
Detection of proteoglycan loss from articular
cartilage using Brillouin microscopy, with
applications to osteoarthritis
PEI-JUNG WU,1,2 MARYAM IMANI MASOULEH,3 DANIELE DINI,3

CARL PATERSON,2 PETER TÖRÖK,2,4 DARRYL R. OVERBY,1,* AND
IRINA V. KABAKOVA2,5,6

1Department of Bioengineering, Imperial College London, London, UK
2Department of Physics, Imperial College London, London, UK
3Department of Mechanical Engineering, Imperial College London, London, UK
4Division of Physics & Applied Physics, Nanyang Technological University, Singapore, Singapore
5 School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, Australia
6irina.kabakova@uts.edu.au
*d.overby@imperial.ac.uk

Abstract: The degeneration of articular cartilage (AC) occurs in osteoarthritis (OA), which
is a leading cause of pain and disability in middle-aged and older people. The early disease-
related changes in cartilage extra-cellular matrix (ECM) start with depletion of proteoglycan
(PG), leading to an increase in tissue hydration and permeability. These early compositional
changes are small (<10%) and hence difficult to register with conventional non-invasive imaging
technologies (magnetic resonance and ultrasound imaging). Here we apply Brillouin microscopy
for detecting changes in the mechanical properties and composition of porcine AC. OA-like
degradation is mimicked by enzymatic tissue digestion, and we compare Brillouin microscopy
measurements against histological staining of PG depletion over varying digestion times and
enzyme concentrations. The non-destructive nature of Brillouin imaging technology opens new
avenues for creating minimally invasive arthroscopic devices for OA diagnostics and therapeutic
monitoring.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

AC is a highly organized connective tissue, comprising a single type of specialized cell - the
chondrocyte - within an ECM [1]. The structure and arrangement of cartilage components are
organized to serve the tissue’s main function of load bearing, resilience to mechanical wear
and redistribution of stresses in order to protect the underlying bone. A variety of complex
interactions between ECM and the chondrocytes maintain a fine balance between AC synthesis
and degradation [2]. Matrix-degrading molecules, including matrix metalloproteinases (MMPs)
and enzymes such as aggrecanase, are produced by chondrocytes under normal and pathological
conditions. Abnormal load distribution, accelerated mechanical wear of the cartilage surface
and overproduction of matrix-degrading components all can trigger pathological processes in
chondrocytes and ECM, leading to disease and irreversible degradation of articular cartilage [1–3].
The main components of articular cartilage are water (70% to 85% of weight) and the ECM,

which is composed of type II collagen (15%-20% of weight) and proteoglycans (PGs) (3%-10%
of weight) [4]. The protein cores of PGs are lined by covalent attachments of glycosaminoglycans
(GAGs), which confer negative charge due to the abundance of carboxyl and sulfate groups. This
property fixes PGs to the ECM and attracts cations, such as sodium, which then draw water into
the tissue to generate the swelling pressure of cartilage. The ECM network generates a resistance
to interstitial fluid flow, which determines the rate of tissue deformation. Thus the structure of

                                                                      Vol. 10, No. 5 | 1 May 2019 | BIOMEDICAL OPTICS EXPRESS 2457 

#353293 https://doi.org/10.1364/BOE.10.002457 
Journal © 2019 Received 30 Nov 2018; revised 21 Feb 2019; accepted 22 Feb 2019; published 17 Apr 2019 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.10.002457&amp;domain=pdf&amp;date_stamp=2019-04-17


ECM provides AC its load bearing function [6, 7].
OA is a painful joint disease associated with breakdown of articular cartilage and underlying

bone [2]. The progression of OA is classified into three stages: 1) proteoglycan degradation
followed by degradation of type II collagen, 2) the fibrillation and erosion of the cartilage surface,
and 3) the onset of the synovial inflammation [4]. This process is schematically illustrated in
Figure 1 for healthy cartilage (a), early (b) and late (c) stages of OA. The progression starts from
the molecular level (PGs depletion), evolves to the architectural changes within ECM (collagen
network erosion) and ends up at irreversible structural and functional damage.
The PG depletion leads to increased tissue permeability and decreased fixed charge density

that reduces the load-bearing function of AC. The increased permeability, in turn, reduces the
capability of the fluid to support load and causes higher stresses in the ECM, hence triggering
more mechanical damage [6]. Because the progression of AC degradation often occurs over
several years, detection of OA during the early stages of the disease is crucial and limits disease
severity [4].
Conventional approaches to OA diagnostics include qualitative grading techniques based

on arthroscopic and x-ray images [8]. These techniques are sensitive to late stages of OA
when cartilage thinning and visible lesions are apparent (Fig. 1(c)). Quantitative high-
resolution magnetic resonance imaging (MRI) [4, 9] and atomic force microscopy (AFM)
nano-indentation [10] have demonstrated ability to detect early stages of OA, however simpler,
cheaper and more reliable solutions are still required, in particular for in vivo and in situ
diagnostics.

Fig. 1. Representation of articular cartilage composition at three stages of OA progression:
(A) healthy cartilage, (B) early stage OA (C) late stage OA (image is adopted from [4]).

Brillouin microscopy (BM), a non-destructive and label-free technique [11], has been suggested
for biomechanical assessment of biomaterials [12], including tendons, ligaments and cartilage [13].
BM is based on optical detection of acoustic waves inside the material and can relate the speed
of sound of these waves to mechanical parameters such as longitudinal modulus, compressibility
and viscosity [14, 15]. The spatial resolution of this technique is similar to that of confocal
microscopy and can reach sub-micron scale, enabling measurements of cellular and sub-cellular
structures [16, 17]. We have recently shown that BM measurements of hydrated materials are
highly sensitive to hydration level [18]. Since cartilage hydration is linked to PG content, we
hypothesize that BM can be used to monitor PG depletion at the early stage of OA disease.

Here we apply BM to explore the relationship between PG depletion and changes in Brillouin
frequency shift in porcine articular cartilage exposed to enzymatic treatment. We compare
BM results against histological staining of PG and observe qualitative agreement between
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histology and Brillouin microscopy measurements. Future developments in flexible Brillouin
fiber probes [19] fitted within traditional or novel arthroscopy devices can lead to minimally
invasive diagnostics and monitoring of early-stage OA.

2. Methods

2.1. Sample preparation

10 mm diameter biopsy punches containing articular cartilage and underlying bone were obtained
from 2 porcine shoulder joints (5 punches per joint, including one for control sample and 4 for
digestion experiment) sourced from a local abattoir within 24 hours of slaughter. Punches were
incubated in 0.1 or 1 mg/ml trypsin at 37oC for 1-4 hours. After enzymatic digestion all 10
samples were washed in phosphate buffered saline (PBS) to quench the digestion process and
sectioned in 2 equal parts using a surgical scalpel along the plane perpendicular to the articular
surface. One half of the punch was used for Brillouin microscopy measurements and the other
half for histology. All samples were soaked in PBS for storage and kept refrigerated until the
measurements.

2.2. Histology

For histology measurements the tissues were fixed in 10% natural buffer formalin (NBF) for 48
hours straight after digestion. Following fixation, the samples were decalcified with 10% formic
acid, dehydrated through a graded ethanol concentration (50%, 70%, 90% and 100%), cleared
using histoclear for 10 min, infiltrated and embedded in paraffin wax. 0.001% Fast Green stain
was applied for 6 min to color the bone and 0.1% Safranin O was used to stain PGs (2 min).
Five-micrometer-thick sections were cut using the microtome (Leica).

2.3. Brillouin microscopy

Brillouin microscopy was performed on fresh samples within 24 hours after enzymatic treatment.
Samples were placed in a glass-bottom dish with the articular surface facing down and immersed
in PBS. A spacer was inserted between the sample and the bottom of the dish to prevent direct
contact of the sample and the dish. The construction of the Brillouin microscope was analogous
to previously reported [18] and consisted of a single longitudinal mode laser (Cobolt, 561 nm,
30 mW), a confocal microscope, an interferometric filter to reduce unwanted peaks at the laser
frequency and a 1-stage virtually-imaged phase array (VIPA) spectrometer [20,21]. An objective
lens with numerical aperture NA=0.5 was used to obtain a lateral and axial spatial resolution of
approximately 1 and 3 µm, respectively. The choice of moderate numerical aperture is to avoid
possible spectral broadening of Brillouin peaks characteristic of imaging with high numerical
aperture objectives (NA>0.7) [22].

The sample was positioned on an X-Y-Z motorized stage. By moving the sample in the vertical
direction, we obtained a linear Z-scan of Brillouin frequency shift in the direction perpendicular
to the cartilage articular surface. Each Z-scan started approximately 100 µm lower than the
cartilage articular surface and went upwards with steps of 2, 4, or 10 µm each, and five spectra
were taken for each step. We also performed Brillouin microscopy measurements in planes
parallel to Z axis (YZ-scans). The step size for movements along Y and Z axis was chosen to be
10 µm/step.

Raw Brillouin spectra were processed using a custom-built MATLAB (MathWorks) code.
Briefly, two brightest diffraction orders were chosen from each image collected by the camera.
The images were then converted to the frequency coordinate by least-square fitting using a
quadratic function [18]. The Brillouin frequency shift was obtained by averaging five spectra
taken from the same spatial location and fitted with a Lorentzian function. The latter took into
account the linear background from the Rayleigh scattering.

                                                                      Vol. 10, No. 5 | 1 May 2019 | BIOMEDICAL OPTICS EXPRESS 2459 



The output of the Brillouin microscopy measurement gives the frequency shift between the
Rayleigh light (elastically scattered) and Brillouin light (inelastically scattered). This frequency
shift, called Brillouin frequency shift Ω, is equal to the frequency of the longitudinal acoustic
mode inside the material, and in our experimental geometry it is proportional to the square root
of the longitudinal elastic modulus

Ω =
2nπ
λ

√
M
ρ
, (1)

where n is the refractive index of the medium, λ is the wavelength of the laser, M is the material’s
longitudinal modulus and ρ its density [23].

2.4. Statistical analysis

A two-way mixed ANOVA was used to test the effects of trypsin concentration and digestion
time on Brillouin measurements (SPSS Advanced Statistics module, version 20; IBM). The
within-subject factor was defined to be Brillouin relative frequency shift, whereas between-subject
factors were defined as the trypsin concentration (0.1 mg/ml or 1 mg/ml) and digestion time.
After the two-way mixed ANOVA, we used a post-hoc univariate test to detect significantly
different Brillouin measurements between concentrations at each time point.

3. Results

3.1. Control measurements prior enzymatic digestion

The biophysical structure of cartilage varies spatially in lateral and axial directions [4]. To study
natural variation in Ω related to the cartilage anisotropy, we first measured Ω along the articular
surface of the untreated, "control" AC sample. Figure 2 presents the results of this test for (a)
varying step size of Z-scans and (b) varying position along the articular surface.

The results in 2(a) show no difference in Ω depending on the step size, as expected. The
penetration depth for these measurements was found to be approximately 100 µm. The origin of
the Z-axis for these measurements has been chosen arbitrarily inside the PBS solution, but was
the same for each scan and sufficiently close to the articular surface.

The fairly small penetration depth can be explained by the loss of light due to multiple scattering
events in the turbid cartilage tissue. Improving microscope sensitivity, for example by adding
extra filters that reduce Rayleigh light or by switching to a different type of spectrometer (e.g. a
tandem Fabry-Perot scanning interferometer [24]) will enable detection of Brillouin signals from
deeper layers. Currently, however, the shallow penetration depth limits analysis of the outermost
layers of the cartilage structure, including the superficial and tangential zones.
Changing the imaging location resulted in no significant change in the trend of Ω across the

articular surface, with the standard deviation at each scan depth Z being well within 0.06 GHz
(Fig. 2 (b)). Locations 1-4 in Fig. 2(b) were approximately 2 mm apart from each other. These
data indicate relatively little variability in the Z-dependence of Ω across the cartilage surface.
All measurements presented in Figure 2 (a-b) demonstrate a smooth transition in Ω from

7.2 ±0.03 GHz (in PBS solution) to approximately 7.6 ±0.03 GHz (in cartilage). The existence of
a smooth transition in Ω rather than a step function, intuitively expected at the PBS-AC interface,
can have several possible explanations, including gradients in tissue density, refractive index or
PG concentration possibly associated with experimental conditions. However, this should not
affect our study as we are looking for relative changes in Ω before and after trypsin digestion.

3.2. Trypsin treatment

Articular cartilage samples were treated with 0.1 and 1 mg/ml trypsin solution and Ω was
measured as a function of depth after 0 (control), 1, 2, 3 and 4 hours of enzymatic digestion.
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Fig. 2. Brillouin microscopy scans in the direction perpendicular to the articular surface of
cartilage (Z-scans) for: a) different step sizes of 2, 4 and 10 µm and b) different locations
along the articular surface.

Results of BMmeasurement for the two treatment scenarios are shown in Figure 3 for the absolute
value of Ω (a-b) and the relative change in Ω compared to the control sample (c-d).

For samples treated with 0.1 mg/ml trypsin solution (Fig. 3(a)), the maximum variation in
Ω inside the cartilage (Z>100 µm) is within 0.09 GHz, slightly higher than the measurement
uncertainty for control samples (0.06 GHz). There is, however, no clear dependency on treatment
time for 0.1 mg/ml digestion as evident from Figure 3(d). The relative Brillouin frequency shift
fluctuates about 0 GHz, suggesting that there are no appreciable changes in Ω compared to the
control sample during the 4 hour digestion period. A higher variability in Ω for locations inside
the digested cartilage compared to those in the control sample can be explained by stronger light
scattering in the digested tissue. We hypothesize that micro-scale damage induced by enzymes
leads to irregularities in the cartilage structure and hence stronger elastic scattering of light inside
the tissue can be expected. The increase in light scattering, in turn, results in higher signal
attenuation, weaker collected signal and a decrease in the signal-to-noise ratio, explaining the
larger uncertainty in the measurements of the digested versus control tissue.
For samples treated with 1 mg/ml trypsin, we observed a clear decrease in the maximum Ω

inside the cartilage tissue with increasing digestion time (Fig. 3(b) and 3(d)). With increasing
time of digestion, the relative Brillouin frequency shift between the trypsin treated cartilage and
the control sample grows to a maximum of 150 ± 0.045 MHz as detected after t=4 hours of
treatment (Figure 3(d)). This change exceeds the measurement uncertainty and hence is likely
related to the structural and compositional changes taking place during the digestion process.
We applied a two-way mixed ANOVA to further examine the relationship between enzyme

concentration and digestion time (Section 2.4). There was a statistically significant interaction
between the two concentrations and time (p<0.0005). The post-hoc test confirmed a statistically
significant difference in the relative Brillouin shift at the third (p=0.013) and the fourth hour
(p<0.0005) with 1 mg/ml trypsin solution.

3.3. Histology results

To confirm that the change inΩ is associated with a loss of solid ECM components, we performed
histological assessment of PGs and GAGs on porcine AC following exposure to trypsin (see
Section 2.2 for details). Histology was performed using Safranin O that stains polyanionic GAGs.

                                                                      Vol. 10, No. 5 | 1 May 2019 | BIOMEDICAL OPTICS EXPRESS 2461 



Fig. 3. Brillouin microscopy of digested cartilage samples using a) 0.1 mg/ml and b) 1 mg/ml
trypsin solution. Z-scan of the relative Brillouin frequency shift compared to the control
sample is demonstrated in c) and the average relative shift measured inside the cartilage at
Z>150 µm in d). Asterisks signify time points with statistically significant variation in the
relative frequency shift (see Section 2.4).

The histology results (Figure 4) show a significant reduction in Safranin O staining already within
1 hour of digestion treatment. The reduction in PG labeling was most apparent at the articular
surface. With increasing digestion time, PG depletion extended towards the cartilage-bone
interface. Since the stain targets GAG molecules in PG component of the cartilage ECM, we can
connect the decline in stain concentration with progressive depletion of GAG molecules as the
result of trypsin digestion. The GAG depletion would also lead to higher tissue permeability
and greater water mobility within the tissue. This could account for the reduction in Ω that we
observed for enzyme-digested samples, consistent with our hypothesis.

3.4. Trypsin diffusion uniformity assessment

To assess the uniformity of trypsin diffusion into the cartilage, we partially digested cartilage
punches attached to the bone in a 1 mg/ml trypsin solution for 1 hour. Then we separated the
cartilage tissue from the bone and cut a tissue section sized around 10mm x 2mm x 2mm in the
direction perpendicular to the articular surface. The 2D map of Ω collected from 140µm x 28µm
area of this section is presented in Figure 5(a). Sectioning the tissue along Z-axis enables us to
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Fig. 4. Safranin O staining of articular cartilage reveals progressive GAG depletion after 1,
2, 3 and 4 hours of trypsin (1 mg/ml) digestion versus control sample (left).

map Brillouin signal from deeper cartilage layers that are normally unreachable due to shallow
penetration depth of the measurement technique.
During imaging the section was immersed in PBS to avoid tissue drying, hence Ω=7.2 GHz

at Z=0 µm and Z>120 µm corresponds to PBS solution. The direction of Z axis in this graph
is from the articular surface towards the bone. Following this direction, we notice that Ω first
rises to about 7.6 GHz, then plateaus at this value and finally grows to 7.8 GHz at z=100 µm,
before dropping back to the initial value of 7.2 GHz (PBS). This dynamics is consistent for any
chosen position along Y axis, suggesting that the digestion process was relatively uniform across
the entire sample and that the superficial layers of cartilage exhibit stronger GAGs depletion
than the deeper layers. This is, perhaps, not surprising if to take into account that the digestion
treatment was applied to the whole sample with the attached bone. Thus the diffusion of trypsin
was directed from the articular surface rather than from the subchondral bone (Fig. 1).

Fig. 5. Brillouin map of an articular cartilage section (140µm x 28µm), digested in a 1
mg/ml trypsin solution for 1 hour: a) full data and b) line representation with scans taken at
4 µm steps in Y-direction.

4. Discussion

The exact changes in structural and biochemical composition of articular cartilage during the
onset of OA disease are still the subject of exploration and scientific debate with different theories
currently being suggested. The consequences of PG depletion depend largely on the combination
of factors, e.g. physiological load, and more crucially differ from in vivo to ex vivo studies.
We note that the relationship between PG depletion and the tissue hydration explored in this
article presents only one of possible scenarios of the tissue transformation, although the one
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being commonly discussed [4, 5]. In addition, it is thought that articular cartilage can undergo
self-restoration at the early stages of OA, but the conditions to promote this healing process are
still largely unknown [3].

New assessment methods capable of detecting small variations in the biochemical and structural
composition of cartilage ECM can be extremely valuable in finding and refining the recipe for
maintaining healthy articular cartilage. One of the markers that signals about potential problem
in cartilage health is increase in the ECM water content [5]. It has been shown using quantitative
MRI imaging, specifically T2 mapping, that increase of ECM permeability to water causes an
elevation in both T2 relaxation time and the amount of free water in AC [4].
Previously we have found that BM is highly sensitive to the biomaterial’s water content and

have suggested that BM technique has potential in assessment of the local hydration level in
tissues and cells [18]. In a two-phase material consisting of a liquid (ε) and a solid (1 − ε)
components, with liquid component being dominant, the aggregate longitudinal modulus can be
approximately described by a relationship

1
M
=

ε

Ml
+

1 − ε

Ms
, (2)

where Ml,s are the longitudinal moduli of liquid and solid parts, respectively [18]. Since cartilage
consists of mostly liquid phase (70-85 %), Eq. (2) can be applied in the analysis of BM results
measured on control and digested cartilage samples.

In the approximation of high liquid content and the solid component being less compressible
than the liquid or Ms

Ml
>> 1, we arrive to an approximate relationship for the changes in the

longitudinal modulus due to the depletion of solid component

Ω2

Ω2
0
=

M
M0

≈
ε0
ε
. (3)

Here Ω0, M0 and ε0 correspond to Brillouin frequency shift, the longitudinal modulus and the
hydration level of the control AC, whereas Ω, M and ε are parameters of the digested tissue.
This approximation is valid for articular cartilage as dry ECM network was found to have
significantly higher longitudinal modulus (Ms = 13.4 GPa) than the bulk modulus of water
(Ml = 2.2 GPa) [13]. From Figures 3 (d) and 3 (e) we conclude that the maximum detected
changes in Ω after 4 hours of digestion with 1 mg/ml trypsin is 150 MHz. According to Eq.
(3) this suggests a relative increase in free water content of approximately 4 %, quite a realistic
estimate of the liquid/solid fraction changes during the digestion process. It is worth noting, that
current BM setup has the uncertainty of approximately 60 MHz, associated with the instrument
noise level and the efficiency of Rayleigh peaks filtering, thus changes in free water content of
approximately 2 % can be detected using our system. Such a precision is almost an order of
magnitude better than that achievable with both quantitative MRI [4] and AFM nano-indentation
methods [10].

It is worth noting that the current model governed by Eq. (3) is a rather simplified picture of the
digestion process. First, the changes in the cartilage content may lead to changes in the refractive
index and the density of the cartilage, which also will affect the measurement of Ω according
to Eq. (1). The refractive index can be assessed using optical coherence tomography [25] or
image reconstruction techniques via confocal microscopy [26]. Although a significant variation
in the refractive index across tissues from different specimen or depth-dependent index variation
has been reported [26], the digestion procedure using trypsin has shown no significant effect
on the tissue’s refractive index. This suggests that the variation in local hydration may be the
predominant factor influencing Brillouin microscopy measurement.
Secondly, the cartilage has clearly a many-phase structure and includes not only free liquid

and solid phases, but also bound water, molecular and fragmented products released as the result
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of digestion procedure. Thus, a more sophisticated model, which takes into account the latter
factors, is required to predict the system behaviour accurately.

5. Conclusion

In conclusion, we have applied Brillouin microscopy for studying the relationship between the
tissue’s longitudinal modulus and the depletion of a solid component of the ECM in porcine
AC exposed to enzymatic digestion. Trypsin treatment of cartilage tissue leads to depletion
of GAG molecules and increased tissue permeability mimicking biochemical, compositional
and structural changes in early stages of OA disease. We have observed qualitative agreement
between BM measurements and histology analysis of samples digested with 1 mg/ml trypsin
over 1-4 hours. The maximum change of 150 MHz in Brillouin frequency shift could be related
to 4 % variation in the ratio between liquid and solid phases of the ECM that is likely associated
with alterations in the mobility of water in its free versus bound states with PGs. This suggests
that BM is capable of detecting a few percent variation in local content of free water, being
at least an order of magnitude higher in sensitivity compared to quantitative MRI technique.
Combining Brillouin imaging with modern arthroscopy can provide a technology resulting in a
new minimally-invasive diagnostic tool for early-stage OA. Further studies, however, especially
using human tissues and in vivo clinical studies are needed to validate this hypothesis.
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