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Abstract. Hyperspectral images have been increasingly important in
object detection applications especially in remote sensing scenarios. Ma-
chine learning algorithms have become emerging tools for hyperspectral
image analysis. The high dimensionality of hyperspectral images and the
availability of simulated spectral sample libraries make deep learning an
appealing approach. This report reviews recent data processing and ob-
ject detection methods in the area including hand-crafted and automated
feature extraction based on deep learning neural networks. We compare
the accuracy performance based on existing reports as well as our own
experiments. We found that CNN models provided reliable performance
of over 97% detection accuracy across a large set of HSI collections. We
included a wide range of data from a rural area (Indian Pines data), an
urban area (Pavia University), a wetland region (Botswana), an indus-
trial field (Kennedy Space Center), to a farm site (Salinas). Note that,
the Botswana set was not reviewed in recent works, thus high accuracy
selected methods were newly compared in this work. We also found that a
plain CNN model can perform comparably to its more complex variants
in target detection applications.

Keywords: Hyperspectral imaging · Classification · Remote sensing ·
Deep learning.

1 Introduction

Hyperspectral imaging (HSI) techniques gathers and processes data from across
the electromagnetic spectrum. Each pixel in a hyperspectral image is obtained
with several spectral bands that can be used for object/material detection. The
spatial and spectral properties of specific objects show similarities or differences
from one another, thereby allowing the discrimination of different objects in the
same perspective based on the image data analysis.

Developing efficient methods to process hyperspectral images with hundreds
of channels is often a challenging task due to several factors such as high dimen-
sionality, the lack of training samples, mixed pixels, light-scattering mechanisms
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during acquisition, nonlinear and complex data due to different atmospheric and
geometric distortions [22]. One example, the “Hughes phenomenon” [25] showed
the overall mean accuracy is a function of three parameters: measurement com-
plexity, data set size, and the prior probability of the pattern classes. Thus, high
dimensionality can influence the accuracy performance. Furthermore, [32]. the
position of the sun, imaging angle and direction may cause intra-class differences
[1, 45, 21]. Therefore, besides appropriate classification techniques, data reduc-
tion and feature extraction have been found crucial to the accuracy performance
of object detection [22, 21]. For example, among attempts using support vector
machine (SVM) [32, 2, 46], a more recent work [36] was based on independent
component analysis and morphological features. Meanwhile, sparsity-based al-
gorithms [15, 16, 20] showed that the sparse representation of a pixel can predict
the class label of the test sample better than classical SVMs. Recently, deep-
learning approaches [14, 40, 17, 53, 28, 35, 39, 41, 51, 52, 50, 43, 48] make use of hi-
erarchically extracted deep features. The framework of [14] was a combination
of principle component analysis (PCA), stacked autoencoders architecture, and
logistic regression. While most works used convolutional neural networks (CNN)
excessively increasing network depth, the more recent learning [43] used a deep
feature fusion network that utilised the correlated information among different
hierarchical layers, thus more discriminative features.

Existing surveys focussed on challenges of HSI processing as a comprehen-
sive tutorial/overview (e.g., [10, 22]). While the recent review [22] covered broad
topics including classification, unmixing, dimensionality reduction, resolution en-
hancement, denoising, change detection, and fast computing, this work analyses
the latest methods (since 2014) from the object detection application point of
view. The main contributions of this work are:

– We review methods that relate to data pre-processing and object detection
algorithms using HSI data.

– We systemically summarise the accuracy performance according to existing
individual comparisons.

– We implemented and re-evaluated deep-learning methods using a larger set
of popular HSI images while existing comparisons only used one or two
datasets in common with each other. Thus, this review includes new test
trials for several compared methods.

– Our observations suggest important directions in applying deep-learning ap-
proaches to target detection scenarios with HSI data.

2 Data Pre-processing Methods

2.1 Hyperspectral Data Representations

Spectral and spatial information are two fundamental representatation types for
HSI [27]. When performing spatial and spectral sampling, the information is
sampled at the sensor’s spatial and spectral resolution; i.e., a 3D “hypercube”
X ∈ Rn1×n2×nb is obtained, containing n = n1 × n2 and nb bands [10]. In the
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spectral representation, each pixel is defined in the spectral space x ∈ Rnb . In
the spatial representation, each image band is a matrix Xi ∈ Rn1×n2 . Because
of the high spatial correlation within bands, neighbouring pixels likely represent
similar material. Spatial (or contextual) information can provide the adjoining
pixel relationships and thus may improve the classification accuracy [27].

A combined representation of these two types was called spatial-spectral fea-
ture. There are two common strategies to combine : extracting spectral and
spatial features separately or directly from sample cubes of the HSI. In spatial-
spectral representation, spectral information processing incorporates adjacent
relationships of pixels, while spatial information analysis for a single band con-
siders the relationships with other bands [26][50][41].

2.2 Challenges and Pre-processing Techniques

Redundancy Reduction: Because the dimension of HSI data is often large
(tens of thousands), this causes a high computational cost in object detection
applications, especially in deep learning approaches [14]. On the other hand,
the sparseness of HSI data has been demonstrated in earlier works [15, 16, 20].
Therefore, selecting an appropriate subset of bands was considered an efficient
process. Band selection can be done using the highest class-separability criterion
[2], [19] or information theory-based methods [23]. Other techniques include a
kernel method for the selection based on nonlinear dependence between spectral
bands and class labels [13] and minimized the error probability using a Bayes
classifier [11].

Limited Annotated Training Samples : Collecting HSI data and annotat-
ing each pixel are labour-consuming tasks thus the training sets found in existing
works were often in limited size. Recently, Li et al. [28] used pixel pair features
(PPF) to mitigate the problem of training label shortage. PPF was based on
combined pairs of pixels in a training set. Specifically, two pixels are randomly
chosen from a labelled training set, and a subtle rule deduces the label of each
PPF pair based on the labels of both pixels. If two pixels have same labels, the
pair is assigned the same label. If the pixels do not have the same labels, the pair
is labelled as “extra”, a newly added auxiliary class. The random combination
of pixels significantly increases the number of labelled training instances.

3 Object Detection Methods

Detection approaches can be grouped into two directions: “two-step” that con-
sists of a hand-crafted feature extraction step with classification afterwards, and
“one-step” (i.e., feature extraction is integrated within the classification model).
The former group include conventional methods (e.g., SVMs [32, 2, 46], sparsity-
based [15, 16, 20]) while the latter was recently introduced in deep learning (DL)
models (e.g., [28, 35, 39, 41, 51, 52, 50, 43]).
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3.1 Two-step Approaches

Most traditional feature extraction methods for HSI have been using statistical
theory, fuzzy theory, and machine learning [10, 22]. For example, linear extraction
techniques include PCA [42], minimum noise fraction (MNF) [38], independent
component analysis (ICA) [8], and linear discriminant analysis (LDA) [6]. In the
spatial domain, existing works used Gabor filter banks [33]. Meanwhile, several
approaches used nonlinear transformations such as morphological analysis [9]
[42], kernel methods [12], and manifold regularisation [3] [4] [5] [29].

Then, hand-crafted features were used as inputs of conventional classifiers
such as the K-nearest neighbour classifier (KNN) [29] and SVM [2], [46][37] [26].
For instance, Ma et al., [29] deployed a manifold structure from the pixel values
then utilised a weighted KNN classifier. In another work, Tuia and Camp-Valls
[37] employed SVM with a kernel to train directly from images. Meanwhile, Ji et
al. [26] addressed both the pixel spectral and spatial constraints then formulated
the relationships among pixels in a hypergraph structure. Their hyperedge is
generated by using distance among pixels, where each pixel is connected with
its K-nearest neighbours in the feature space.

Recently, deep learning approaches were used for automated feature extrac-
tion step from internal layers of a neural network; then these features were used
as inputs of conventional classifiers. Auto-encoders and deep belief networks were
typical examples of this direction [14, 40, 24]. Auto-encoder (AE) is an unsuper-
vised learning method to learn fewer representations from high dimensional data
space and not require annotated training sets [40]. The approach reduced the
reconstruction error between the input data at the encoding layer and its re-
construction at the decoding layer [40]. Stacked Auto-encoder (SAE) is a model
comprising a number of AE layers with a greedy layer-wise training scheme and
a logistic regression layer for classification [14]. Deep belief network (DBN) [24]
is a another DL model in which nonlinear description of objects can be analysed.
DBN combines the advantages of unsupervised and supervised learning. It is also
an automated feature extraction process. DBN was introduced to apply for HSI
data using a back-propagation network and a SVM classifier as the final step of
classification [49].

3.2 One-step Approaches

In another approach, DL has also been suggested in one-step solutions (i.e., au-
tomatically extract deep information from pre-processed HSI data and blindly
feed this information into the classification layer of the network). These deep
features were considered high-level and abstract representations, thus, could be
more robust and efficient than lower-level hand-crafted features. Existing works
followed this direction include CNN variants [41] [51] [52], auto-encoders [14]
[40]. CNN structures were typically designed to process data that come in the
form of multiple arrays, e.g., a multispectral image composed of many 2-D arrays
containing pixel intensities in the multiple band channels. Due to the proper-
ties of natural signals, namely, local connections, shared weights, pooling, and
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the use of multiple layers , CNN has been suggested for the HSI classification
applications as a one-step strategy [17, 39, 41, 51, 52, 43] . The architecture of a
typical CNN is integrated as a series of layers for different assignments including
input, convolution, pooling, normalization, drop-out and output. Convolutional
layers were considered the most important layers that extract features. Specif-
ically, a few first layers provided low-level information such as edges, lines and
corners while the latter ones described more abstract features such as structures,
objects, and shapes. Typically, after each convolutional layer, there exist pooling
layers that are created by computing some local non-linear operation of a partic-
ular feature over a region of the image. The process guarantees that the similar
outcome can be obtained, even when image features have small translations or
rotations, which is essential for scene classification and detection. Then, nor-
malization layers aim to improve generalisation inspired by inhibition schemes
presented in the real neurons of the brain. In the last few layers of the network. a
dropout training method [44] has been recently suggested to reduce over-fitting
effects [39, 41, 43].

4 HSI Datasets

Due to the application-oriented purpose of this survey, we categorised scenarios
of target detection scene as follows: rural area, urban, industrial field, and natural
reserves. We selected popular public datasets for each scene type as in Table 1.
Indian Pines data [7] (DS1) represents a rural area. Pavia University campus
site [31] (DS2) represents an urban area. Botswana image [18] (DS3) illustrates a
swarm and delta region. Kennedy Space Center HSI [34] (DS4) is an example for
an industrial field. Other datasets in Table 1 including Salinas Valley, Houston,
and Pavia City share a near similar scene and settings, thus, are briefly compared
according to previous results (Table 2). Specific details of datasets tested in this
work are depicted as follows.

Rural area (Dataset 1): This scene shot was taken in 1992 at a 2 × 2-mile
area at 20 meters spatial resolution of Northwest Tippecanoe County, Indiana
(USA )by AVIRIS sensor (224 spectral reflectance bands ranging 0.4–2.5 µm).
This is so-called Indian Pines data and are provided by Purdue University [7]
as a subset of the original capture. The public part consists of 145× 145 pixels
and covers agriculture land, forest, and other natural perennial vegetation. In
the human living area, the scene contains roads, major dual lane highways, a rail
line, low density housing, and other built structures. In the farm field, as in June,
the field is in early stages of growth. The manual labels mark 16 object classes
(Fig. 1). The image was removed the portion with water absorption, specifically
in bands of 104-108, 150-163, and 220 [7] . Thus, there are 200 bands used out
of 224 in total of the raw shot.

Urban area (Dataset 2): The Pavia University scene was captured at the
University of Pavia campus, Pavia, Italy, from a reflective optics system imaging
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Table 1. Specifications of publicly available datasets.

Name Scene
Type

Location Size (Pixels) Spatial
Resolution
(m/pixel)

Spectral band
(used/total)

DS1 Rural Northwestern In-
diana, USA. 1992

145 × 145 20 200/224

DS2 Urban Pavia University
Campus, Pavia,
Italy

610 × 340 1.3 103/116

DS3 Wetlands Okavango
Delta, Botswana
(Africa)

1476 x 256 30m 145/242

DS4 Industrial
Field

Kennedy Space
Center, FL, USA

512 × 614 18 176/224

DS5 Farm Salinas Valley,
California, USA

512 × 217 3.7 204/224

Other Urban University of
Houston campus

– 2.5 114

Other Urban Pavia, Italy 1096 × 1096 1.3 102/114

spectrometer (airborne by the German Aerospace Agency, sponsored by the Eu-
ropean Union). The spectrometer has 115 band channels ranging 0.43−0.86 µm.
The spatial resolution is 1.3 m per pixel. The publicly portion of the dataset has
the size of 640 × 340 pixels provided by Pavia University (Italy) [31]. There
are 9 classes of objects in the image: asphalt, meadow, gravel, trees, painted
metal sheet, bare soil, bitumen, self-blocking bricks, and shadows (Details of
number samples for each object are listed in Fig. 2). Due to noise, only 103
channels were further processed. The image was corrected atmospherically, but
not geometrically [31].

Fig. 1. Objects distribution of the scene and RGB image for Indian Pines.
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Fig. 2. Objects distribution of the scene and RGB image for Pavia University Campus.

Wetland area (Dataset 3): In 2001-2004, National Aeronautics and Space
Administration (NASA) collected from the Earth Observer-1 satellite a sequence
of HSI images over the Okavango Delta, Botswana. This scene is one of the
world’s largest freshwater wetlands (approximately 15,000 km2). The Hyper-
ion sensor on the satellite has 30 m pixel resolution and 242 bands covering
the 400-2500 nm (10 nm windows) [18]. The public data portion was a 7.7 km
strip acquired on May 31, 2001 (Fig. 3). The set includes seasonal swamps, and
woodlands of the Delta. The data was pre-processed by the provider to reduce
the effects of miscalibration, and intermittent anomalies [18]. Noisy bands (due
to water absorption) were removed, and the remaining 145 bands were: [10-55,
82-97, 102-119, 134-164, 187-220].

Industrial Field (Dataset 4): Kennedy Space Center (KSC) located on Mer-
ritt Island, Florida is one of ten field centres of NASA. The AVIRIS instrument
(Airborne Visible/Infrared Imaging Spectrometer) was used to capture KSC site
on March 23, 1996. The specifications of the sensor were: 224 bands of 10 nm
width; wavelengths from 400 - 2500 nm [34]. The KSC data, collected from an
altitude of approximately 20 km, have a spatial resolution of 18 m (Fig. 4). Af-
ter being pre-processed (e.g., water absorption and low SNR bands removed),
176 bands were used further. Class labels of pixels were derived by KSC per-
sonnel using colour infrared photography and Landsat Thematic Mapper (TM)
imagery.

Farm (Dataset 5): Salinas Valley HSI data was captured by the 224-band
AVIRIS sensor over Salinas Valley, California. The spatial resolution was 3.7 m.
The data comprises 512× 217 samples. Noisy bands with water absorption were
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Fig. 3. Objects distribution of the scene and a section of RGB for Botswana delta.

Fig. 4. Objects distribution of the scene and a section of RGB for KSC.

[108-112], [154-167], 224. There are 16 objects labelled in this data set including
vegetable matter, bare soils, and vineyard fields (Fig. 5).

Other datasets: There are three other popular HSI collections that were used
in existing comparisons. Houston campus site image was provided by the Uni-
versity of Houston in June 2012. The image has 349 × 1,905 pixels (spatial
resolution of 2.5 m, 144 spectral bands ranging from 0.38→ 1.05µm). There are
parking lots, highway, railway, tree, soil, water, grass, residential and commercial
blocks in the scene. Pavia city data set was collected by the similar instrument
with the Pavia University campus. The image was of the center of Pavia, Italy.
The data contains 103 bands and 1096× 1096 samples.
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Fig. 5. Objects distribution of the scene and a section of RGB for Salinas.

5 Existing Performance Comparisons

From the previously reported results, Table 2 lists latest noticeable works (since
2017) in deep learning neural network approaches and a few of baseline meth-
ods. The performance was reported as percentage % for overall accuracy (i.e.,
averaging for all classes) across several HSI collections. We noticed that most
of deep learning works achieved much higher performances against non-deep-
learning ones such as random forest and support vector machine based. More-
over, among recent deep learning methods, most of CNN variants performed
comparably. However, not all of works used the same experiment datasets.

6 Experiments

6.1 Experiments settings

In response to the aforementioned reviews of literature reports, we carried out
our own experiments to re-evaluate a selected groups of works with a broader
set of HSI. First, we implemented the method of FDSSC [48] as it was the latest
and had the highest accuracy (over 99%). As FDSSC is a CNN variant, we also
implemented a plain CNN model as a baseline. We selected a simple CNN in
[51] as it was well described and recently reported but was missed in state-of-
art comparisons. Then we deployed the SAE-LR [14] approach because it is an
unsupervised learning type of detection while CNNs are supervised ones. From
Table 2, the SAE-LR was reported to have high accuracy but did not perform
consistently in later works as a baseline (e.g., in the report of [48]).

These three methods were re-evaluated on Indian Pines data [7] for a rural
area; Pavia University campus site [31] for an urban area; Botswana image [18]
for a wetland region; Kennedy Space Center [34] for an industrial field; and Sali-
nas data for farming areas (Section 4). Note that, the Botswana data was not
reported recently (Table 2) thus it is newly tested for all of three implemented
methods. For each dataset, we repeated and recorded the accuracy performance
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Table 2. Comparisons of accuracy performance across public HSI images as reported
in existing works. Overall accuracy performance is calculated for all classes (%) in
each dataset used or ‘-’ if not used. IndianP: DS1. PaviaU: DS2. KSC: DS3. PaviaC:
Pavia City data. Houston: Houston University campus (Section 4).

Methods IndianP PaviaU PaviaC KSC Salinas Houston Reported work (ref-
erence, year)

SAE-LR [14] - - 98.52 98.76 - - proposed vs. RBF-
SVM, EMP RBF-
SVM ([14], 2014)

DC-CNNaug
[52]

98.76 99.68 - - - - proposed vs. vs. DC-
CNN, CNN, SSDL
([52], 2017)

CNN [51] 64.19 67.85 - - 85.24 - proposed vs. SVM,
KNN ([51], 2017)

RNN-GRU-
PRetanh
[35]

88.63 88.85 - - - 89.85 proposed vs. RNN-
LSTM, RNN GRU-
tanh, CNN, SVM-
RBF, RF 200 trees
([35], 2017)

RNN-GRU-
tanh [35]

85.71 80.70 - - - 85.73 baseline ([35], 2017)

RNN LSTM
[35]

80.52 77.99 - - - 85.41 baseline ([35], 2017)

CNN [35] 84.18 80.51 - - - 85.42 baseline ([35], 2017)

SVM-RBF
[35]

72.78 78.82 - - - 77.09 baseline ([35], 2017)

RF-200 trees
[35]

69.79 71.37 - - - 72.93 baseline ([35], 2017)

FDSSC [48] 99.75 99.97 - 99.96 - - proposed vs. CNN,
SAE-LR, 3D-CNN-
LR, SSRN ([48],
2018)

CNN [30] 95.96 99.38 - 99.31 - - baseline ([48], 2018)

SAE-LR [14] 96.53 98.46 - 92.99 - - baseline ([48], 2018)

DFFN [43] 98.52 98.73 - - 98.87 - proposed vs. vs.
DRNN, DCNN, RV-
CANet, SVM ([43],
2018)

DRN [43] 98.36 98.52 - - 98.48 - baseline ([43], 2018)

DCNN [43] 97.93 97.19 - - 95.05 - baseline ([43], 2018)

SAE-LR: Stacked Autoencoder with Logistic Regression . RF: Random Forest.
SVM-RBF: Support Vector Machines - Radial Basis Function. EMP: Extended
Morphological Profiles CNN: Convolutional Neural Network. DC-CNNaug: Dual
Channel CNN +Augmentation. FDSSC: Fast Dense Spectral–Spatial CNN DFFN:
Deep feature fusion network RNN: Recurrent Neural Network. DRN: Deep residual
CNN. DCNN: Deep plain CNN.
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metric 10 times. Therefore, the experiment results were listed as mean and stan-
dard deviation format in Table 3.

Our experiments were executed on two separate computing systems: a server
of Ubuntu (16.04 LTS, Intel Core i5-5200U processor, 4 cores of 2.20GHz, Nvidia
GeForce 940M GPU) and a Windows 10 (Home 64-bit; Intel(R) Core(TM) i7
NVIDIA GeForce GTX 1070 GPU). Algorithms were implemented in Python
3.6.6; Tensorflow (GPU version) 1.12.0 Keras 2.2.4. We used PyTorch environ-
ment to more quickly run models for various HSI inputs. We utilised a newer
optimizer to optimize the loss function than the ones in earlier works. Specifi-
cally, we used the Adam optimizer with 1000 epochs. The optimization is stopped
when the loss value does not decrease any more.

We split the training, validation, and test sets similar to earlier works to
best compare across works. For example, the original settings of the CNN work
[51] used the ratio of 3: 1: 6. When varying the number of training samples per
classes from 3 to 15, the highest accuracy for the CNN work [51] was archived
at the value set of 15.

6.2 Experimental results

Table 3 summarises our experimental results for deep learning methods across
public HSI images. Overall accuracy performance is calculated for all classes
(% mean ± standard deviation). Three of methods achieved very high accuracy
levels for all classes. The auto-encoder approach performed dramatically up on
each individual dataset. For instance, the model reached 98% of accuracy for the
Pavia University, Salinas, and Botswana data but yielded only 58% for the KSC
collection. Meanwhile, the two CNN variants performed consistently over 97%
of overall accuracy.

Table 3. Our experiment results of deep learning methods across public HSI images.
Accuracy performance is calculated for all classes (% mean ± standard deviation).

Methods (reference,
year)

IndianP PaviaU Salinas KSC Botswana

SAE-LR [14] 2014 84.65 ± 2.70 98.32 ± 0.09 97.79 ± 0.11 57.29 ± 1.23 97.40 ± 0.18

CNN [51] 2017 99.14 ± 0.23 97.86 ± 0.19 96.50 ± 0.21 97.02 ± 0.30 99.85 ± 0.15

FDSSC [48] 2018 99.77 ± 0.11 99.98 ± 0.01 99.95 ± 0.03 99.96 ± 0.07 99.78 ± 0.24

IndianP: DS1. PaviaU: DS2. KSC: DS3. Botswana: DS4. Salinas (Section 4).
SAE-LR: Stacked Autoencoder with Logistic Regression [14]. CNN: Convolutional
Neural Network. FDSSC: Fast Dense Spectral–Spatial CNN [48] .

7 Discussion

In this report, hyperspectral image analysis was reviewed particularly for object
detection applications. Several HSI data representations were summarised from
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spectral/spatial characteristics to hand-crafted or automated feature extraction
using deep-learning methods.

In terms of data sources, we reported publicly available datasets commonly
used for HSI analysis. We found limited research on off-nadir data for our target
detection focus but some available in other areas of HSI applications such as
material discrimination [45], atmospheric compensation [1], [2]. We recommend
that future works should investigate this scenario of data collection to expand
further and more efficient HSI-based target detection applications.

Regarding to technical approaches for HSI object detection, we described
both hand-crafted feature extraction in-cooperated conventional methods (e.g.,
support vector machine or decision trees) and automated feature extraction using
deep learning neural networks. According to existing comparisons (summarised
in Table 2), deep learning neural networks performed much better than the
conventional ones. Unsupervised features (e.g., intermediate information from
auto-encoders (SAE-LR [14])) may act as mid-level representations and hence
provide more semantic features and more robust detection accuracy than the
low-level ones (i.e., hand-crafted).

Based on our observations for a selected group of works, we found CNN mod-
els provided comparatively reliable performance of over 97% detection accuracy
across a large set of HSI collections. We included data for a rural area (Indian
Pines data [7]), an urban area (Pavia University campus site [31]), a wetland
region (Botswana image [18]) an industrial field (Kennedy Space Center [34] ),
and a farm site (Salinas data, section 4). Note that, the Botswana data was not
reported recently (Table 2) thus it is newly tested for all of three implemented
methods.

According to our experimental experience, we confirmed the non-consistent
performance of SAE-LR [14] found in earlier comparisons (Table 2 and 3). This
is probably due to the fact that the algorithm depends heavily on the reconstruc-
tion error between the input data at the encoding layer and its reconstruction
at the decoding layer which in turns relates much on the quality of each dataset.
We hypothesize that with a robust pre-processing procedure, the SAE-LR can
work well for unsupervised HSI data. It should be noted that we used the Adam
optimizer when deploying the work of SAE-LR [14] that used a basic optimizer
of stochastic gradient descent thus it took the original experiments four to six
hours to complete a trial. Furthermore, we observed CNN models detected ob-
jects comparably despite of a plain design (i.e., without using residual learning
and feature fusion) or a more complex architecture in recent reports except for
one report of a simple CNN [51]. The authors of [51] only yielded less than 67%
for Indian Pines and Pavia University sets (Table 2). Therefore, we re-evaluated
this design in our experiments and found it actually worked well (above 97%
across all five datasets). Hence, we suggest that a simple CNN model can per-
form well for target detection rather than complex variants.
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