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Abstract 

Due to the impact of methane, carbon dioxide and nitrous oxide on global warming, the 

quantity of these greenhouse gases (GHG) emissions from municipal wastewater treatment 

plants (WWTPs) has attracted more and more attention. Consequently, GHG emssions from 

the two popular treatment technologies: anaerobic/ anoxic/ oxic (AAO) process and 

sequencing batch reactor (SBR) should be properly identified and discussed toward the 

current situation in developing countries. Direct and indirect carbon dioxide (with and/or 

without including in Intergovernmental Panel on Climate Change (IPCC) report) are all 

discussed in this article. This literature study observed that a quantity of total carbon dioxide 

emissions from SBR (374 g/m3 of wastewater) was double that of AAO whilst ten per cent of 

these was direct carbon dioxide. Methane emitted from an SBR was 0.50 g/m3 wastewater 

while 0.18 g CH4/m3 wastewater was released from an AAO. The level of nitrous oxide from 

AAO and SBR accounted for 0.97 g/m3 wastewater and 4.20 g/m3 wastewater, respectively. 

Although these results were collected from different WWTPs and where influent was in 

various states, GHGs emitted from both biological units and other treatment units in various 

processes are significant. The results also revealed that aerated zone is the major contributing 

factor in a wastewater treatment plant to the large amount of GHG emissions. 

Keywords: Greenhouse gases (GHG) emissions, wastewater treatment plants, anaerobic/ 

anoxic/oxic process, sequencing batch reactor. 
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1. Introduction 

Many recent studies have revealed that wastewater sanitation operations are related to global 

warming and climate change (Koutsou et al., 2018). Greenhouse gases (GHG) emanating 

from the waste and wastewater sector account for 2.8% of GHG (IPCC, 2007). While they 

are an important part of wastewater conservation strategy, wastewater treatment plants 

(WWTPs) contribute to GHG emissions (Koutsou et al., 2018) and global warming. GHG 

emissions from WWTPs including methane, carbon dioxide and nitrous oxide are categorized 

as direct GHG emissions and indirect GHG emissions (Polruang et al., 2018). Direct GHG 

emissions are emitted from biological treatment processes. Carbon dioxide is major released 

from microbial respiration activities while nitrous oxide is fluxed from denitrification, 

nitrification stages, and methane mainly comes from anaerobic digestion (Zhang et al., 2017). 

Indirect GHG emissions consist of internal and external emissions. The indirect internal gases 

are related to power consumption (Parravicini et al., 2016), or thermal energy, and the 

indirect external emissions are from activities outside the WWTPs (Mannina et al., 2016). 

The most significant GHG emissions are emitted from electricity and biological treatment, 

while indirect emissions from construction materials, chemicals and transports account for 

6%, 0.18% and 0.4% of the total GHG, respectively (Chai et al., 2015).      

The combined effect of different gases in the differing times is estimated by using the global 

warming potential (GWP) and referenced to carbon dioxide (IPCC, 2014a). Methane is a 

significant contributor to climate change, equivalent to 28 times of carbon dioxide over a 

100-year time horizon based on the Fifth Assessment Report (IPCC, 2014b). More than 70% 

of methane emissions originate from human activities (Augenbraun et al., 1997). Methane 

emissions from wastewater treatment are estimated to increase by 1.3 times between 1970 

and 2012 (the equivalent 6.6 to 8.8 billion tons of carbon dioxide), especially in the rapidly 

developing countries of Africa, the Middle East, Central and South America (Janssens-
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Maenhout et al., 2017b). Janssens-Maenhout et al. (2017a)  reported that wastewater 

treatment contributed 37 million tons of methane, accounting for more than 55% of global 

methane emissions from the waste sector in 2012 (Figure 1). Methane gas is generated as a 

by-product of anaerobic digestion in sewage treatment systems. It can be collected and used 

as an energy source inside the WWTPs, and indirectly reduces carbon dioxide emissions 

(Oshita et al., 2014). During the anaerobic digestion stage of the treatment process, methane 

gas is emitted, which amounts to 97.6% of the total methane from the WWTP (Préndez et al., 

2008).  

 

Fig 1. Global Methane Emission by sectors in 2012, source (Janssens-Maenhout et al., 

2017a) 

Nitrous oxide is an important GHG, which has a GWP of 265 carbon dioxide equivalents and 

contributes significantly to the GHG footprint of WWTPs (IPCC, 2014b). In some cases, the 

quantity of nitrous oxide emissions accounts for over 88% of the total greenhouse gases 

released from the WWTPs (Daelman et al., 2013). The nitrous oxide emissions from 

wastewater management accounts for about 26% of the total GHG emitted from the water 
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sector (Frison et al., 2015). Centralised aerobic WWTPs with nitrification and denitrification 

processes produce small but distinct amounts of nitrous oxide (IPCC, 2006). Estimates of 

global nitrous oxide emissions from wastewater are incomplete and are based only on human 

sewage treatment. However, global nitrous oxide emissions indicate an increase from 153.5 

kiloton (kt) of nitrous oxide to 315.7 kt nitrous oxide between 1970 and 2012 as shown in 

Figures. 2 (Janssens-Maenhout et al., 2017a).  

 

Fig 2. Total global N2O emission and N2O emission from domestic wastewater, source 

(Janssens-Maenhout et al., 2017b) 

Carbon dioxide emissions from WWTPs relate to energy consumption, chemical usage and 

microbial activities (Bao et al., 2015). Direct carbon dioxide emissions from biological 

wastewater treatment processes are a short-lived biogenic carbon type and do not contribute 

significantly to total GHG emissions (IPCC, 2014b). However, the results show that current 

GHG accounting guidelines, which assume that all carbon dioxide emissions from WWTPs 

are biogenic, may lead to underestimation of total GHG emissions (Law et al., 2013). Indirect 

carbon dioxide is generated from energy and chemical consumption. Therefore, carbon 

dioxide emissions are assessed based on the energy demand of the WWTPs. Some studies on 
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carbon dioxide emissions from WWTPs focus on both direct and indirect carbon dioxide 

emissions (Campos et al., 2016). Some studies ignore the notion that carbon dioxide 

emissions from wastewater are of biogenic origin and assert that both non-biogenic and 

biogenic sources are significant in mitigating emissions (Kosse et al., 2018b). The studies 

showed that 25% of the dissolved organic carbon in wastewater is fossil carbon (Chai et al., 

2015) and more than 10% of the carbon dioxide emissions from WWTP are derived from 

fossil sources which contributed short-term organic carbon dioxide, and to the unaccounted 

for GHG (Schneider et al., 2015). The fossil carbon component are emitted via effluent 

discharge, along cwith biosolids and aerobic biodegradation (Law et al., 2013). All sources of 

carbon dioxide should be taken into account when estimating the quantity of GHG emissions 

from WWTPs (Garrido-Baserba et al., 2015). There is a global trend of increasing carbon 

dioxide emissions from wastewater treatment, as in Figure 3. 

 

Figure 3. Global sewage CO2 production (Rosso et al., 2008) 

In recent years, biological wastewater treatment is favoured over chemical treatment 

(Mulkerrins et al., 2000). Biological sewage treatment is an effective process to remove 

organic matter and nutrients to discharge and reuse, however, contributes significant sources 
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of GHG emissions (Spinelli et al., 2018). The performance of biological wastewater 

treatment process is based on the activity of microbial for nitrogen and phosphorus removal. 

According to the principles of biological wastewater treatment, the amount of GHG 

emissions from WWTPs is related to the type of treatment process (Yan et al., 2014). Both 

anaerobic/ anoxic/ oxic (AAO) and sequencing batch reactor (SBR) are popular biological 

nutrient removal systems in many developing countries where wastewater plants’ odour is a 

significant problem. This situation not only affects the community’s health but also 

contributes to global warming as the result of the greenhouse effect. The quantity of GHG 

emissions from WWTPs was calculated based on on-site and off-site gases. The on-site GHG 

emissions are collected from the biological treatment process, sludge treatment area and 

biogas combustion activities. The off-site gases emissions from energy consumption; sludge 

combustion, disposal and reuse and wastewater discharge. The quantity of GHG emissions 

from biological wastewater treatment processes tends to increase annually and contributes to 

total GHG emissions.  

Only a few studies on GHG emissions from both AAO and SBR WWTPs measure the 

volume of GHG emissions calculated or identify the main emissions (Chai et al., 2015; Ren 

et al., 2015). Certain studies focused solely on specific emissions, such as methane (Liu et al., 

2014), nitrous oxide (Massara et al., 2017) or carbon dioxide (Kosse et al., 2018b). Several 

factors affecting the emissions have been reported and studied. Although various 

quantification methods were applied, there is a high degree of uncertainty. Due to the 

variation in the results, it is difficult to determine the relationship between these factors and 

the quantity of GHG emissions through the existing estimation methods. None of the studies 

indicated the overall impact of these factors in respect to total GHG emissions from 

biological treatment processes. The limitations of the existing measurement methods and the 
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relationship between these factors makes it difficult to develop effective mitigation strategies 

for GHG emissions from WWTPs.  

This review article critically analyses the occurrence of GHG emissions during the biological 

treatment process and compares the relative quantities of methane, carbon dioxide and nitrous 

oxide emissions from both AAO and SBR. The article shows the need for future research on 

determining the indicators that influence total GHG emissions and the relationship between 

these indicators.  

2. Methodology 

To analyse the impacts of WWTPs by reviewing the quantity of GHG emissions, the paper is 

structured as follows: the next section (Section 3) presents the overview of GHG emissions 

from two typical wastewater treatment processes namely the Anaerobic – Anoxic – Oxic 

(AAO) and the Sequencing Batch Reactor (SBR). Section 4 includes the evaluation of 

estimation methods in the reviewed papers and challenges in investigating the impact factors 

that influence the volume of GHGs emitted. The future research gives some directions to 

build up the strategies for mitigating GHG emissions from WWTPs. The last section (Section 

5) is dedicated to the conclusion. 

3. GHG emissions from two common wastewater treatment processes 

There are numbers of studies evaluated GHG emissions from WWTP. The papers, which 

indicated the volume of GHG emissions from AAO and/or SBR processes, were selected to 

reviewed in this study, as can be seen in Table 1. 

Table 1. Articles include in the review and main parameters 

References Type of 

treatment 

WWTP capacity 

/ Influent 

GHG Collecting/ 

Quantifying 
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characteristic  method 

(Kampschreur 

et al., 2008) 

SBR Laboratory 

scale 

N2O Micro-sensor/ 

Formulation  

(Foley et al., 

2010) 

SBR 

AAO 

137 (ML d-1) 

25 (ML d-1) 

N2O Gas hood/ Gas 

chromatograph 

(Law et al., 

2011) 

SBR Laboratory 

scale 

N2O Micro-sensor/ 

Formulation  

(Wang et al., 

2011) 

AAO 3×105 m3 day-1 CH4 Gas hood/ Gas 

chromatograph 

(Ren et al., 

2013) 

Reverse AAO 5×104 m3 day-1 N2O, CH4 Gas hood/ Gas 

chromatograph 

(Rodriguez-

Caballero et al., 

2013) 

SBR Laboratory 

scale 

N2O Micro-sensor/ 

Gas analyser  

(Sun et al., 

2013a) 

SBR 

AAO 

8×104 m3 day-1 

5×105 m3 day-1 

N2O Gas hood/ Gas 

chromatograph 

(Sun et al., 

2013b) 

SBR 8×104 m3 day-1 

 

N2O Gas hood/ Gas 

chromatograph 

(Liu et al., 

2014) 

SBR 

AAO 

8×104 m3 day-1  
 

5×105 m3 day-1 

CH4 Gas hood/ Gas 

chromatograph 

(Sun et al., 

2014) 

SBR 8×104 m3 day-1 

 

N2O Gas hood/ Gas 

chromatograph 

(Yan et al., 

2014) 

AAO 23×104 m3 day-1 

 

N2O, CH4, CO2 Gas hood/ Gas 

chromatograph 

(Bao et al., SBR COD 414 mg/L CO2 Gas hood/ Gas 
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2015) AAO COD 397 mg/L chromatograph 

(Frison et al., 

2015) 

SBR 70000 PE N2O, CH4, CO2 Gas hood/ Gas 

chromatograph 

(Ren et al., 

2015) 

AAO 3×105 m3 day-1 N2O, CH4, CO2 Gas hood/ Gas 

chromatograph 

(Toor et al., 

2015) 

SBR Laboratory 

scale 

N2O Gas hood/ Gas 

chromatograph 

(Bao et al., 

2016) 

SBR 230.000 PE N2O, CH4, CO2 Gas hood/ Gas 

chromatograph 

(Marques et al., 

2016) 

SBR 48.000 PE N2O Gas hood/ Gas 

chromatograph 

(Wang et al., 

2016) 

AAO 200.000 PE N2O Gas hood/ Gas 

chromatograph 

 

3.1. AAO process 

The AAO process is one of the most popular biological nutrient removal techniques, and 

consists of an anaerobic stage followed by an anoxic and oxic stage, where large amounts of 

GHG are emitted under various conditions. The AAO process requires a combination of 

anaerobic tanks, anoxic tanks and oxic tanks, with recirculation from the oxic tank to the 

anoxic tank for nitrogen and phosphorus removal. The treatment process consists of three 

steps. Firstly, the influent return activated sludge flows into the anaerobic tanks. Secondly, 

the wastewater flows into anoxic tanks with propellers to control water flow, where 

denitrification and nitrogen removal occur. Thirdly and finally, wastewater enters the oxic 

tanks via aeration equipment. In the initial anaerobic tanks, the organic substrate is 

sequestered by phosphorus accumulating bacteria under anaerobic condition. This results in 
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low or no organic substrate available for denitrifiers in anoxic tank, and the denitrification 

performance of the AAO process is poor (Fang et al., 2016). A study conducted over 153 

WWTPs involving eight technologies, that is conventional activated sludge, anoxic-oxic, 

anaerobic-anoxic-oxic, oxidation ditch, sequencing batch reactor, biological filter, biological 

contact oxidation, and membrane bioreactor. AAO emerged as having the second best 

efficiency in term of technologies investment, energy consumption, pollutant removal and 

GHG emissions (Zeng et al., 2017). When comparing conventional activated sludge plants of 

the same size, with the same volume of treated wastewater per day, the AAO plants have a 

similar level of investment, but less electricity input. Furthermore, the AAO plants could also 

achieve the greater removal of pollutants, with lower chemical oxygen demand (COD) and 

total phosphorus (TP) and with less methane and nitrous oxide generated.     

a. Methane emissions 

One of the first studies that measured the quantity of direct methane gas emissions emitted 

from the treatment process was undertaken in 1993 (Czepiel et al., 1993). The main source of 

methane emissions is the sludge line units, which contribute 72% of total methane released 

from a WWTP. The remaining emissions are from the biological reactors (Campos et al., 

2016). Previous experiments showed that methane emissions occur in all processing units 

(Liu et al., 2014). Wang et al. (2011) measured methane from each processing unit of Jinan 

WWTP in China, which adopts AAO process treatment. The capacity of Jinan WWTP is 

3×105 m3 day -1 with serving size population of about 1,500,000. The number of sampling 

points was determined due to the dissolved oxygen (DO) change and the water surface area. 

In the aerated area, which includes aerated grit chambers and oxic tanks, a 40 L polyethene 

bag was used to measure methane emission. Methane emitted from remaining treatment units 

in non-aerated places was collected by flux hood technique. The total result of annual 
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methane of each unit showed that most of the methane was emitted from the anaerobic tanks 

and oxic tanks (Wang et al., 2011) and presented in Table 2.   

Another full-scale research showed the same trend of methane emission from each treatment 

units under different conditions (Liu et al., 2014). In that study, methane was quantified with 

a similar technique from the AAO process in a municipal WWTP in China. This WWTP 

serves a population of 1,200,000 with a capacity of 5×105 m3/day. Liu et al. (2014), in their 

experiment, discovered that most methane was emitted from the oxic tanks. The anaerobic 

tanks produced the second highest amount of methane as summarised in Table 2 (Liu et al., 

2014).  

Table 2. Methane emitted from each zone. Source (Liu et al., 2014; Wang et al., 2011) 

Process 
unit 

(Liu et al., 2014) (Wang et al., 2011) 
Surface 

area (m2) 
Dissolved CH  

(mg/L) 
Emission  

(g CH4/m3) 
Surface 

area (m2) 
Dissolved 

CH  (mg/L) 
Emission  

(g CH4/m3) 
Aerated grit 

tank 504 0.6 0.026  350 0.015 0.022 
Anoxic 

tank 3,564 0.13 0.007  6,300 0.001 0.004 
Anaerobic 

tank 3,564 0.15 0.019  6,400 0.006 0.073 
Oxic tank 24,945 0.0005 - 0.02 0.371  9,400 0.0002 0.086 

 

One more full-scale research investigated the quantity of GHG emissions from AAO 

treatment process in a WWTP in China over a nine-month period. The plant’s capacity was 

23 × 104 m3 per day with wastewater source from domestic. The results indicated that the 

highest methane emissions were emitted from the grit tank at a rate of 2.2 g/(m2.hr). The 

aerobic area released nearly three times the volume of methane than the grit tank, which 

amounted to 57.4 kg/day and 18.3 kg/day, respectively (Yan et al., 2014).      

In these experiments, there is no detailed description of the operating conditions of each unit 

and the varying results may be due to conditions. The major conclusion is that oxic tank, the 
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largest of all units, released most of the methane. Referring to the second highest quantity of 

methane produced in Table 2. This illustrates how the anaerobic tank and the primary settling 

tank are the main components. The factors that may influence these emissions have been 

identified. The volume of dissolved methane was measured in these tanks, and the highest 

concentration of dissolved methane was found in the primary settling tank, followed by the 

aerated grit tank. Under the mechanical aeration, the DO concentration increased and 

inhibited methane formation. The dissolved methane released significant amounts of methane 

emissions and this appears to explain the quantity of GHG emissions from these two tanks. 

Finally, when analysing GHG emissions using aeration efficiencies, the dissolved methane in 

the oxic tank unit was lowest; the largest quantity of methane is the result of high aeration 

stripping under specific conditions. In addition, other indicators explain these results as a 

factor of the surface area of each tank and the process. For example, the plant described by 

Liu et al. (2014) had a total capacity of more than 1.5 times than that of the plant described 

by Wang et al. (2011), and the oxic tank was 2.6 times larger. In the Table 1, the larger oxic 

tank shows greater emissions compared to the smaller oxic tank. Similar trend could be found 

in the anaerobic tanks. Moreover, Ren et al. (2015) found that the concentration of organic 

material in the wastewater is another condition for methane emissions. There is a need for 

future research on the impact of DO concentration on methane emissions. 

b. Carbon dioxide 

Only a few of the studies undertaken on carbon dioxide from WWTPs focused on the direct 

emissions. Bao et al. (2015) measured the volume of carbon dioxide in each treatment tank in 

the AAO process, namely the aerated grit tank, primary sediment tank, anoxic tank, anaerobic 

tank, oxic tank and final clarifier. The aerated grit tank, which has the smallest surface area, 

produced the largest volume of carbon dioxide emissions over the largest range of dissolved 

carbon dioxide. This was followed by the carbon dioxide emissions from the oxic tank as a 
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result of the respiration and aeration stripping processes. In contrast, the primary 

sedimentation tank and final clarifier, which had the largest surface areas, emitted the 

smallest quantity of carbon dioxide due to limited biological activities and little microbial 

respiration, respectively. A similar trend was found in the research of Kyung et al. (2015). 

Table 3 shows that in the AAO process, in the aerated units, direct emissions are 96% of the 

total emissions. Although the oxic tank has a large surface area, high emissions of carbon 

dioxide were found during the early stages of aeration the oxic tank and carbon dioxide 

decreased dramatically at a later stage.  

Results from other studies showed that carbon dioxide emission rate in the oxic tanks was 

much higher than in the anaerobic and anoxic tank (Ren et al., 2015). The highest rate of 

emission flux was from the aerobic zone, which amounted to 68.2 g/(m2.hr), whilst there 

were negligible emissions of carbon dioxide from the anaerobic tank and anoxic tank (Yan et 

al., 2014). Level of carbon dioxide emissions from the grit tank and the oxic tank differ 

between reports and season. However, the aerobic area emitted significant volumes of carbon 

dioxide. 

Table 3. CO2 emissions from each unit in the AAO treatment process, source (Bao et al., 

2015; Yan et al., 2014) 

TREATMENT UNIT 
(Bao et al., 2015) (Yan et al., 2014) 

Area (m²) 
CO  emission  

(kg/d) Area (m²) 
CO  emission  

(kg/d) 
Aerated grit tank 504 1,879.13 346 78 

Anoxic tank 3,564 215.66 - 172 
Anaerobic tank 3,564 242.00 - 70 

Oxic tank 25,011 72,651.20 15,051 24,637 
 

In the AAO process, the inducements for release of carbon dioxide released are the 

mechanical aeration and the concentration of dissolved carbon dioxide in the influent. In 
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general, carbon dioxide is produced through two processes, namely the degradation of 

organic pollutants by microbial communities and biomass respiration. The latter produces 

less carbon dioxide emission when compared with the biological process (Schneider et al., 

2015). In the initial stages in the oxic tank, carbon dioxide is generated mainly through the 

degradation of organic matter through aerobic respiration. During the latter stages of the oxic 

tank, there is a reduction of carbon dioxide flux during the endogenous respiration period 

(Bao et al., 2015).  

c. Nitrous oxide  

In the WWTP, most nitrous oxide is emitted in the biological nitrogen removal process, 

which consists of nitrification and denitrification. Denitrification involves the anoxic 

reduction of nitrates which is converted into dinitrogen gas by the microorganism. 

Nitrification includes two steps: ammonia is oxidised to nitrite and nitrite is transferred to 

nitrate by nitrite-oxidising bacteria (Aboobakar et al., 2013). In the WWTPs, the production 

of nitrous oxide mainly occurs in the activated sludge units (Yang et al., 2009). In the 

biological treatment process, zones that have intermittent aeration have higher nitrous 

emissions than other zones (Kosonen et al., 2016).  

The largest amount of nitrous oxide was emitted in the oxic zone due to nitrifying activities  

of the ammonia-oxidising bacteria (AOB) (Massara et al., 2017), followed by anaerobic zone 

and then the aerated grit tank, as indicated in Table 4. Foley et al. (2010) collected results 

from seven WWTPs and found that the amount of emissions from the anoxic surface area and 

the anaerobic surface area is much smaller than emissions from aerated zones. Ren et al. 

(2015) measured nitrous oxide emissions under different influent carbon: nitrogen (C/N) 

ratio. Using six case studies, it was found that the oxic tank contributed the most nitrous 
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oxide emissions while emissions from the anoxic tank and anaerobic tank were insignificant 

(Ren et al., 2015). 

Table 4. N2O emission in AAO process, source (Ren et al., 2013; Sun et al., 2013a; Yan et al., 

2014) 

TREATING UNIT N2O EMISSION (kg d-1) 

Aerated grit tank 5.51 24.60 6.00 

AAO anoxic zone 1.32 22.10 14.05 

AAO anaerobic zone 7.59 10.80 7.66 

AAO oxic zone 471.70 9745.90 6030.00 

Reference Sun et al. (2013) Yan et al. (2014) Ren et al. (2013) 
 

The results show that nitrous oxide is mainly produced in the oxic zone (Kosonen et al., 

2016) instead of transported from previous non-aeration zones (Wang et al., 2016). 

Kampschreur et al. (2009) showed that nitrous oxide was produced in the anoxic stage and 

stripped to the gas phase in the aerated zone. Only a small amount of nitrous oxide was found 

in the anoxic zone because the recycling between aerobic and anoxic tank resulted in the 

nitrate being mixed with the wastewater in the anoxic zone. The nitrate was reduced by 

denitrifying bacterial in the anoxic tank (Soda et al., 2013). Emission fluxes from the 

anaerobic and anoxic zone contributed little to the total emissions (Wang et al., 2016).  

Factors related to the quantity of nitrous oxide include DO, dissolved nitrous oxide and the 

aeration rate. While some scientists agree that the concentration of dissolved nitrous oxide in 

the wastewater is one of the main factors (Wang et al., 2016), Masuda et al. (2018) found that 

there was a very difference across studies on the influence of dissolved nitrous oxide to 

nitrous oxide emissions. Thus, more research on the relationship between dissolved nitrous 

oxide and nitrous oxide emission is required. An intermittent aeration process makes it 
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possible for biological removal of nitrogen to occur, which controls nitrous oxide emissions. 

Therefore, low DO concentrations and efficient aeration influence the quantity of nitrous 

oxide emissions.   

3.2. SBR process 

The SBR is an alternative to conventional processes for removing nutrient from wastewater. 

The SBR is a fill-and-draw activated sludge system for domestic and industrial wastewater 

treatment. In SBR, all processes are conducted in a single reactor following a sequence of fill, 

reaction, settling and decanting phase (Puig, 2008).  The influent flows into the swirl grit tank 

to remove solids, then passes through the sewage distribution tank and finally is treated in the 

SBR tank. The biological nutrient removal process alternates between anoxic and aerobic 

periods within the treatment cycle. 

 The SBR has been widely applied in wastewater treatment because it has greater flexibility, 

control and requires a low-cost investment (Real et al., 2017). The SBR processes are 

believed to achieve high effluent quality in a very short aeration time as well as to save more 

than 60% of the operating cost when compared with the conventional activated sludge 

process (Singh et al., 2011). 

a. Methane emission 

Prior studies have determined the level of methane emissions in each unit and in each phase 

of the SBR process (Liu et al., 2014). An experiment was conducted in a WWTP, Beijing, 

China, which has a capacity of 8×104 m3/day and serves a population of 231,000. The 

biological treatment process included six cycles, which were divided into three phases as 

follows: feeding and aeration phase, settling phase and decanting phase. In the primary 

treatment units, the swirl grit tank and the sewage distribution tank, the dissolved methane 

concentrations were higher than in the SBR tanks. There were large amounts of methane 
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emissions originating from the swirl grit tank and the first phase of the SBR process. The 

wastewater that was stirred intensively in the swirl grit tank led to the dissolved methane was 

fluxed, subsequently causing a large amount of methane to be emitted. The gas flux from the 

feeding and aeration phase was the highest for the whole SBR process due to strong 

mechanical aeration (Figure 4).  

Another study was conducted by Bao et al. (2016) in which the SBR process was divided into 

4 phases that in total lasted 4 hours: 1 hour for aeration feeding, 1 hour for aeration-non-

feeding, 1 hour for settling and remaining 1 hour for decanting phase. The study indicated 

that the first two phases of biological treatment produced the most methane during the SBR 

process, ranging from 2.5 to 73.3 g CO2 equivalent (gCO2-eq) m-3 wastewater with an 

average of 4.5 gCO2-eq m-3 wastewater or 0.16 gCH4 m-3 wastewater (Bao et al., 2016). In 

the feeding and aeration phases, methane oxidation occurred, and a great deal of  methane 

was stripped. However, the quantity of methane produced in aeration during the feeding stage 

was even higher than that of the aeration in the non-feeding stage. The settling and decanting 

phases did not contribute to methane emissions.  

The results are varied, but the same trend is found in these papers and is shown in Table 5. 

Table 5. Methane emitted from different units in the SRB process, source (Bao et al., 2016; 

Liu et al., 2014)  

Process unit 
Swirl 
tank 

Sewage distribution 
tank 

Feeding and aeration 
phase 

Settling 
phase 

Decanting 
phase 

(Bao et al., 
2016) 0.000 0.000 2.610 0.000 0.050 

(Liu et al., 
2014) 0.001 0.001 1.590 0.001 0.001 

 

b. Carbon dioxide 
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In the SBR tank, the organic matters present in the influent was degraded biologically and 

produced a large amount of carbon dioxide. A full-scale study about carbon dioxide in SBR 

WWTP found that the swirl grit tank produced a small amount of carbon dioxide (0.045 

gCO2 –eq m-3 wastewater) as a result of using a swirl mixer instead of aeration equipment 

(Bao et al., 2016). The volume of emissions from the sewage distribution tank was small 

because of the low levels of nitrification and denitrification with shorter hydraulic retention 

time. However, previous research has confirm that the largest amount of carbon dioxide was 

detected in the feeding and aeration phases due to the aeration respiration and aeration 

stripping processes (Bao et al., 2015). The amount of carbon dioxide released from feeding 

and aeration period was an average of 334.6 gCO2 –eq m-3 wastewater (Bao et al., 2015) and 

343.86 gCO2 –eq m-3 wastewater (Bao et al., 2016), which amounted to 99% of the total 

emission. Most of the carbon dioxide was emitted at the initiation of the feeding and aeration 

phases. 

Aeration during the feeding and aeration periods make it possible for nitrification and 

denitrification to occur during the treatment process. The experiment showed that the 

concentration of dissolved carbon dioxide in the swirl grit tank was much higher than in the 

aerated tank. In the settling phase and decanting phase, only a small amount of carbon 

dioxide was generated in the absence of aeration due to anaerobic respiration. Only 1.06 and 

0.84 gCO2 –eq m-3 wastewater was fluxed during the settling and decanting phase (Bao et al., 

2015).  

c. Nitrous oxide  

Nitrous oxide has a large impact on the overall carbon footprint of the WWTP using SBR for 

the biological wastewater treatment. Many different quantification techniques are applied to 

measure nitrous oxide emission from WWTPs. Research at full-scale WWTPs, using both gas 
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sensor and online gas analyser methods, indicated that nitrous oxide could be emitted during 

nitrogen removal; however, a large variation in reported emission values is evident (Foley et 

al., 2010). Marques et al. (2016) conducted a nitrous oxide measurement in a full-scale SBR 

plant by using a conventional online gas analyser. According to this research, liquid-phase 

nitrous oxide measurements coupled with liquid-gas mass transfer estimations constituted an 

alternative methodology for assessing emission factors. Nitrous oxide produced in liquid-

phase can transfer to the gas-phase when nitrous oxide is over-saturated, or stripped by 

aeration, which facilitates the transfer of dissolved nitrous oxide (Law et al., 2011). Marques 

et al. (2016) discovered differences in the results of these two methods, and the anoxic 

emissions were relatively low. More than 90% of nitrous oxide emissions occurred during the 

aeration phase due to air-stripping of dissolved nitrous oxide (Kampschreur et al., 2009). 

Some differences observed between nitrous oxide flux in the feeding phase and aeration 

period as shown in Table 6. However, these phases produce much higher nitrous oxide 

emissions than others phases (Sun et al., 2014). Nitrous oxide emissions during the aeration 

feeding period were 100 g CO2-eq m-3, which was higher than the aeration non-feeding 

period (Bao et al., 2016). Organic matter influences the nitrification efficiency and nitrous 

oxide production because firstly, organic matter promotes the growth of heterotrophic 

microorganisms; and secondly, consumes DO (Toor et al., 2015). During the first 30 minutes 

of the feeding phase, less oxygen was consumed because organic matters existed in small 

concentrations in wastewater, which led to the value of DO increasing. At that time, nitrous 

oxide emissions mainly came from the dissolved nitrous oxide in the influent. Following the 

feeding period, organic matter gradually accumulated, and more oxygen was consumed, 

which resulted in DO value declining. Poorly DO led to a large quantity of nitrous oxide, 

indicating the occurrence of incomplete nitrification (Frison et al., 2015). The total amount of 
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nitrous oxide emitted from the aeration phase ranged from 394.2 to 1782.4 g CO2-eq m-3, 

with an average of 480.2 g CO2-eq m-3 (Bao et al., 2016).  

Nitrous oxide was emitted during the aeration stage, which included dissolved nitrous oxide 

produced through incomplete denitrification in the anoxic period and nitrous oxide through 

incomplete nitrification during the low DO aeration period. Denitrification and nitrification 

took place during the aeration period, in which most of the emissions occurred, in the feeding  

and non-feeding period (Sun et al., 2013a). Another reason for the large quantity of nitrous 

oxide was the high concentration of dissolved nitrous oxide during the feeding and aeration 

phases and the strong aerobic stirring. The nitrous oxide flux during the settling and 

decanting phases was nearly undetectable, although a certain amount of nitrous oxide was 

dissolved in these periods (Sun et al., 2013b).  

Table 6. N2O emitted from each zone in SBR process, source (Bao et al., 2016; Sun et al., 

2014; Sun et al., 2013a) 

TREATING UNIT N2O EMISSION (g m-3)        

  Sun et al. (2014) Sun et al. (2013)  Bao et al.(2016) 

Swirl grit tank 0.000032 0.00001 0.00 

Sewage distribution tank 0.000016 0.000003 0.00 

Feeding period 1.78 2.2356 1.13 

Aeration period 2.00187 0.75 

Settling period 0.00174 0.00187 0.0018 

Decanting period 0.0013 0.0011 0.0015 
 

Law et al. (2011) indicated that the dissolved nitrous oxide was stripped during the aeration 

phase and nitrous oxide in the non-aerated zone contributed 94±4% to the total nitrous oxide 

emission in the first 15 minutes of the aeration phases. The reason is that the aerobic stage 
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takes place after the anoxic stage. The nitrous oxide air bubbles are formed during the anoxic 

are and are stripped off in the aerobic stage (Frison et al., 2015). During the aeration phase, 

nitrous oxide continuously flux and the most transfer occurred, resulting in the high volume 

of emission (Law et al., 2011). Moreover, nitrous oxide flux from the aeration stage 

decreased when the aeration rate increased (Law et al., 2012). The provision of sufficient 

aeration time to achieve full ammonia oxidation could mitigate the overall nitrous oxide 

emissions (Rodriguez-Caballero et al., 2013). The effect of oxygen limitation on nitrous 

oxide emissions was tested by Kampschreur et al. (2008). The results showed that level of 

N2O increased immediately and reached 5 times upon oxygen depletion.  

4. Critical analysis of the review studies 

4.1. Evaluation of measuring methods 

a. IPCC guidelines 

One of the most popular methods used to estimate GHG emissions is the IPCC Guidelines for 

National GHG Inventory (IPCC, 2006). Emissions of methane and nitrous oxide from 

wastewater treatment are reported under the Waste sector. The quantity of gas was estimated 

through the application of models or equations. 

Calculation of methane emission 

The formulation used to calculate total CH4 emitted from domestic wastewater is described in 

IPCC guidelines (IPCC, 2006). Using IPCC guidelines is a simple and straightforward 

method for methane estimating. The formulation based on the annual organic matter in the 

wastewater, the fraction of wastewater treated anaerobically, the emission factor and the 

amount of methane recovered from wastewater treatment. Biological oxygen demand (BOD) 

is one of the principal factors that determine the generation of methane from wastewater. The 

emission factor is the key to the emission inventory and represents the value of methane 
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released to the atmosphere with activities associated with the pollutant (US.EPA, 2016). 

Default emission factor for methane is recommended when available data is limited.  

- Total CH4 emissions from domestic wastewater 

  (1)  

where, 

CH4 Emissions = CH4 emissions in inventory year, kg CH4/yr 

TOW   = total organics in wastewater in inventory year, kg BOD/yr 

S   = organic component removed as sludge in inventory year, kg BOD/yr 

Ui   = fraction of population in income group i in inventory year 

Ti,j  = degree of utilisation of treatment/ discharge pathway of system, j, for each 

income group fraction i in inventory year 

i   = income group: rural, urban high income and urban low income 

j  = each treatment/ discharge pathway or system 

EFj   = emission factor, kg CH4/kg BOD 

R   = amount of CH4 recovered in the inventory year, kg CH4/yr 

 

- CH4 emissions factor for each domestic wastewater treatment/discharge pathway or 

system. 

  (2) 

where, 

EFj   = emission factor, kg CH4/kg BOD 
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j  = each treatment/ discharge pathway or system 

Bo   = maximum CH4 producing capacity, kg CH4/kg BOD 

MCFj   = methane correction factor 

- Total organically degradable material in domestic wastewater 

TOW = P . BOD . 0.001 . I . 365  (3) 

where,  

TOW   = total organics in wastewater in inventory year, kg BOD/yr 

P   = country population in inventory year, (person) 

BOD   = country-specific per capita BOD in inventory year, g/person/day 

0.001    = conversion from grams BOD to kg BOD 

I   = correction factor for additional industrial BOD discharged into sewers 

Determining the methane correction factor (MCF) is one of the most difficult part as it based 

on the fraction of wastewater treated anaerobically. The guidelines suggest a large range of 

this fraction with the limited condition to apply. 

Calculation of nitrous oxide emission  

The equation to calculate total N2O emitted from domestic wastewater is described in IPCC 

guidelines (IPCC, 2006). These formulations could be applied for collected and uncollected 

wastewater as they are based on nitrogen component in the wastewater. 

- N2O emissions from wastewater effluent 

N2O Emission = NEFFLUENT . EF EFFLUENT . 44/28   (4) 

where, 
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 N2O Emission = N2O emissions in inventory year, kg N2O/yr 

 NEFFLUENT  = nitrogen in the effluent discharge to aquatic environments, kg N/yr 

EF EFFLUENT  = emission factor for N2O emissions from discharged to wastewater, 

kg N2O-N/kg N 

44/28   = conversion of kg N2O-N into kg N2O 

- Total nitrogen in the effluent 

NEFFLUENT = (P . Protein . FNPR. FNON-CON . FIND-COM ) – NSLUDGE  (5) 

where, 

NEFFLUENT  = total annual amount of nitrogen in the wastewater effluent, kg N/yr 

P  = human population 

Protein  = annual per capita protein consumption, kg/person/yr 

FNPR   = fraction of nitrogen in protein, default = 0.16, kg N/yr  

FNON-CON  = fraction for non-consumed protein added to the wastewater 

FIND-COM  = factor for industrial and commercial co-discharged protein into the 

sewer system 

 NSLUDGE  = nitrogen removed with sludge (default = 0), kg N/yr 

- N2O emission from centralized wastewater treatment processes 

N2OPLANTS = P .  TPLANT . FIND-COM  . EFPLANT  (6) 

where, 

N2OPLANTS  = total N2O emissions from plants in inventory year, kg N2O/yr 

P  = human population 
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TPLANT  = degree of utilization of modern, centralized WWTPs, % 

FIND-COM  = fraction of industrial and commercial co-discharged protein,  

(default = 1.25) 

EFPLANT  = emission factor, 3.2 g N2O/person/yr 

Benefits of using IPCC guidelines 

The 2006 IPCC Guidelines for National Greenhouse Gas Inventories are valuable tools 

supporting to estimate and control GHG emissions. The guidelines for WWTPs emission 

could be found in chapter 6 of volume 5. The IPCC method shows out the relationship 

between different components and bases sorely on the annual organic matter and the amount 

of nitrogen. By adjusting these elements, the total emissions could be mitigated. 

Opportunities to mitigate methane emission are increasing portion of methane recovered and 

removed organic component. Nitrous oxide emission could be reduced when improving the 

portion of nitrogen removed in the sludge treatment process.  

Limitations of IPCC guidelines 

- Lack of information 

WWTPs emit direct and indirect carbon dioxide due to microbial activities and energy 

consumption. Results found that a significant amount of carbon dioxide could be verified 

during biological wastewater treatment process, which excluded from IPCC guidelines 

(Kosse et al., 2018b). Methane is produced from closed sewer systems and those resulting 

from dissolved methane in the influent are not considered in the formulations, which can lead 

to underestimation. The relationship between organic and nitrate production is not indicated, 

which may limit the mitigating approach.  

- Uncertainties with emission factors 
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The emission factor is the most influential parameter that influences the total emissions 

(Brown et al., 2001). The IPCC provides default emission factors in most cases. However, 

these indicators are typically determined through field-scale monitoring. Thus, it is suggested 

to use the country-specific factors when available (Zhan et al., 2017). Estimation based on 

emission factors can be high uncertainty due to the lack of reliable information on the 

operation of the treatment process and the local environmental situation (Noyola et al., 2018). 

Also, the default emission factors have been used for years and need to be revised. Dissolved 

concentration in the influent wastewater, one of the important source of emission, was not 

considered in the guidelines result in need of a revision of correction factor. 

- Accuracy of data 

IPCC guidelines use some default data, which based on the experiment under specific 

conditions or particular circumstances. Applying the data representation for one specific case 

to others might affect the accuracy of the results. For example, the emission factor for N2O is 

currently based on a single study in which the WWTP was not designed for removal of 

nitrogen. For methane estimation, the formula mostly based on BOD while the other impact 

factors were excluded.   

b. Direct measure  
 

Most of the studies used this method to monitor the quantity of GHG emissions from each 

unit of the treatment processes. Gas flux were measured in aerated and non-aerated liquid 

surfaces. Gas samples were collected from multiple points to obtain the quantity of gas 

emitted. The number of sampling points based on the wastewater surface area and the 

dissolved oxygen variation in AAO process, while in SBR treatment process the sampling 

frequency was determined by the duration of each phase (Wang et al., 2011).  

Sample collection from the aerated area 
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Polyethylene bag was used to collect gas samples emitted from aerated surfaces. The bag was 

fastened to inside of a support frame. The bag was collapsed and emptied of air. The frame 

was then immersed several inches in the water. Gas samples were withdrawn from the plastic 

bag to the aluminium foil plastic bags (Yan et al., 2014). When measuring the off-gas flow 

rate, a tracer gas is introduced into the chamber. The off-gas flow rate E (μg/(m2.hr)) is 

calculated based on the mass balance of the tracer gas equation (7):    

  

      (7) 

where,  

V is the volume of the flux hood (m3); A is the enclosed surface area (m2); ρ is the density of 

the gas (mol/m3); and Δc/Δt is the gas concentration in the chamber. 

Sample collection from non-aerated area 

A floated flux chamber was used to measure the fluxes from non-aerated wastewater zones. 

A thermocouple probe was installed inside the flux chamber and floats made from tires are 

fastened to the flux hood’s sides. The hood was kept stable to minimize chamber movement 

caused by surface turbulence. The sampling point was one metre from the bank of each 

processing unit or under the centre of the raised walkway across the unit tank. The gas within 

the chamber was transferred via a blower and a closed loop of the tube(Bao et al., 2016). The 

gas flux F (μg/(m2.hr)) was calculated by equation (8)     

   

     (8) 

where, 
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ρ is the density of the gas (mol/m3); c is the sample gas concentration (mg/L); Q is the total 

diffuse air flow (m3/min); A is the total surface area (m2) 

GHGs sample analysis methods 

The samples were transported to the lab and analysed for GHG concentration after collected. 

A gas chromatograph equipped with a flame ionization detector (FID-GC) was used for 

methane measurement. The carbon dioxide concentration was determined by a thermal 

conductivity detector (TCD-GC) (Guérin et al., 2007). While nitrous oxide was analysed 

using a gas chromatograph with an electron capture detector (Hwang et al., 2016).  

Analysis of the direct measure method 

Static floating chamber method is widely used to evaluate the direct GHG emissions because 

of its convenience and low cost (Xiao et al., 2016). Static chamber with gas chromatography 

is widely applicable as this method has simple principle operation, cheap instrument, less 

time consuming and multisite observations (Wang et al., 2003). Gas chromatography has 

been widely used to quantify nitrous oxide and carbon dioxide concentrations in gas 

emissions from wastewater biological treatment process (Pascale et al., 2017). However, 

there are uncertainties in gas flux estimates using this method. They are less sensitive, low 

precision and poor accuracy when compare with other methods (Pascale et al., 2017). The 

poor accuracy comes from the experimental conditions such as outside temperature (Guérin 

et al., 2007), wind speed and rainfall intensity (Matthews et al., 2003), which is believed to 

increase the rate of GHG fluxes. The other factors that influence the accuracy are the 

limitation in the equipment and the methodology used to quantify emissions. The turbulence 

caused by the chamber’s wall can affect the results (Xiao et al., 2016). The sensitive of the 

data is depending on the operating conditional, and the emission factors depend on load. For 

example, results at start-up and shut down are different with results in steady conditions. 
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Effective methods should be a focus to minimising the variation between studies and solve 

the limitations of these estimation methods.  

4.2. Challenges in quantifying GHGs emissions from treatment processes 

Quantifying GHG emissions originating from WWTPs has its challenges. For example, 

carbon dioxide, which makes up the largest part of the total GHG from WWTPs, is usually 

neglected in reports (Schneider et al., 2015). Numerous papers focus on GHG emissions from 

the biological treatment process. However, very few studies were conducted to investigate the 

factors influencing overall emissions of carbon dioxide, nitrous oxide and methane. The 

results vary across the different studies, which vary in terms of influent concentration, 

process method and measurement technology. The conflicts between reports are essentially 

due to underestimation, especially for nitrous oxide the most significant GHG. 

In AAO WWTPs, the oxic tank is the major unit of aeration zone that has the largest area of 

surface water and contributes the most GHG. Nitrous oxide and carbon dioxide emitted from 

the oxic zone in the bio-treatment tank of AAO WWTPs accounted for 97% and 96% of the 

total emissions, respectively. The proportion of methane may vary according to various 

reports, but the bulk of the methane was collected from the oxic tank. The aerated grit tank 

and anaerobic tank are also important units due to the quantity of methane and carbon dioxide 

emitted. However, there are conflicting results from the various studies, and for this reason, 

future research is needed.  

In the SBR treatment process, most GHG emissions were produced in the feeding and 

aeration phases, while the settling phase and the decanting phase did not contribute to GHG 

emissions. The primary treatment units, which include the swirl grit tank and sewage 

distribution tank, generated small amounts of GHG emissions despite the high concentration 

of dissolved matter. One-third of the carbon dioxide in the SBR was related to the carbon 
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dioxide produced when oxidising the organic matter; another third was related to power 

production while the remaining third represented the carbon dioxide equivalent due to the 

emission of methane and nitrous oxide (Real et al., 2017). 

When analysing the quantity of GHG emissions from the AAO and SBR treatment processes, 

the results show that the latter produced more than the former. Carbon dioxide and methane 

emissions in WWTPs with SBR amounted to 347 g/m3 and 0.5g/m3 of wastewater, 

respectively, and were approximately double that of the AAO WWTPs. The volume of 

nitrous oxide emitted from AAO was five times smaller than the SBR approximately 0.9 g/m3 

and 4.2g/m3, respectively. We can conclude that quantity of nitrous oxide emitted from a 

WWTP employing SBR for the biological treatment of municipal wastewater was larger than 

other bioreactor configurations (Rodriguez-Caballero et al., 2015). According to these results, 

aerated units contributed the major proportion of GHG emissions in both AAO and SBR 

WWTPs (Kyung et al., 2015). Non-aerated zones produced small amounts of GHGs for three 

important reasons. The first reason is due to the limited surface areas of the aerated zone. The 

oxic tank and the SBR tank are the largest of the treatment units. The second reason is that 

the substantial amounts of GHG emissions dissolved and accumulated in wastewater can be 

stripped off and released under aeration condition (Kyung et al., 2015). Third and finally, 

aeration process involves nitrification that produces nitrous oxide, as well as microbes that 

respire to generate carbon dioxide. Nitrous oxide was the major contributor towards to total 

GHG emissions during both two processes. During operation, aeration units consume the 

most energy and increase the quantity of carbon dioxide.   

The concentration of DO is one of the most important parameters when controlling GHG 

emissions released from WWTPs. A low concentration of DO limits the growth of 

microorganism while high concentration could influence the denitrification process. 

Therefore, poorly dissolved oxygen leads to a reduction in indirect carbon dioxide emissions. 
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Poorly dissolved oxygen could result in a large quantity of nitrous oxide occurring as a result 

of incomplete nitrification. In a few studies, the effect of aeration on emissions showed that 

strong aeration would lead to a higher volume of GHG emissions. Increasing aeration in both 

type of reactors would increase emissions. The aeration stripping rate of dissolved methane, 

carbon dioxide and nitrous oxide can affect the quantity of these gas emissions, as illustrated 

in Figure 4.  

 

Figure 4. Influences of processes condition to GHG emissions 

 

The impact of dissolved oxygen, aeration efficient and dissolved GHG have been researched 

and indicated in many studies. However, some of them reflected the different results and 

trend, as shown in Table 7. 

Table 7. Reviewed studies on the influence of DO, aeration efficiency and dissolved gas on 

GHG emissions 

GHG Factors Impact Result References 

N O DO N O increases when low 

DO concentrations 

AGREE (Wunderlin et al., 2012) 

AGREE (Aboobakar et al., 2013) 

AGREE (Jefferson et al., 2011) 
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AGREE (Peng et al., 2015) 

AGREE (Wang et al., 2015) 

AGREE (Massara et al., 2017) 

NO (Rodriguez-Caballero et al., 

2014) 

Aeration rate High N O at lower aeration 

rates 

AGREE (Hu et al., 2010) 

AGREE (Tumendelger et al., 2014) 

Dissolved N O High dissolved N O cause 

high emission 

AGREE (Baresel et al., 2016) 

AGREE (Pan et al., 2016) 

NO (Masuda et al., 2018) 

AGREE (Rodriguez-Caballero et al., 

2015) 

CH  Dissolved CH  Correlate 

 

AGREE (Rodriguez-Caballero et al., 

2014) 

AGREE (Noyola et al., 2018) 

AGREE (Masuda et al., 2018) 

DO Negative impact AGREE (Rodriguez-Caballero et al., 

2014) 

CO  Aeration Correlate AGREE (Caniani et al., 2019) 

AGREE (Bellandi et al., 2017) 

Dissolved CO  Correlate AGREE (Kosse et al., 2018a) 

 

The reviewed studies focused on major factors influencing the emission of one or two GHG, 

but the total quantity of GHG emissions from each treatment units was not indicated. One of 

the few papers that analysed two GHG emissions, Rodriguez-Caballero et al. (2014) 

evaluated methane and nitrous oxide emissions under different levels of DO and 

concentration of dissolved GHG. Carbon dioxide and nitrous oxide were measured from 
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various parts of the WWTPs during the biological treatment process (Caniani et al., 2019). To 

the best of our knowledge, none of the existing studies indicates the source of emissions and 

analyses the impact of factors on overall GHG emissions. Controlling the oxygen and DO 

through aeration is the most effective method for controlling the GHG emissions. It will be 

beneficial to determine the optimal level of DO, aeration rate and dissolved GHG in the 

treatment processes.  

Future research for controlling strategies 

Different GHG emissions production pathways often occur simultaneously. Each pathway is 

regulated differently by environmental factors and thus needs to be analysed individually in 

term of the relative contribution to total GHG emission. Future research should focus on 

minimising uncertainties in estimating the emissions and determine the key parameters for 

GHGE emissions mitigation. These are explained in more detail below. 

(I) Improve the accuracy of direct measurement methods 

The limitations of existing measurement tools highlight the need for developing more precise 

methods. Recently Pascale et al. (2017) were the first to suggest using gas chromatograph 

equipped with a barrier ionization discharge detector. This tool can analyse carbon dioxide 

and nitrous oxide at the same time. However, the accuracy of this method should be tested in 

futher research.      

(II) Develop the plant-wide model to simulate the WWTPs 

Judging by the review of the literature, controlling the level of DO, aeration rate and 

dissolved GHG in the treatment process is important. Aeration makes the main contributor to 

the energy footprint of a WWTP because the energy associated with aeration may count for 

more than 50% of the total energy cost for a WWTP (Vilanova et al., 2017). The energy 

consumption of the WWTP can be reduced by reducing aeration. This will help mitigate 
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carbon dioxide emissions but increase the volume of nitrous oxide, which has 300 times the 

GWP. Therefore, it is important to maintain a suitable level of DO concentration for 

economic reasons and to ensure that the treatment process remains stable. Due to the 

disadvantages of existing measurement methods, it is necessary to develop a model to 

evaluate the quantity of carbon dioxide, methane and nitrous oxide under various conditions 

of DO, aeration and dissolved gas in the biological treatment process. There is a need for 

further research into development of appropriate mitigation strategies to improve the effluent 

quality and reduce GHG emissions in wastewater treatment processes. 

5. Conclusion 

The AAO and SBR are popular treatment technologies in municipal WWTPs. However, they 

are also the most contribution to GHG emissions that are leading to global warming. The 

investigations confirmed that these technologies emitted high quantities of GHGs. The total 

emissions from a SBR wastewater treatment process are more significant than from an AAO 

process. An SBR process contributes maximum 1474 gCO2 –eq/m3 while the highest quantity 

of emissions from an AAO process accounted to 437 gCO2 –eq/m3. For better controlling of 

WWTPs, there is a need for developing effective quantification methods with low uncertainty 

and investigate the key impact factors inducing emissions and mitigation solution for GHG 

emissions. 
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