (CONCUR), 2013, 334-348.
S. G. Ying and M. S. Ying, Reachability analysis of quantum Markov decision processes, arXiv:1406.6146
N. K. Yu and M. S. Ying, Reachability and termination analysis of concurrent quantum programs, In: Proceedings of the 23th

International Conference on Concurrency Theory (CONCUR), 2012, 69-83.
P. Zuliani, Nondeterministic quantum programming, In: Proceedings of the 2nd International Workshop on Quantum Pro-

gramming Languages (QPL), 2004, 179-195.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 35. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Quantum Programs
	2.1 Syntax of Quantum Programs
	2.2 Illustrative Examples

	3 Quantum Games
	3.1 Quantum Game Structures
	3.2 Game Representation of Quantum Programs

	4 Termination Problems
	5 Linear Ranking Super-martingales
	5.1 Definitions
	5.2 Termination Theorems

	6 Realisability and Synthesis of Linear Ranking Super-martingales
	6.1 Templates of LRSMs and Gleason's Theorem
	6.2 Reduction to SDP (Semi-Definite Programming) Problem
	6.3 Discussions

	7 Case Studies
	7.1 Illustrative Quantum Programs
	7.2 Quantum Bernoulli Factory
	7.3 Experimental Results

	8 Conclusion
	Acknowledgments
	References

