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Abstract
Mutation applied indiscriminately across a population has, on average, a detrimen-
tal effect on the accumulation of solution alleles within the population and is usually
beneficial only when targeted at individuals with few solution alleles. Many common
selection techniques can delete individuals with more solution alleles than are easily
recovered by mutation. The paper identifies static and dynamic selection thresholds
governing accumulation of information in a genetic algorithm (GA). When individuals
are ranked by fitness, there exists a dynamic threshold defined by the solution density
of surviving individuals and a lower static threshold defined by the solution den-
sity of the information source used for mutation. Replacing individuals ranked below
the static threshold with randomly generated individuals avoids the need for muta-
tion while maintaining diversity in the population with a consequent improvement
in population fitness. By replacing individuals ranked between the thresholds with
randomly selected individuals from above the dynamic threshold, population fitness
improves dramatically. We model the dynamic behavior of GAs using these thresholds
and demonstrate their effectiveness by simulation and benchmark problems.

Keywords
Genetic algorithms, information theory, solution density, ranked populations, selection
thresholds, selection pressure, ranking.

1 Introduction

Many researchers have shown that mutation can be detrimental to the success of a
GA as it may alter optimal solution alleles present in the population to other, nonopti-
mal alleles (e.g., Milton et al., 2005; Galvan-Lopez and Poli, 2006; Wright and Richter,
2006; Ochoa, 2006). Poor selection choices can similarly lead a GA to delete individu-
als containing optimal solution alleles. These lost alleles can only be reintroduced by
mutation or the addition of newly generated individuals that replace deleted individu-
als (Gonalves et al., 2005). This paper identifies selection thresholds in ranked popula-
tions that separate individuals with a high density of optimal solution alleles from those
with a low density. We use some basic ideas from information theory to characterize the
“density of optimal solution alleles” as “solution density.” The thresholds differentiate
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those individuals with a lower solution density than the information source as sought
by Milton et al. (2005). These individuals can be targeted for replacement instead of
mutation to accelerate the accumulation of information by the GA.

The existence of both static (k0) and dynamic (kg) selection thresholds with k0 ≤ kg

in a population of individuals is described. These thresholds govern the accumulation
of information in a GA. We show that by replacing individuals ranked below the
static threshold with randomly generated replacements the GA performs better than
when mutation is used to maintain diversity. By replacing individuals ranked between
the static and dynamic selection thresholds with randomly selected individuals from
above the dynamic threshold, selection pressure may be controlled to achieve a balance
between the rate of improvement and population diversity. If selection is implemented
by ordering individuals in the population by fitness, the thresholds are easily visualized,
but their existence is not dependent on this approach to selection.

The rest of this paper is organized as follows. Section 2 provides some general
background to GAs, information theory, and related work. The idea of information in a
GA population and the associated idea of solution density are then defined in Section 3.
Section 4 develops a model of solution density in a GA subject to a static selection thresh-
old and randomly generated replacements in lieu of mutation. Simulations to validate
this model are presented. Section 5 expands the model and supporting simulation to
remove some constraining assumptions so that a dynamic selection threshold and child
replacements are accommodated by a more realistic algorithm. The knowledge gained
from the simulations is then applied to a bit–trap benchmark as proposed by Harik
(1999) with excellent results. Sections 7 and 8 provide suggestions for further research
and concluding remarks.

2 Background

Genetic algorithms are optimization algorithms based on the principles of biological
evolution. They are relatively straightforward to program but understanding how they
work is challenging and has been a major research goal for some decades. Early work
on evolutionary algorithms occurred in the late 1950s and early 1960s. Bremermann
et al. (1966), Fraser (1957), and Box (1957) described artificial evolution systems. From
the 1970s, work on evolutionary algorithms accelerated with the increasing availabil-
ity of computers and diversified into a variety of branches including genetic algo-
rithms (Rechenberg, 1973; Holland, 1975; Goldberg, 1989; Jong and Spears, 1991; Reeves,
1993; Whitley et al., 1995) which represents problems as strings of symbols; genetic
programming (Koza, 1997; Poli, 2001), which evolves computer programs rather than
strings of symbols; and real valued genetic algorithms (Rechenberg, 1973; Schwefel,
1981).

More recently, a significant volume of research (Rowe, 2001; Rowe et al., 2002,
2004, 2007; Poli et al., 2004; Toussaint, 2004; Mitavskiy, 2004; Borenstein and Poli, 2006)
has examined genetic algorithm operators in detail through Markov chain analysis,
groups, and other mathematical tools. Such analysis provides significant insight into
the structure of search spaces as well as the nature of genetic operators such as crossover,
mutation, and selection.

Even with this work, a rigorous approach to optimal GA design, akin to electronic
circuit design or mechanical engineering designs has not been achieved (Jansen et al.,
2005). A step toward this goal is the little models approach in Goldberg (2002) whereby
GA behavior is simulated subject to constraints that simplify the model. Milton et al.
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(2005) use such a constrained model and apply an information theoretic approach to
show that mutation applied indiscriminately across the population has, on average, a
detrimental effect on the accumulation of solution alleles within the population and that
mutation is only beneficial when targeted at individuals with a lower solution density
than the mutation source.

Selection is a genetic operator that retains part of the population for use as parents
for generating a new population. Many implementations of selection have been pro-
posed, including direct selection, proportional selection, uniform ranking (Schwefel,
1995), linear ranking (Baker, 1985), tournament selection (Blickle and Thiele, 1995), and
Genitor (Whitley, 1989). With the exception of direct selection, each of these implemen-
tations is stochastic, using a probability of selection derived from the performance of
individuals, rather than an absolute threshold performance. While this approach is bio-
logically plausible, it leaves open the possibility of deleting individuals with more opti-
mal solution alleles than can be easily recovered, for example using mutation. Gonalves
et al. (2005) use arbitrary selection thresholds where the top 10% of the population are
retained in the next generation and the bottom 20% are replaced by randomly generated
individuals. Our work takes a similar approach, but we identify the selection thresholds
by linking them to the algorithm used to generate the replacement individuals, rather
than choosing them arbitrarily.

3 Solution Density

Information theory is characterized by a quantitative approach to the notion of informa-
tion. It provides a framework for understanding how information can be transmitted
and stored compactly and for calculating the maximum quantity of information that can
be transmitted through a channel (Van der Lubbe, 1997). Information theory provides
an interesting lens through which to view the mechanics underlying a GA. It gives us
insight into the flow of alleles through a population and the differences in the structure
of information between ranked and unranked populations.

Generally, the initial population of a GA is constructed using a memoryless infor-
mation source, which randomly generates symbols and places them into positions (loci)
of individuals ranging from position 1 to L. Information theory defines an information
source as an algorithm that generates symbols in a stationary1 stochastic sequence.
A memoryless information source is one where the symbols are statistically indepen-
dent (Van der Lubbe, 1997). Each individual generated this way represents a possible
solution to the problem.

We define ideal alleles as those symbols in the appropriate loci that form an optimal
solution. If more than one optimal solution to the problem exists, arbitrarily choose
one of these solutions to represent the optimal solution. The concept of ideal alleles is
used throughout this paper to simplify the explanation of ideas and observations. It is
understood that ideal alleles cannot be easily identified in real problems.

We introduce the term solution density to refer to the frequency of ideal alleles in
the population at a particular generation and denote it as ρg for generation g. Solution
density is a measure of a population’s fitness. Unless the information source has special
knowledge of the problem that biases it to produce ideal alleles at a greater rate than
other alleles, these ideal alleles will occur at the rate 1/A in the initial population where

1Stationary means that the probability of symbol generation does not change with time.
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A is the number of possible alleles at each locus. We refer to A as the allele cardinality
(binary, octal, hexadecimal, or other) and assume that it does not vary from locus to
locus within genomes of the same problem. Thus, the solution density of the initial
population can be given as

ρ0 = 1
A

. (1)

As with ideal alleles, the notion of solution density is used to explain ideas and
observations. The solution density identified by a genetic algorithm operating on a
real problem is the algorithm’s best estimate of the solution in the presence of noise
from various sources including the stochastic nature of the operators themselves, and
false optima which deceive the operators into encoding misleading information into
the evolving population.

The population has an entropy given by

Hg = −
L∑

l=1

A∑
a=1

pa(l, g) log2 pa(l, g)

where pa(l, g) is the relative frequency of each allele a at locus l at generation g.
Weaver and Shannon (1949, p. 20) describe entropy as a measure of uncertainty and

information received as the difference between the uncertainty at the receiver before the
arrival of a signal and the uncertainty at the receiver after the arrival of a signal. In the
context of a genetic algorithm, the population is the receiver while the signal is provided
by the selection operator. Therefore the entropy of the population from generation to
generation can be used to measure the accumulation of information by a population.

The action of selection increases the relative frequency of ideal alleles in the popu-
lation. This reduces the uncertainty of the population so that

Hg > Hg+1.

Hence the information encoded into the population at generation g by the action of
selection is given by

Rg = H0 − Hg

the difference between the uncertainty in the initial population and the uncertainty in
the population at generation g.

This information is proportional to the solution density ρg since max{pa(l, g)} is
the relative frequency of ideal alleles in locus l at generation g. Therefore, the solution
density is related to the accumulated information by

ρg = 1
L

L∑
l=1

max{pa(l, g)}.

This means that the solution density (ρg) can be used to model information accumulation
by a genetic algorithm. We prefer the use of solution density over entropy for our model
as solution density is quicker to calculate and can be directly applied to the binomial
model introduced in Section 4.
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Figure 1: A population of 10 individuals (rows) having ten loci (columns) ranked by
ideal allele from the solution (A,C,C,D,D,C,D,B,A,B) indicated in gray. The threshold
separates individuals with more/less ideal alleles than the population average, as gen-
erated by the memoryless information source.

4 A Model of Solution Density in a GA Subject to Selection

When individuals, each with L loci, are ranked by the number of ideal alleles they
contain, then a gradient from low to high fitness exists in the population. In this gradient
a static threshold (k0 : 0 ≤ k0 ≤ L) exists, where individuals with more than k0 ideal
alleles have a solution density greater than that of the information source (Figure 1).
Deleting any individual from above this static threshold represents lost information
that cannot be easily recovered using the information source. Most of the selection
implementations outlined in Section 2 run this risk. Similarly, applying mutation to any
individual above this threshold will, on average, decrease the solution density of the
population rather than increase it (Milton et al., 2005).

Ideal alleles λ will initially be distributed throughout the population with binomial
probability distribution

p(λ|L, ρ0) = L!
λ!(L − λ)!

ρλ
0 (1 − ρ0)(L-λ)

that is similar to that shown in Figure 2. The binomial distribution describes the number
of ideal alleles per individual {λ|0 ≤ λ ≤ L} where L is the number of loci per individual.
The solution density ρg , of the population at generation g, is the ratio of the number of
ideal alleles to the total number of alleles in the population.
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Figure 2: The binomial distribution pL
0 (0, λ) describes the number of ideal alleles per

individual at generation 0.

Throughout this paper, binomial distributions are frequently used. To focus readers
on the salient variables, the binomial distribution: p(λ|L, ρg) shall be henceforth ab-
breviated as p(g, λ). Sometimes only parts of a binomial distribution are required. For
example, p(λ|L, ρg) for λ = a to b. These partial distributions shall be abbreviated as
pb

a(g, λ). In each case a and b are in the range 0 to L.
Selection from a threshold k truncates the binomial distribution thus

pL
0 (0, λ) select⇒ pL

k+1(0, λ).

An example of this kind of distribution is shown in Figure 3.
The population described by Figure 3 no longer has ideal alleles distributed bi-

nomially throughout the population. Instead, ideal alleles occur more frequently per
individual in the surviving population than they did in the initial population. This
would invalidate the continued use of binomial distribution equations to model the GA
behavior. However, if crossover is now repeatedly applied to all of the individuals in
this population, the distribution of ideal alleles across the population will return to a
binomial distribution.

The minimum amount of crossover that achieves this return to a binomial distri-
bution is referred to as sufficient crossover in this paper. Applying more crossover than
this has no further effect on the distribution of ideal alleles in the population and is
computationally intensive. Therefore the accurate identification of sufficient crossover
is important to the efficient operation of the GA. Sections 4.2 and 5.2 compare the
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Figure 3: The truncated probability distribution p13
3 (0, λ) of the population that has had

individuals with two or fewer ideal alleles deleted (selection threshold k = 2).

effect of insufficient to sufficient crossover on the fidelity of the model described and
Appendix A provides the calculation for how much crossover is sufficient.2

Once sufficient crossover has been applied between all of the individuals in the
population, the ideal alleles are again distributed binomially across the population, and
the binomial distribution equations can continue to be used to model the growth of
solution density ρg from generation to generation.

pL
0 (0, λ) select⇒ pL

k+1(0, λ) crossover⇒ pL
0 (1, λ).

Figure 4 illustrates the binomial distribution p13
0 (1, λ) of a population that has

the same solution density as the population in Figure 3. Note that the peak of the
distribution has moved to the right when compared to Figure 2, indicating that a greater
percentage of the population contains more ideal alleles. Hence, the solution density
of the population has risen. Figure 5 illustrates the trend resulting from repeating

2An alternative approach might be to use gene pool recombination. In gene pool recombination, for
each locus the two alleles to be recombined are chosen independently from the gene pool defined by
the selected parent population. The biologically inspired idea of restricting the recombination to the
alleles of two parents for each offspring is abandoned (Muhlenbein and Voigt, 1995). This approach
decorrelates loci and results in a binomial distribution of ideal alleles. However, it may also lose alleles
as some may not be chosen. This adds another operator that probabilistically leaks ideal alleles from
the genetic algorithm as does selection and mutation. In addition, gene pool recombination scales
with increasing individual length (L), while crossover described in this paper does not. Hence for
populations of significant genome length (L), crossover is more efficient than gene pool recombination
at redistributing alleles through a population.
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Figure 4: The truncated distribution of Figure 3 with alleles redistributed by sufficient
crossover between all of the individuals in the population to return it to a binomial
distribution.
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Figure 5: The movement of the probability density function from p(0, λ) (columns) to
the region of higher solution density at p(g, λ) (lines) due to repeated selection and
crossover.
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this process each generation. This effect can be described algebraically to reveal the
change in solution density and to identify the selection threshold k that optimizes the
improvement in solution density for each generation.

The binomial distribution can also be used to model the change of solution density
ρg from generation to generation when a univariate estimation distribution algorithm
(UEDA; Muhlenbein and Paaß, 1996) is used to model successive generations. UEDAs
use an estimate of a population’s allele distribution, rather than an instance of a pop-
ulation, and modify this estimated distribution. This approach is popular as it does
not require memory to store actual populations. An estimated distribution implicitly
assumes that alleles are distributed throughout the population as represented by the
distribution. Hence the distribution of ideal versus nonideal alleles must be binomially
distributed in a UEDA and therefore the models described in this paper are applicable
to UEDAs.

pL
0 (0, λ) UEDA⇒ pL

0 (1, λ)

Returning to the model, an expression for the expected solution density in the pop-
ulation at generation g + 1 which describes this change will now be constructed. First
we need an expression describing the number of ideal alleles present in the population
after selection. This expression must be further developed to include the number of ideal
alleles that are added by the randomly generated replacement individuals. Finally, the
expression for expected solution density must account for the probability that at least
one individual survives to the next generation.

When individuals ranked above a threshold k are selected, the expected number of
ideal alleles in the population at generation g is Ng

∑L
λ=k+1 λp(g, λ) and the total number

of alleles in the population at generation g + 1 is LNg+1. Since the solution density is
given by the ratio of ideal alleles in the population to the total alleles, the expected
solution density at generation g + 1 for a population subject to selection only is

Es[ρg+1] = Ng

∑L
λ=k+1 λp(g, λ)
LNg+1

. (2)

To this point we have not replaced the individuals deleted from the population. If
randomly generated new individuals are now used to replace the deleted individuals
and increase the diversity of symbols represented in the population (i.e., in lieu of
mutation) then the solution density is further altered as follows. First, the number of
individuals to be added to the population must be quantified. Next, the solution density
associated with these individuals must be quantified. Then, this solution density must
be added to the surviving population’s solution density.

As the individuals with k or fewer ideal alleles (i.e., λ ≤ k) were deleted, the number
of individuals deleted and therefore the number of replacements required to maintain
the population size so that Ng = Ng+1, is Ng

∑k
λ=0 p(g, λ). The solution density associated

with these new individuals is
∑L

λ=0 λp(0,λ)∑L
λ=0 p(0,λ)

which simplifies to
∑L

λ=0 λp(0, λ) since the

denominator
∑L

λ=0 p(0, λ) = 1. Notice that as we are generating new individuals in the
same way as for the initial population, we use the binomial distribution p(0, λ) rather
than p(g, λ).

The solution density to be added to the surviving population is the product
Ng

∑k
λ=0 p(g, λ)

∑L
λ=0 λp(0, λ), the number of randomly generated replacement
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individuals multiplied by the number of ideal alleles associated with the randomly
generated replacement individuals. Adding this term to the numerator of Equation (2)
and simplifying gives

1
L

[
L∑

λ=k+1

λp(g, λ) +
k∑

λ=0

p(g, λ)
L∑

λ=0

λp(0, λ)

]
.

However, the expected solution density in generation g + 1 is valid only if at least
one individual survives. Thus our final estimate of the expected solution density is

Esr [ρg] = 1
L

[
L∑

λ=k+1

λp(g, λ) +
k∑

λ=0

p(g, λ)
L∑

λ=0

λp(0, λ)

]

×
⎡
⎣1 −

(
k∑

λ=0

p(g, λ)

)Ng
⎤
⎦ . (3)

Equation (3) describes the expected behavior in the change of solution density ρg of a
population from generation to generation under the successive application of selection,
random replacement, and crossover. This line of reasoning is critically dependent on
the number of crossover operations. Insufficient crossover reduces the mixing of the
ideal alleles and invalidates this analysis because the binomial distribution no longer
applies. However, with sufficient crossover it is possible to model increasing solution
density and estimate the number of individuals that exist at or below the threshold for
any generation.3

4.1 Static Threshold

In order to use Equation (3) to model information flow in a GA, we need to determine a
suitable value for the selection threshold k which will ensure a rise of solution density
from generation g to g + 1. For the solution density to increase, the ideal alleles lost
when individuals are deleted must be less than the ideal alleles introduced by the
randomly generated individuals replacing them. Hence if k is set to satisfy

k∑
λ=0

λp(g, λ) <

k∑
λ=0

p(g, λ)
L∑

λ=0

λp(0, λ) (4)

then the solution density will rise and information will accumulate. The last factor
on the right-hand side of Equation (4) is a constant. Assigning K = ∑L

λ=0 λp(0, λ) and
expanding both sides results in

0p(g, 0) + 1p(g, 1) + · · · + kp(g, k) < Kp(g, 0) + Kp(g, 1) + · · · + Kp(g, k).

Subtracting like terms on the left-hand side from like terms on the right-hand side gives

0 < (K − 0)p(g, 0) + (K − 1)p(g, 1) + · · · + (K − k)p(g, k)

3Refer to Appendix A for the calculation of how much crossover is sufficient.

238 Evolutionary Computation Volume 18, Number 2



Static and Dynamic Selection Thresholds

which is true for all k ≤ K since when the last factor equals zero the remainder of the
right-hand side is positive. It may also be true for some k > K , but the degree to which
this is true varies for different distributions p(g, λ). Consequently, a conservative bound
on selection threshold which guarantees that information will accumulate is

k ≤
L∑

λ=0

λp(0, λ).

We can better quantify this bound on k by realizing that the initial solution density is
ρ0 = 1/A. This means that

∑L
λ=0 λp(0, λ) = L/A.

Therefore, if the selection threshold k is less than L/A, ideal alleles will accumulate
and if k is greater than L/A, ideal alleles are unlikely to accumulate. This bound is the
static selection threshold k0 = L/A which defines the boundary between information
gain and information loss when using randomly generated replacement individuals.
Replacing individuals having k0 or fewer ideal alleles with new, randomly generated
individuals will, on average, provide an increase in solution density. To summarize, the
static selection threshold is given by

k0 ≤
L∑

λ=0

λp(0, λ) = L

A
. (5)

4.2 Exploring the Static Threshold

We present a simulation study to examine the fidelity of the above equations modeling
information flow, especially the accurate identification of the selection threshold and
the influence of crossover. To achieve this, the results of a simulated GA with excessive
crossover and little crossover are compared to the theoretical results derived above. The
GA simulation uses the well-known royal road problem (Mitchell et al., 1992). We say
that it is simulated because the GA knows the correct solution to the problem, unlike
the usual case when the optimal solution is, of course, unknown. Each ideal allele is
defined as the symbol 1 and hence the ideal evolution of the GA can be monitored
and compared to the theoretical model. The simulation selects individuals for survival
based on the number of 1s they contain. This means that the GA has perfect knowledge
of the ranked order of individuals based on the number of ideal alleles each has. This
unrealistic constraint is removed in Section 6.

The specific form of GA used in the simulation is shown in Algorithm 1.

Algorithm 1 Outline of genetic algorithm with randomly generated replacements

Data: Population Size, Termination Criteria, Genome Length = L, Cardinality = A

1 Define information source having cardinality A;
2 Calculate k0;
3 for n = 1 to Population Size do

4 Generate Individual of length L using information source;
–
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5 repeat

6 Score each individual in the population using the objective function;
7 Delete individuals in population with k0 or less ideal alleles;
8 Replace deleted individuals using information source;

/* this paper uses C = 310 and C = 10 for comparison
purposes */

9 for c = 1 to C do

10 Randomly select sections of length L/2 in 2 randomly selected
individuals and exchange these sections;

–
11 until termination criteria = true;

Crossover is performed between randomly selected individuals. Each crossed-over
section is six loci in length, selected from a random starting position in each parent,
with wrap-around at genome ends. No mutation is applied as diversity is introduced
into the population by replacing deleted individuals with new randomly generated
individuals.

The simulation experiments were repeated for two scenarios corresponding to
amounts of crossover at either end of the spectrum: (i) C = 310 crossover operations
per generation and (ii) C = 10 crossover operations per generation. This first amount
of crossover is chosen arbitrarily based on 10 times the population size.

The results for each scenario were averaged over 100 trials of the simulation to
produce meaningful results. Parameters used for both the theoretical model and simu-
lated GAs are an initial population size of N = 31 individuals, individual length L = 13
loci and allele cardinality of A = 6 alleles. With these parameters, the static selection
threshold, k0, is calculated using Equation (5) to be 2.1667.

Equation (3) defines the theoretical model and is used to predict the change in
expected solution density for a variety of selection thresholds k over a number of
generations (Figure 6). In Figures 6 to 8, different selection thresholds k are indicated
by lines. For example, k = 2 is the graph of E[ρg] with a selection threshold of two ideal
alleles. Dashed lines indicate the solution density of the information source used for
generation and replacement of individuals.

Figure 7 shows the solution density of the population for 100 generations with
310 crossover operations per generation and Figure 8 shows the solution density with
10 crossover operations per generation.

4.2.1 Discussion
Where the number of crossover operations is sufficient to return the distribution of ideal
alleles to a binomial distribution (Figure 7), then the model (Figure 6) is an excellent
estimation of the simulated GA behavior. Indeed for the simulations where selection
pressure (k) is set at less than four ideal alleles per individual (k < 4), the maximum
mean squared error between the model and 100 experimental trials is only 0.0023. When
fewer crossover operations are done (Figure 8) the model is less accurate, but for the
simulations where k < 4, the maximum mean squared error between the model and
100 experimental trials is still only 0.0038.

When selection pressure exceeds the calculated selection threshold k0 = 2.1667, the
equations predict a collapse in information. That is, a leveling off or rapid decline in the
solution density of the population occurs. For example, compare the line marked k = 2 in
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Figure 6: The expected solution density predicted by Equation (3) for a variety of
selection thresholds k (N = 31, L = 13, A = 6).
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Figure 7: The average results of 100 trials where crossover has been performed between
randomly selected pairs of individuals 310 times each generation, C = 310 (N = 31, L =
13, A = 6).
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Figure 8: The average results of 100 trials where crossover has been performed between
randomly selected pairs of individuals 310 times each generation, C = 10 (N = 31, L =
13, A = 6).

Figure 6 with k = 3 and k = 4 in Figure 6. This collapse is apparent in the simulations (see
Figure 7 for k = 2, k = 3, and k = 4). As predicted, the highest possible selection pressure
that does not exceed k0 = 2.1667 provides the fastest improvement of solution density.

Low selection pressure in the simulation with sufficient crossover (i.e., Figure 7, C =
310) achieves slightly faster improvement in solution density than does low selection
pressure in the simulation with insufficient crossover (Figure 8, C = 10). In other words,
the simulations illustrated by Figure 7 k = 0, 1, and 2 are superior to the simulations
illustrated by Figure 8 k = 0, 1, and 2.

High selection pressure (i.e., with k = 3, 4, or 5) in the simulation with sufficient
crossover (Figure 7, C = 310) has a slower increase in solution density than does high
selection pressure in the simulation with insufficient crossover (Figure 8, C = 10). This
suggests that a little crossover is more robust to higher selection pressure than excessive
crossover.

In both crossover scenarios, the maximum solution density reached is quite low.
Indeed, it is less than 0.5, the starting point for an equivalent GA with a binary allele
cardinality (A = 2).

One way to increase this maximum solution density lies with how individuals are
replaced in the population. As we will show in the next section, rather than replacing
individuals with random genomes, the maximum solution density may be increased if
individuals are replaced with randomly selected survivors of the previous generation.
That is, we use survivors as parents.

5 A Model with Parents

The model and simulations described in Section 4 are effective in replacing lost informa-
tion but the overall improvement in solution density is quite low. The solution density
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of 0.5 achieved after 100 generations only provides a very small probability that the
optimal solution exists in the population. Nevertheless, Figure 7 shows that the average
solution density of the population, while low, is still higher than that of the information
source. Therefore, it seems sensible to use this population as a source of replacement
individuals.

If we use individuals from the surviving population to replace deleted individuals,
we are using them as parents for the following generation and the model equations
require some revision. As before, the proportion of individuals deleted from the current
population equals the proportion of replacement individuals required in the next pop-
ulation so that Ng = Ng+1. Hence, the proportion of replacement individuals in the next
generation is given by

∑k
λ=0 p(g, λ). The ideal alleles that the randomly chosen parents

add to the population is
∑L

λ=k+1 λp(g,λ)∑L
λ=k+1 p(g,λ)

. We can estimate the expected solution density in

the next generation as

Esp[ρg+1] = 1
L

[
L∑

λ=k+1

λp(g, λ) +
∑k

λ=0 p(g, λ)
∑L

λ=k+1 λp(g, λ)∑L
λ=k+1 p(g, λ)

]

which after some manipulation simplifies to

Esp[ρg+1] = 1
L

[∑L
λ=k+1 λp(g, λ)∑L
λ=k+1 p(g, λ)

]
.

As the solution density of this information source (i.e., the surviving population) rises
over successive generations, then the selection threshold for individuals replaced using
the surviving population also increases. We denote this dynamic selection threshold kg

and define the expected solution density in generation g + 1 as

Esp[ρg+1] = 1
L

[∑L
λ=kg+1 λp(g, λ)∑L
λ=kg+1 p(g, λ)

]
. (6)

Equation (6) accounts for the use of randomly selected survivor parents, but it does
not permit the introduction of new information to replace information lost during
selection. This means that the diversity of the population may decrease, potentially
resulting in premature convergence on a suboptimal solution or in the stalling of the
algorithm as it runs out of useful information. In order to resolve this, we can replace
individuals below the static threshold k0 with randomly generated individuals and
replace individuals between the static threshold k0 and the dynamic threshold kg with
randomly selected survivor parents from above kg . For the model to reflect this, we
combine Equations (3) and (6) thus

Esrp[ρg+1] = 1
L

[
L∑

λ=kg+1

λp(g, λ) +
k0∑

λ=0

p(g, λ)
L∑

λ=0

λp(0, λ)

+
∑kg

λ=k0+1 p(g, λ)
∑L

λ=kg+1 λp(g, λ)∑L
λ=kg+1 p(g, λ)

]
×

⎡
⎢⎣1 −

⎛
⎝ kg∑

λ=0

p(g, λ)

⎞
⎠

Ng

⎤
⎥⎦ . (7)

In Equation (7), the first term in the first set of brackets represents the surviving
solution density, the second term represents solution density introduced by randomly
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generated individuals, and the third term represents the solution density introduced by
parent individuals. This sum is multiplied by the probability that at least one individual
survives.

5.1 Dynamic Threshold

Having described how the expected solution density changes from generation to gen-
eration, we need to quantify the threshold kg that supports this accumulation of in-
formation. The threshold k0 associated with randomly generated replacements is static
since the replacement information source has a constant solution density. However,
the threshold kg associated with replacement by randomly selected survivor parents
is dynamic because the solution density of the surviving population increases over
generations. Combining Equation (5), which gave a static upper bound on the selection
threshold, with Equation (1), which defined the solution density of the initial popula-
tion, gives

k0 ≤
L∑

λ=0

λp(0, λ) = L

A
= Lρ0.

Since ρ0 is the solution density at g = 0 and ρg is the solution density at g > 0, this
suggests that, where g > 0 and 0 ≤ k0 < kg < L,

kg = Lρg. (8)

Therefore, the selection threshold k0 can be determined using Equation (5) and ρ1
calculated using Equation (3). Analogously kg may be calculated with Equation (8) and
ρg , for g ≥ 2, with Equation (7).

5.2 Exploring the Dynamic Threshold

We now present a second simulation study to examine the fidelity of the equations
modeling information flow, the accurate identification of the selection threshold, and
the influence of crossover. However, this time we use Equation (7) to model the effect of
using randomly generated individuals and child individuals to replace low-performing
individuals, instead of Equation (3).

In the first simulation, the GA had full knowledge of the solution. The motivation
was to check the fidelity of the equations modeling the GA behavior. In this second
simulation, we make the GA more realistic by reducing its knowledge of the solution.
Instead, we use an estimate for solution density that can be derived by the GA from the
population without knowledge of the solution (ideal alleles).

We define the major schema of the population as the genome comprising the most
frequently occurring allele at each locus in the population. This major schema represents
the best estimate of the ideal individual at generation g. We also define the effective
solution density as the frequency of alleles forming the major schema at generation g

which permits us to use effective solution density to estimate the selection thresholds
(k0 and kg) for the simulation. We rank the population by ideal allele as before.
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The selection operator now replaces individuals in generation g that are below the
k0 threshold estimated by effective solution density. Hence the bottom ranked

Ng,k0 = Ng

k0∑
λ=0

p(g, λ)

individuals are replaced with randomly generated individuals. We then replace the next
Ng,kg

− Ng,k0 individuals with randomly selected individuals from above the threshold
kg where

Ng,kg
= Ng

kg∑
λ=0

p(g, λ).

The details of the form of GA used in this second simulation are given in Algo-
rithm 2. We ran this more realistic simulation against the same royal road problem as
before. As before, the simulations were repeated for two scenarios corresponding to
amounts of crossover at either end of the spectrum: (i) C = 310 crossover operations
per generation and (ii) C = 10 crossover operations per generation. This first amount
of crossover is chosen arbitrarily based on 10 times the population size.

Algorithm 2 Outline of genetic algorithm with randomly generated and parent replace-
ments

Data: Population Size, Termination Criteria, Genome Length=L, Cardinality=A

1 Define information source having cardinality A;
2 Calculate k0;
3 for n = 1 to Population Size do

4 Generate Individual of length L using information source;
–

5 repeat

6 Determine major schema;
7 Estimate kg using major schema;
8 Score each individual in the population using the objective function;
9 Rank population by Score;

10 Delete bottom ranked Ng,kg
individuals;

11 Replace Ng,k0 individuals using information source;
12 Replace Ng,kg

− Ng,k0 individuals using randomly selected individuals
from above Ng,kg

;
/* this paper uses C = 310 and C = 10 for comparison

purposes */
13 for c = 1 to C do

14 Randomly select sections of length L/2 in 2 randomly selected
individuals and exchange these sections;

–
15 until termination criteria = true;
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Figure 9: The expected solution density predicted by Equation (7) for the optimal
dynamic selection threshold kg and for kg + 1, kg − 1, kg − 2, kg − 3 and the average of
these last three (N = 31, L = 13, A = 6).

The results for each scenario were averaged over 100 trials of the simulation to pro-
duce meaningful results. Parameters used for both the theoretical model and simulated
GAs are a population size of N = 31 individuals, individual length L = 13 loci, and
allele cardinality of A = 6 alleles.

The theoretical results are shown in Figure 9. The results of the simulated GA are
shown in Figure 10 (310 crossovers per generation) and Figure 11 (10 crossovers per
generation). The simulation marked kg is where the selection threshold is set at the
optimum level as indicated by the model. The simulations marked kg + 1, 2, . . ., are
where the selection threshold was artificially increased by one, two, and so on, ideal
alleles per individual for comparison purposes. We again compare the results of a
simulated GA with the theoretical results.

5.2.1 Discussion
As before, the model (Figure 9) gives a good estimation of the simulated GA behav-
ior when the number of crossover operations is sufficient (Figure 10). The maximum
mean squared error between the model and the simulation for the line kg + 1 and kg is
0.0758 and 0.1483 respectively. This is greater than the maximum mean squared error
in simulation 1 due to the relaxed assumptions of the simulation.

In this simulation, the threshold is set imperfectly and some individuals with low
solution density survive to the next generation. This is most clearly seen where we
deliberately lower the dynamic threshold to below the predicted optimum (Figure 10
line kg − 1). This line resembles the average of lines kg − 1, kg − 2, and kg − 3, from
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Figure 10: The average results of 100 trials where crossover has been performed be-
tween randomly selected pairs of individuals 310 times (N = 31, L = 13, A = 6).

the model shown in Figure 9. This occurs because the inaccurate threshold means that
some individuals with much less than the targeted kg − 1 ideal alleles survive to the
next generation.

When selection pressure exceeds the calculated selection threshold kg , the model
predicts an increased rate of improvement in solution density, which reaches a lower
maximum solution density than the optimum. To see this, compare the kg and kg + 1
lines in Figure 9. We see this behavior in the simulation with 310 crossovers (Figure 10,
lines kg and kg + 1). Again, the simulation is affected by the inaccurate threshold setting.

When we look at the simulation with less crossover (Figure 11) the model (Fig-
ure 9) does not predict the maximum performance of the GA as well as before. This
is especially evident for the line kg + 1 which reaches a significantly lower solution
density in the simulation than predicted by the model. This is because there is not
sufficient crossover in this simulation to mix the ideal alleles introduced by the ran-
domly generated replacements into the population. Instead, they remain in low scoring
random individuals and are selected out the very next generation, leading to increased
information loss and the stalling effect apparent in the flattening kg + 1 line.

However, the reduced crossover also means that this simulation is less affected by
the survival of individuals with low solution density as their deleterious alleles are
not mixed through the remaining individuals to the degree that occurred when more
crossover was applied. This is evidenced by the low crossover simulation (Figure 11)
having a more rapid improvement in solution density when compared to the high
crossover simulation (Figure 10), especially when a deliberately low threshold of kg − 1
is set (compare the Figure 10, kg − 1 line to the Figure 11, kg − 1 line).
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Figure 11: The average results of 100 trials where crossover has been performed be-
tween randomly selected pairs of individuals 10 times (N = 31, L = 13, A = 6).

6 Performance in Selected Benchmark Problem

We now develop a GA utilizing these ideas and apply it to a benchmark problem
commonly used to test GAs. The algorithm has no knowledge of the optimum for
either ranking or threshold setting. The maximum schema as described by Section 5 is
used to locate the static (k0) and dynamic (kg) thresholds while the bit trap objective
function score is used to rank individuals in the population.

We examine two differently sized problems. The first of the selected benchmarks
is based on 10 concatenated 6-bit traps. The bit trap problem is a “deceptive” version
of the counting 1s problem. In the bit trap problem, the fitness of an individual is the
number of 1s it contains, unless it is all 0s, in which case the individual’s fitness is L + 1.
The problem is deceptive because the algorithm is rewarded incrementally for each 1 it
adds to individuals, but the optimum solution consists of all 0s.

The results for this small benchmark are shown in Figure 12. In the second bench-
mark, we increase the problem size to 60 concatenated 6-bit traps. Results for this larger
bit trap problem are shown in Figure 13.

The first benchmark of 10 concatenated 6-bit traps produces an L = 60 bit problem
as described by Harik (1999).4 A population size of N = 439 is used and five trials
are completed using Algorithm 2. Note that all five trials in Figure 12 approach the
maximum solution density very quickly. A total of 5,707 evaluations are completed
in the G = 13 generations required to converge to the optimum. This result compares
favorably with Harik’s result for a 4-bit trap, 40-bit problem which required 4,000

4Although Harik (1999) used 10 concatenated 4-bit traps.
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Figure 12: Five trials of a problem formed of 10 concatenated 6-bit traps. The GA has a
length of L = 60 bits and a population size of N = 439. A total of 4,390 evaluations are
completed in G = 10 generations.

evaluations and a population size of 500 with an extended compact genetic algorithm
(ECGA) achieving a similar result (0.93 of the optimum).

As an L = 60 bit problem is relatively simple, we increase the problem size from
L = 60 bits to L = 360 bit-concatenated 6-bit traps for the second benchmark (Figure 13).
In this second benchmark, 22,120 evaluations are completed in the G = 40 generations
required to converge to 0.95 of the optimum. This is an encouraging result for a problem
described by Harik as “a difficult, partially deceptive problem.”

7 Future Work

The primary challenge with the approach we have described is the ranking of individ-
uals by ideal allele content. Accurate estimation of the dynamic threshold is important
to keep the selection pressure at a high level, but this estimate will be compromised by
inaccurate ranking of the population. Hence it is important to determine the sensitivity
of the approach described by this paper to errors in the rank order. We will address this
challenge by linking the entropy of ranked populations to selection thresholds.

8 Conclusions

This paper has identified both static (k0) and dynamic (kg) selection thresholds with
k0 ≤ kg in ranked lists of individuals in a population. These thresholds are related
to the information content of the information sources used to generate replacement
individuals and the accumulation of information in the GA. By replacing individuals
ranked below the static threshold with randomly generated replacements, the need for
mutation is avoided while diversity is maintained. By replacing individuals ranked
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Figure 13: Five trials of a problem formed of 60 concatenated 6-bit traps. The GA has
a length of L = 360 bits and a population size of N = 553. A total of 5,530 evaluations
are completed in G = 10 generations.

between the static and dynamic selection threshold with randomly selected individuals
from above the dynamic threshold, selection pressure may be controlled to achieve a
balance between the rate of improvement and population diversity.

By modeling the change in a population’s solution density when subject to varying
amounts of crossover, it was shown that large amounts of crossover (or a UEDA) are
superior to insufficient crossover when the location of the thresholds is uncertain. This is
especially the case where the actual threshold is placed at, or slightly above, the optimum
selection threshold. If the actual threshold is placed below the optimum threshold, then
limited crossover provides better average performance as fewer deleterious alleles are
spread through the population.

We make two recommendations to ensure that information accumulates in a GA
and to ensure that selection pressure is controlled to achieve a balance between the
rate of improvement and population diversity: (i) replace individuals below the static
threshold with randomly generated replacements and (ii) replace individuals between
the static and dynamic selection thresholds with randomly selected individuals from
above the dynamic threshold.
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Appendix Calculating Sufficient Crossover

Our estimates of expected solution density require sufficient crossover to return the
distribution of ideal alleles in the population to a binomial distribution. This appendix
provides an estimate of sufficient crossover. The calculations performed here determine
the minimum number of crossover operations C that return a distribution of ideal
alleles in a population subject to selection to a binomial distribution. We shall consider
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only uniform crossover in the following analysis to avoid edge effects, such as defining
length bias (Spears and De Jong, 1991).

The problem is to determine the number of crossover operations C required to
change the truncated distribution pL

k+1(g, λ) with selection threshold k (Figure 3) into
the binomial distribution p(g + 1, λ) (Figure 4) by exchanging S alleles per operation.
To do this, we must first define an intermediate distribution ψc as the distribution
after c crossover operations have been performed on pL

k+1(g, λ) and before the binomial
distribution p(g + 1, λ) has been reached.

Each distribution ψc may be represented by a vector of length L + 1, where each
element of the vector represents the proportion of individuals in the population that
contain {λ|0 ≤ λ ≤ L} ideal alleles. Hence, a matrix of probabilities �c can be constructed
whereby each cell in the matrix represents the joint probability that two individuals,
one with λ1 and the other with λ2 ideal alleles, are randomly selected for crossover. This
joint probability matrix is given by �c = ψT

c ψc, where ψT
c is the transpose of the vector

ψc.
Similarly, a hyper geometric distribution5 w = w(λs |L, λ, S) exists that describes the

distribution of ideal alleles {λs |0 ≤ λs ≤ s} among S alleles in each crossed-over section
exchanged by the randomly chosen individuals (where s is the number of exchanged
ideal alleles S or λ, whichever is the least).

Again, a probability matrix W can be constructed where each cell represents the
joint probability that 0 ≤ λs ≤ s ideal alleles are among the S exchanged alleles. This
matrix is given by W = wT w.

The probability that individuals with {λ|0 ≤ λ ≤ L} ideal alleles are chosen for
crossover, and then sections containing {λs |0 ≤ λs ≤ s} ideal alleles are exchanged by
crossover, can be found by taking the Kronecker tensor product �c ⊗ W. Each cell of the
matrix �c ⊗ W represents a transition probability from the distribution ψc to another
distribution π formed by the exchange of λs ideal alleles between individuals containing
λ ideal alleles.

By constructing each of these possible π distributions, then multiplying them by the
appropriate transition probability from �c ⊗ W and summing the resulting expected
distributions E[π ], the expected distribution E[ψ1] of a single crossover operation is
produced.

Repeating the process using E[ψ1] in place of ψ0 and counting how many iterations
c are required before the intermediate �c distribution equals the required binomial
distribution p(g + 1, λ) then the sufficient number of crossover operations C can be
determined. In addition, one can compare the number of crossover operations required
for differing numbers of exchanged alleles S.

One difficulty with this approach is determining when the intermediate ψc equals
the required binomial distribution p(g + 1, λ). We calculated a mean square error
[
∑

(ψc − ψc+1)2]
1
2 and continued until this error was less than 10-9 in a single crossover

operation. The standard χ2 goodness of fit test with a confidence level of 99% (Kreyszig,
1983) was then applied to each intermediate distribution to decide when ψc equaled
the binomial distribution p(g + 1, λ) and hence identify C.

5The hypergeometric distribution models the number of ideal alleles λs in the S alleles, exchanged
without replacement from the total ideal alleles λ in a parent individual with L loci. w(λs |L, λ, S) =
( λ

λs
)( L−λ

S−λs
)

( L

S
)

.
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Figure 14: The distance between the distribution ψc and the distribution p(g + 1, λ) for
a population size of N = 31, genome length of L = 13, and alleles exchanged (S = 1 to
7) per crossover operation.

Figure 14 shows the change in the distance between the distribution ψc and the
distribution p(g + 1, λ) per crossover operation for the six cases where {S|S ∈ Z+ : 1 ≤
S ≤ L/2}. As illustrated by Figure 14, the most effective way to redistribute ideal alleles
in a population altered by selection to a randomized (binomial) distribution is to use
crossover section lengths S = L/2. The distribution is sufficiently close to a binomial
distribution, as determined by a 99% χ2 test, after 5N crossover operations (where N

is the population size). Therefore, sufficient crossover occurs at approximately C = 5N

for crossover section lengths of L/2.
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