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Abstract 20 

This study aimed at improving membrane distillation (MD) performance by mixing various non-21 

solvents (NSs) in polymer dope solutions. The effect of each NS on the inner structure and surface 22 

morphology of hollow fiber (HF) membrane was investigated. Membrane morphology is manipulated 23 

by controlling liquid-liquid (L-L) and solid-liquid (S-L) demixing time, which is a function of the 24 

viscosity and water affinity of dope solutions. Consequently, the addition of NSs altered membrane 25 

morphology by affecting the diffusion rate during NS induced phase separation (NIPS) process. The 26 

performance results showed that the dope solution composed of 11/71.2/17.8 wt.% polyvinylidene 27 

fluoride (PVDF)/ triethyl phosphate (TEP)/toluene produced the most promising HF membrane for MD. 28 

The optimal membrane demonstrated a unique bicontinuous structure with increased porosity and mean 29 

pore size. The addition of toluene as NS in dope solutions enhanced crystallization process, which 30 

increased the Young’s modulus of membrane but slightly decreased its maximum tensile strength at 31 

break. The optimal PVDF HF membrane demonstrated a steady flux of 18.9 LMH at 60 °C/20 °C of 32 

feed/permeate temperatures and a salt rejection of 99.99 % when tested for 72 h. The results suggest 33 

that incorporation of toluene as a NS into PVDF dope solutions can increase permeation performance 34 

in MD by enhancing the morphology of HF membranes. 35 

 36 

  37 
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1. Introduction 38 

Membrane distillation (MD) is widely considered as one of the most promising next-generation 39 

membrane technologies as its unique mechanism demonstrates strong capacities in desalination and 40 

wastewater treatment applications where traditional membrane technologies are impractical (Deshmukh 41 

et al., 2018; McGaughey, Gustafson, & Childress, 2017). However, MD has not been fully 42 

commercialized yet due to several major drawbacks; one of them is its relatively low permeation 43 

performance, which makes this energy-intensive process even less competitive (Eykens, De Sitter, 44 

Dotremont, Pinoy, & Van der Bruggen, 2017). 45 

Lack of ideally designed membranes for MD is a major reason for the low permeation performance (Y. 46 

Li, Dong, & Zhu, 2018). Although many studies have been conducted to develop MD membranes with 47 

higher permeation, the fabrication cost of these membranes is very high making them unviable for 48 

industrial upscaling (H. Zhang, Li, Sun, Miao, & Gu, 2018; Zhu, Jiang, & Matsuura, 2015). Therefore, 49 

a simple and effective approach is needed to develop high-performance MD membranes. An ideal MD 50 

membrane should have a highly hydrophobic surface, narrow pore size distribution and large porosity 51 

to achieve high permeation flux (Qiu, Peng, Ge, Villacorta Hernandez, & Zhu, 2018; Shi, Ma, Ma, 52 

Wang, & Sun, 2012). In regards to the effect of heat loss in MD, it is also essential to optimize the 53 

membrane thickness to balance the trade-off between the flux performance and thermal efficiency 54 

(Wang, Teoh, & Chung, 2011).  55 

Polyvinylidene fluoride (PVDF) is favored as the base material for MD membranes due to its low 56 

thermal conductivity, high chemical resistance and mechanical strength (García-Payo, Essalhi, & 57 

Khayet, 2010; Venault, Chang, Wu, & Wang, 2014). Unlike other non-reactive hydrophobic polymers, 58 

PVDF can be used to fabricate cost-effective membranes as it can be easily dissolved in various 59 

common solvents. Therefore, multiple fabrication approaches have been implemented using PVDF as 60 

dope solutions (Tao, Liu, Ma, & Xue, 2013). Electrospinning is one of the fabrication methods that has 61 

been extensively employed to develop nanofibrous PVDF membranes with high permeation flux, but 62 

they are prone to rapid pore wetting owing to low liquid entry pressure (LEP) (Liao, Wang, Tian, Qiu, 63 
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& Fane, 2013). Moreover, electrospinning membranes are not practical for large-scale manufacturing 64 

(Ahmed, Lalia, & Hashaikeh, 2015).  65 

Non-solvent induced phase separation (NIPS) process has also been comprehensively studied for MD 66 

membrane development. The PVDF MD membranes made via NIPS method generally have a smaller 67 

mean pore size and porosity than the nanofibrous membranes prepared using the same dope solution; 68 

thus, demonstrating lower permeation flux in MD (Buonomenna, Macchi, Davoli, & Drioli, 2007; 69 

Munirasu, Banat, Durrani, & Haija, 2017). In general, the NIPS PVDF membranes have finger-like 70 

macrovoids underneath their thick skin layers, and dense sponge structure for bottom layers (Bonyadi 71 

& Chung, 2009; Pinnau & Koros, 1993). It has been reported that membranes with macrovoids have 72 

multiple disadvantages like high sensitivity to wetting, high tendency towards scaling and intra-pore 73 

salt precipitation, which lower membrane stability in long-term MD operation (Hung, Wang, Lai, & 74 

Chou, 2016). Besides electrospinning and NIPS, thermally induced phase separation (TIPS) method has 75 

also been employed for MD membrane fabrication.  Jung et al. (2018) found that hollow fiber (HF) 76 

membranes with macrovoid-free bicontinuous structure can be developed using TIPS  method and 77 

proper diluent ratio as it allowed both liquid-liquid (L-L) and solid-liquid (S-L) demixing to occur at 78 

the right time (Jung et al., 2018). However, TIPS is not a cost-effective method due to its technical 79 

limitations (e.g., high heat energy consumption) (Sukitpaneenit & Chung, 2009).  80 

It is more cost-effective and practical to obtain high-performance MD membranes by improving the 81 

NIPS approach. Hence, several studies considered the development of strategies to deal with the issues 82 

of NIPS membranes (large macrovoids and small pore size). To prepare NIPS PVDF membranes 83 

without macrovoids, the main strategy is to delay L-L demixing rates (Smolders, Reuvers, Boom, & 84 

Wienk, 1992). Various techniques have been employed to delay L-L demixing rates, such as increasing 85 

polymer concentrations or molecular weight, using weak coagulants, exposing casting dope solutions 86 

to water vapor before immersion into coagulation bath, and decreasing coagulant bath temperatures 87 

(Buonomenna et al., 2007; Munirasu et al., 2017; P.-Y. Zhang et al., 2013). However, these techniques 88 

either sacrifice membrane porosity or hinder large-scale production due to high economic and 89 

environmental costs. Recently, Nejati et al. (2015) and Chang et al. (2017) reported that L-L demixing 90 
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rates could be greatly decreased by using triethyl phosphate (TEP) as polymer solvent owing to its 91 

higher viscosity and lower affinity with water (Nejati, Boo, Osuji, & Elimelech, 2015; Yeow, Liu, & 92 

Li, 2003). Hence, it is possible to fabricate macrovoid-free membranes without using costly approaches. 93 

Although membranes prepared using TEP as a polymer solvent have demonstrated better MD 94 

performance in both short and long-term operations, their improvement is limited due to relatively dense 95 

skin layers and small surface porosity. These characteristics are common among PVDF membranes 96 

prepared using NIPS method with water as a coagulant (Abed, Kumbharkar, Groth, & Li, 2012; Chang, 97 

Zuo, Zhang, O'Brien, & Chung, 2017). Therefore, further improvement in the inner structure and 98 

surface morphology of NIPS HF membranes is required to improve permeation performance in MD 99 

processes.  100 

In this paper, membranes with improved MD performance were developed by determining the effects 101 

of various non-solvents (NSs) in polymer dope solutions on the inner structure and surface morphology 102 

of the membranes. The viscosity and water affinity of the dope solutions were controlled to manipulate 103 

the sequence of L-L and S-L demixing rates during the NIPS process to change the membrane 104 

morphology. The permeation performance of HF membranes in MD was evaluated based on the 105 

improvement in membrane morphology and mean pore size. The results indicate that the optimization 106 

of polymer, solvent, and NS compositions in dope solutions is essential to design high-performance 107 

membranes for MD processes. 108 

2. Materials and methods 109 

2.1 Materials 110 

High molecular weight PVDF polymer pellets (Kynar® HSV900) were kindly provided by Arkema Inc. 111 

Triethyl phosphate (TEP, 99%), N-methyl-2-pyrrolidone (NMP, 99.5%), ethanol (100%), acetone 112 

(99.5%) and dibutyl phthalate (DBP, >97%) were all purchased from Chem-Supply. Toluene (≥99.5%) 113 

and sodium chloride (NaCl) were bought from Sigma-Aldrich and Ajax Finechem, respectively. Tap 114 

water was used as a coagulant in spinning processes. Distilled water was used as permeate. All 115 

chemicals were used as received. 116 

2.2 Determination of dope solution recipes 117 
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In NIPS approaches, the sequence of L-L demixing and S-L demixing strongly affects membrane 118 

morphology (Lin, Chang, Chen, & Cheng, 2002). In general, S-L demixing (crystallization) takes a 119 

much slower pace than L-L demixing. If L-L demixing occurs at a very fast rate during NIPS processes, 120 

macrovoid structures are formed underneath the skin layer of the membrane and the remaining layers 121 

are dominated by sponge-like structures (cellular pores). On the other hand, if L-L demixing lags behind 122 

S-L demixing process, then large spherulitic crystal structures become dominant. Viscosity and water 123 

affinity of PVDF dope solutions can strongly influence NIPS demixing processes; hence, they are 124 

chosen to optimize membrane morphology. Water affinity is determined by Hansen solubility (dipole 125 

force) of liquid chemicals. Generally, increasing solution viscosity or decreasing water affinity leads to 126 

a delayed L-L demixing and promotes S-L demixing in NIPS process, so spherulitic crystal structures 127 

become dominant (Chang et al., 2017; Mansourizadeh & Ismail, 2011; Smolders et al., 1992). Therefore, 128 

in this study, high molecular weight PVDF was chosen for all recipes as its dope solution has high 129 

viscosity even at low concentration. Triethyl phosphate (TEP) was used as a solvent due to its low water 130 

affinity and good compatibility with PVDF.  131 

To manipulate demixing rates in phase inversion, NSs with various combination of viscosity and 132 

Hansen solubility (water affinity) were selected. In addition, the selected NSs must comply with the 133 

following requirements:  134 

(i.) forms a homogenous polymer solution at 80 °C after mixing with NS and remains stable for at 135 

least 10 h once the dope solution cools down to room temperature  136 

(ii.) provides suitable dope solution viscosity for HF membrane fabrication  137 

(iii.) has low toxicity and causticity; less harmful to the human and ecological system 138 

(iv.) cost-effective 139 

After careful consideration, toluene, acetone and DBP were used as NSs for preparation of dope 140 

solutions. The main properties of the chemicals used in this study are listed in Table 1.  141 

Table 1. Hansen solubility parameters at 25 °C, molecular weight, density, partition coefficient, and 142 

viscosity of various chemicals used in this study. 143 

Materials 
Viscosity 

(cP) 

Hansen 
solubility, δp 

(J.cm-3)1/2 

Molecular weight 
(g.mol-1) 

Density 
(g. cm-3) 

Partition coefficient, 
log Kow 

PVDF  
(HSV 900) 

N/A 12.1 N/A 1.78 N/A 

Water 0.89 16 18 1 - 

N-Methyl-2-pyrrolidone 
(NMP) 

1.65 12.3 99 1.03 -0.38 

Triethyl phosphate  
(TEP) 

1.46 11.5 182 1.07 0.8 

Toluene* 0.56 1.4 92 0.87 2.73 
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Acetone* 0.31 10.4 58 0.78 -0.24 
Dibutyl phthalate 
(DBP)* 

19.6 8.6 278 1.05 4.5 

 
*NSs used in this study 

 
2.3 Preparation of dope solution and fabrication of PVDF hollow fiber membranes 144 

PVDF was used as a base polymer in this study. Homogenous polymer dope solutions were prepared 145 

by dissolving PVDF powder (11 wt.%) in a mixture of TEP and NS at 80 °C under continuous stirring 146 

for 72 h. The various combinations of TEP and NS used to prepare dope solutions, and the names of 147 

corresponding HF membranes are listed in Table 2. A control sample, NMP0, was prepared using NMP 148 

instead of TEP as a solvent. The prepared dope solutions were then poured into the syringe pump 149 

(Model 500D, Teledyne Isco, USA) and left to degas at room temperature for 24 h before HF membrane 150 

fabrication. 151 

Table 2. Naming convention and dope solution compositions of hollow fiber membranes developed 152 
in this study. 153 

Sample NS chemical 
Dope concentration (wt.%) 

PVDF NMP TEP NS 

NMP0 - 

11 

89.0 - - 

TEP0 - - 89.0 - 

TEPA-1 Acetone - 80.1 8.9 

TEPA-2 Acetone - 71.2 17.8 

TEPD-1 DBP - 80.1 8.9 

TEPD-2 DBP - 71.2 17.8 

TEPT-1 Toluene - 80.1 8.9 

TEPT-2 Toluene - 71.2 17.8 
 154 

All HF membranes were fabricated using a dry-jet wet spinning process. Table 3 lists the 155 

detailed spinning parameters used in this study, which were kept constant for the fabrication of all HF 156 

membranes. The as-spun HF membranes were stored in a distilled water tank for three days after the 157 

phase inversion process. The water in the storage tank was changed daily to remove residual chemicals 158 

from the membranes completely. After three days, the HF membranes were dried at room temperature.  159 

Table 3. PVDF hollow fiber spinning conditions 160 

Parameter Value 
Dope extrusion rate (mL/min) 5.0 

Bore fluid flow rate (mL/min) 1.9 

https://www.sciencedirect.com/topics/engineering/spinning-parameter
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External coagulant and bore fluid Tap water 

Air gap (cm) 2 

Dope solution temperature (°C) 25 

Coagulant bath and spinneret temperature (°C) 25 

Ten fibers of each PVDF HF membrane fabricated with various dope solutions were used to make a 161 
module with a total surface area of 82 cm2. The internal diameter of this membrane module was 8 mm. 162 

2.4 Characterizations 163 

2.4.1 PVDF dope solution viscosity  164 

The viscosity of PVDF dope solutions was measured at room temperature using a dial viscometer with 165 

spindle #4 (LVT, Brookfield, USA). Readings were taken after full stabilization was achieved. The 166 

solution viscosity was interpreted from a table provided by the manufacturer. 167 

2.4.2 Membrane morphology 168 

The surface morphology and inner structure of HF membrane samples were examined by a scanning 169 

electron microscope (SEM, Zeiss Supra 55VP), which was operated at 10 kV. The samples were freeze-170 

fractured using liquid nitrogen for cross-section study. All the samples were sputter coated with a 15 171 

nm-thick gold/palladium layer before analysis. Membrane samples were randomly selected to evaluate 172 

the diameters, thickness and inner structures of the membranes.  173 

Membrane surface roughness was measured using atomic force microscopy (AFM, Dimension 3100 174 

Scanning Probe Microscope, Bruker) in tapping mode. A scanning area of 10.0 μm x 10.0 μm was used 175 

for all membrane samples. Each sample was scanned three times at randomly chosen locations to obtain 176 

the average root mean square roughness (Rq). 177 

2.4.3 Contact angle, porosity and pore size measurement 178 

Contact angle measurements were made using an optical tensiometer (Attension Theta Lite 100, Biolin 179 

Scientific) to evaluate membrane surface hydrophobicity. The contact angles were reported as the 180 

average of 5 random measurements made for each sample. 181 

Membrane porosity was determined using the gravimetric method as reported previously (Yao et al., 182 

2016). The weight (w1, g) of the wet membrane sample was obtained by completely immersing it in 183 

ethanol. The wet membrane sample was then fully dried to measure its dry weight (w2, g). The porosity 184 

of HF membrane samples was calculated using Eq. 1,  185 

𝜀𝜀𝑚𝑚 =
(𝑤𝑤1 −𝑤𝑤2)/𝜌𝜌𝑒𝑒

𝑤𝑤1 − 𝑤𝑤2
𝜌𝜌𝑒𝑒

+ 𝑤𝑤2/𝜌𝜌𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
 (1) 

where ρe and ρPVDF is the density of ethanol and PVDF, respectively (g/cm3).  186 



9 
 

The mean pore size of HF membrane samples was measured using a PMI liquid-liquid permeameter 187 

(LLP-1100A, Porous Materials, Inc.) with a resolution of 1 in 60,000 and a flow resolution of 0.0001 188 

cc/min. Isobutanol was used as the fluid to measure the mean pore size.  For each HF membrane sample, 189 

the average of three measurements was used as its mean pore size. 190 

2.4.4 Crystallinity and mechanical strength 191 

Differential scanning calorimetry (DSC) was conducted using DSC 2000 (TA Instruments) to measure 192 

the heat flow of polymer samples during the melting process. Crystallinity was calculated based on 193 

obtained enthalpy. Average of three measurements were reported for each sample. 194 

The mechanical properties of HF membrane samples were measured by a bench-type material tester 195 

(Lloyd Instruments, Ametek) with a starting gauge length of 25 mm and a stretching rate of 50 mm/min. 196 

The average values were obtained from five tests conducted for each sample. 197 

2.5 Membrane distillation configuration 198 

A direct contact MD (DCMD) configuration was set up to evaluate the performance of membrane 199 

modules operating at outside-in mode. A 7 wt.% NaCl solution, which was heated to 60 °C, was used 200 

as feed solution for DCMD tests; whereas, distilled water maintained at 20 °C was used as permeate. 201 

The flow rates of both feed and permeate were 300 mL/min. The permeation flux and salt rejection 202 

were obtained using Eq. 2 and 3, respectively 203 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝐿𝐿𝐿𝐿𝐿𝐿) =
∆𝑊𝑊

𝜌𝜌𝑤𝑤 × 𝐴𝐴 × 𝑡𝑡
 (2) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅𝑅𝑅 (%) = �1 −
𝐶𝐶𝑝𝑝
𝐶𝐶𝑓𝑓
�× 100 (3) 

where ΔW (kg) is the increase in permeate weight during measuring period t (h), ρw (kg/ L) is the density 204 

of pure water (assuming permeate is pure water), A (m2) is the effective membrane area, Cp and Cf are 205 

the concentrations of NaCl in permeate and feed, respectively.  206 

Commercial HF membranes provided by Econity were tested in DCMD configuration for comparison 207 

with fabricated membranes. The commercial membrane had an inside and outside diameter of 0.77 mm 208 

and 1.3 mm, respectively. The porosity and mean pore size of the commercial membrane was 0.1 μm 209 

and 63%, respectively. 210 

  211 
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3. Results and discussion 212 

3.1 Effect of various NS on the inner structure of hollow fiber membranes 213 

The inner structures of HF membranes were determined by dope solutions which can be adjusted by 214 

changing the solvent and NS. Fig. 1(a-c) shows that the HF membrane prepared using NMP as the 215 

solvent (NMP0) consisted of an asymmetric inner structure with large macrovoids underneath the thick 216 

skin layer and dense sponge structure in the bottom layer. On the other hand, the macrovoid formation 217 

was prevented when TEP was used as the dope solution solvent. Fig. 1(d-f) illustrates the morphology 218 

of TEP0, which has a macrovoid-free fibrous structure at the shell and spherulitic structures with large 219 

open pores at the lumen. Nejati et al. obtained a flat sheet membrane with a similar asymmetric 220 

morphology using TEP as a dope solvent. They suggested that initial L-L demixing created a less 221 

permeable wall to NS diffusion which delayed the demixing in sublayers and led to the formation of 222 

spherulitic structures at the bottom layers (Nejati et al., 2015).  223 
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 224 

Fig. 1. SEM images displaying the cross-section of hollow fiber membranes cast from 11 wt.% PVDF 225 
in (a-c) NMP; (d-f) TEP; (g-i) TEP and 17.8 wt.% acetone; (j-l) TEP and 17.8 wt.% DBP; and (m-o) 226 
TEP and 17.8 wt.% toluene. 227 

 228 

The optimization of HF membrane inner structures is expected to improve MD permeation performance, 229 

which can be achieved by manipulating the viscosity and water affinity of polymer solutions by 230 

incorporating various NS like acetone, DBP and toluene into the dope solution. Acetone has a much 231 

lower viscosity than TEP, so the addition of 20 wt.% acetone into polymer solution reduced the dope 232 

solution viscosity from 332 to 278 P. In addition to the decreased viscosity, the polymer solution 233 

shell surface 

shell surface 

shell surface 

shell surface 

lumen surface 

lumen surface 

lumen surface 

lumen surface 

shell surface 

lumen surface 
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containing acetone has higher water affinity because of the low partition coefficient of acetone. 234 

Therefore, a faster L-L demixing occurred in the HF membrane prepared using acetone-containing dope 235 

solution that resulted in TEPA-2 having a different morphology than the TEP0. TEPA-2 (Fig. 1i) shared 236 

similar membrane inner structure with that of TEP0 (Fig. 1f), which is dominant with large spherulitic 237 

crystal structures at the lumen side of the HF membrane; however, it had a denser and thicker layer 238 

comprising of fibrous structures at the shell side. Moreover, with decreased membrane thickness, the 239 

inner diameter of  TEPA-2 was larger than TEP0 due to promoted L-L demixing (Table 4), which is 240 

consistent with a previous study (Chang et al., 2017). In general, a membrane fabricated with faster L-241 

L demixing has thinner membrane thickness. However, the improvement in MD performance using 242 

TEPA-1 and TEPA-2 were not expected as the benefits of a decrease in membrane thickness can be 243 

offset by the potential decrease in the porosity and pore size due to the morphological changes.  244 

 245 

Fig. 2. The viscosity of various polymer dope solutions. 246 

 247 

The addition of DBP as NS into polymer solutions led to a significantly different HF membrane 248 

structure from that of TEP0 and TEPA-2. The dope solution incorporated with DBP has a significantly 249 

higher viscosity (Fig. 2) and lower water affinity (Table 1); thereby, leading to a greatly promoted S-L 250 

demixing (crystallization). Fig. 1 (j-l) shows that TEPD-2 is composed of large spherulitic crystal nodes 251 

with large open pores that are dominant at the shell side unlike TEP0 and TEPA-2. The spherulitic 252 

structures were also observed by Sukipaneenit and Chung when weak coagulant (e.g., ethanol) was used 253 

in coagulation bath as L-L demixing rate was greatly reduced and crystallization became dominant 254 
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(Sukitpaneenit & Chung, 2009). A membrane containing large open pores is likely to have a low LEP 255 

and is prone to wetting in MD. 256 

On the other hand, HF membranes fabricated with polymer dope solutions containing toluene produced 257 

very distinct structures. The polymer solution of TEPT-2 had a reduced viscosity of 275 P and reduced 258 

water affinity owing to its low partition coefficient. As such, the usage of the dope solution containing 259 

toluene led to a unique NIPS process that resulted in the formation of symmetric inner structures as can 260 

be seen in Fig. 1(m-o), while other HF membranes had asymmetric structures. The large spherulitic 261 

crystal structures with open pores, as can be found in TEP0, TEPA-2 and TEPD-2, were not observed 262 

in TEPT-2. These HF membranes confirmed a uniform bicontinuous structure comprising of interlinked 263 

small spherulitic crystal structures, which had pores with the same size throughout the membranes. The 264 

absence of large spherulitic crystal structures with open pores at the lumen side (Fig. 1l) occurred due 265 

to the presence of toluene in dope solutions. For comparison, TEPA-2 having lower dope viscosity, had 266 

large spherulitic crystal structures at lumen side. It is assumed that the combination of both decreased 267 

water affinity and viscosity would contribute to a balance between L-L demixing and S-L demixing, 268 

which would promote the diffusion of dope solution into coagulants without fast solidification. 269 

Therefore, all portions of the dope solution have the same diffusion and solidification rates, which 270 

results in the formation of those bicontinuous structures. Our work is the first to successfully fabricate 271 

HF membranes with macrovoid-free bicontinuous inner morphology via NIPS without using weak 272 

coagulants.  273 

3.2 Porosity and pore size distribution 274 

Membrane pore structures determine the porosity and pore size distribution as a result of NIPS process, 275 

which can be manipulated by adjusting the viscosity and water affinity of polymer dope solutions 276 

(García-Payo et al., 2010; Q. Li, Xu, & Yu, 2010; Tao et al., 2013). Table 4 shows the porosity and 277 

pore size distribution of HF membranes fabricated with various dope solutions. Owing to its fastest L-278 

L demixing rate, NMP0 possessed the lowest porosity and smallest mean pore size among all the 279 

samples despite the formation of macrovoids. On the other hand, HF membranes fabricated using dope 280 

solution with TEP solvent showed higher porosity. It is because higher viscosity and lower water 281 

affinity of dope solutions led to the formation of spherulitic crystal structures by slow S-L demixing 282 

(Ahmad, Otitoju, & Ooi, 2018; Lin, Chang, Chen, Lee, & Cheng, 2006). Addition of acetone as NS 283 

reduced the viscosity and increased the water affinity of dope solutions, which resulted in the formation 284 

of fibrous structure layers at the shell side (Fig. 1h). Thus, TEPA-1 and TEPA-2 demonstrated reduced 285 

porosity and mean pore size. In contrast, TEPD-2 had the highest mean pore size among all samples 286 

due to its spherulitic crystal structures that resulted from the much delayed L-L demixing. On the other 287 

side, the addition of toluene into the polymer solution increased the porosity of HF membranes because 288 
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of its bicontinuous structures with open pores. These membranes also demonstrated higher porosity 289 

(86.2% for TEPT-2), which contributed to the improvement of mass transfer efficiency in MD. 290 

 291 

Table 4. Comparison of porosity, mean pore size, thickness, and inner and outer diameters of hollow 292 
fiber membranes using various dope solutions 293 

Sample Porosity (%) Mean pore size (nm) Φouter (μm) Φinner (μm) Thickness (μm) 

NMP0 75.1 ± 0.9 26.3 ± 0.9 1072 ± 13 796 ± 15 138 ± 10 

TEP0 81.8 ± 1.0 47.7 ± 1.2 968 ± 16 618 ± 15 175 ± 12 

TEPA-1 80.5 ± 1.2 39.5 ± 1.1 978 ± 12 642 ± 15 168 ± 12 

TEPA-2 78.5 ± 1.2 026.3 ± 1.5 972 ± 12 662 ± 16 155 ± 9 

TEPD-1 81.6 ± 1.5 352.0 ± 2.1 966 ± 17 640 ± 21 163 ± 15 

TEPD-2 80.3 ± 1.7 424.2 ± 2.8 940 ± 25 650 ± 22 145 ± 12 

TEPT-1 83.2 ± 1.5 77.2 ± 2.0 1079 ± 12 719 ± 16 180 ± 14 

TEPT-2 86.2 ± 1.4 81.5 ± 1.9 1099 ± 14 719 ± 16 190 ± 13 

 294 

The thickness of HF membranes varied although the same procedure was used to prepare all dope 295 

solutions and membranes. NMP0 had the lowest thickness among all samples owing to fast L-L 296 

demixing promoted by the low viscosity and high water affinity of its dope solution. Whereas, TEPT-2 297 

experienced elevated diffusion of the dope solution in demixing processes causing it to be the thickest 298 

among all the samples. 299 

 300 

3.3 Polymer crystallinity and mechanical strength 301 

The degree of crystallinity in the PVDF membrane is dependent on the level of crystallization during 302 

the NIPS process, which can be critically affected by the addition of NSs into dope solutions. As a semi-303 

crystalline polymer, PVDF can stay at either crystalline or amorphous state, and the demixing 304 

mechanism plays a critical role during the phase inversion. Fast L-L demixing of polymer solutions 305 

with strong NS usually forms PVDF at amorphous state (Wu, Jiang, & Hu, 2018).  For this reason, 306 

NMP0 had the highest amount of PVDF polymer at amorphous state with the lowest crystallinity of 35% 307 

(Table 5). NMP0 also showed the highest tensile strength and strain at break among all the samples. 308 

Generally, a fast L-L demixing rate in polymer dope solution forms membranes with dense fibrous 309 

sponge structures, which have higher mechanical strength and lower crystallinity (P.-Y. Zhang et al., 310 

2013). On the other hand, when L-L demixing is delayed during the phase inversion process, the inner 311 

structure of membranes will change from fibrous sponge structure to spherulitic crystal structure. 312 

Membranes with spherulitic crystal structures have low tensile strength and elongation at break; as such, 313 
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they are more fragile (Chang et al., 2017). Replacing NMP with TEP as a solvent in polymer solution 314 

led to delayed L-L demixing; therefore, the crystallinity of TEP0 greatly increased but its mechanical 315 

strength deteriorated.  316 

 317 

TEPA-2 demonstrated improved tensile strength (from 2 to 2.2 MPa) and strain (from 0.57 to 0.62) 318 

while its crystallinity decreased, which was consistent with its increased proportion of fibrous structure 319 

(Fig. 1). The fibrous structures resulted from using acetone as an NS, which increased the L-L demixing 320 

rate by lowering the viscosity and increasing the water affinity of dope solutions. On the other hand, 321 

the addition of DBP into the dope solution formed membranes with large spherulitic crystal structures 322 

that resulted in high Young’s modulus of 8.8 MPa and low elongation of 0.16. The high viscosity and 323 

low water affinity of DBP considerably hindered L-L demixing process, and S-L demixing became 324 

dominant in the phase inversion process. Hence, the crystallinity of TEPD-2 is also the highest (50%) 325 

among all tested samples. Bonyadi and Chung (2009) also found that delayed demixing increased 326 

Young’s modulus of fabricated membranes. Any further decrease in the tensile strength and elongation 327 

at break of the HF membranes caused by phase inversion may damage the mechanical integrity. 328 

 329 

The addition of toluene into the polymer solution exhibited similar effects to that of DBP on the HF 330 

membrane properties. Because of the slower L-L demixing rate, the crystallinities of TEPT-1 and 331 

TEPT-2 were slightly higher than those of TEP0 despite the lack of large spherulitic crystal structures. 332 

The membranes also had decreased tensile strengths and strains at break compared with TEP0, but they 333 

were much higher than those of the HF membranes prepared using a dope solution containing DBP as 334 

NS. This is because the distinct bicontinuous structures of these membranes were well interconnected 335 

with nodes as discussed in section 3.1. It can be concluded that TEPT-2 containing the bicontinuous 336 

inner structures with high mean pore sizes can still maintain mechanical integrity, which makes it 337 

suitable for MD applications. 338 

  339 

Table 5. Comparison of mechanical strength and crystallinities of hollow fiber membranes using 340 
various dope solutions. 341 

Sample Crystallinity (%) Tensile strength at break (MPa) Strain at break Young’s modulus (MPa) 

NMP0 35.2 ± 1.3 2.83 ± 0.03 0.65 ± 0.03 4.35 ± 0.17 

TEP0 43.5 ± 2.0 2.04 ± 0.02 0.57 ± 0.05 3.60 ± 0.33 

TEPA-1 41.3 ± 1.6 2.17 ± 0.03 0.60 ± 0.05 3.63 ± 0.24 

TEPA-2 40.3 ± 0.6 2.28 ± 0.01 0.62 ± 0.03 3.68 ± 0.12 

TEPD-1 46.4 ± 2.2 1.92 ± 0.01 0.35 ± 0.01 5.51 ± 0.18 

TEPD-2 50.6 ± 2.1 1.45 ± 0.02 0.16 ± 0.01 9.07 ± 0.16 

TEPT-1 44.9 ± 1.5 1.95 ± 0.02 0.44 ± 0.02 4.43 ± 0.16 
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TEPT-2 46.6 ± 2.3 1.76 ± 0.01 0.32 ± 0.01 5.51 ± 0.15 

 342 

3.4 Surface morphology, contact angle and surface roughness 343 

Fig. 3 shows the surface morphology (shell skin) of HF membranes that are greatly affected by the 344 

phase inversion process. A slow L-L demixing usually results in delayed solidification of the surface 345 

layer, so the skin layer has larger surface pore sizes and rough surface. TEP0 (Fig. 3b) consisted of 346 

significantly larger surface pores than NMP0 (Fig. 3a). In general, the surface hydrophobicity is a 347 

function of surface roughness. Increasing surface roughness leads to higher surface hydrophobicity, 348 

which is represented by the contact angle of a water droplet (Franken, Nolten, Mulder, Bargeman, & 349 

Smolders, 1987). For NMP0, a fast L-L demixing process caused fast solidification of surface layers, 350 

resulting in a smooth membrane surface with a roughness of 20.1 nm and a low contact angle of 88.3° 351 

(Fig. 4). Similar results can be found in the literature where membranes prepared using NMP as solvent 352 

had relatively low contact angles (Chang et al., 2017). In the same way, the addition of acetone into 353 

PVDF dope solution decreased the surface pore size and contact angles as acetone promoted L-L 354 

demixing by decreasing the viscosity of PVDF solution (Fig. 3c, d).  355 

On the other hand, Fig. 3 (e, f) shows that the addition of DBP into polymer solution leads to a dense 356 

skin at the shell side of HF membranes. It is assumed that the significant increase in solution viscosity 357 

would greatly delay L-L demixing, suggesting that coagulant (water) would diffuse slowly through the 358 

dope solution and form smaller pores on shell skin. Despite its dense surface skin, the mean pore sizes 359 

of TEPD-1 and TEPD-2 were much higher than the ones of other samples due to its spherulitic structures 360 

under the dense shell skin. TEPD-2 obtained the highest surface roughness of 120.0 nm and the contact 361 

angle of 117.7° owing to the high surface peaks formed during NIPS process dominated by S-L 362 

demixing process. In contrast, the membranes fabricated from dope solutions containing toluene 363 

displayed very distinct surface morphology. Fig. 3 (g, h) illustrates that both TEPT-1 and TEPT-2 have 364 

more porous skins than the ones observed in other samples. Further increase in the weight ratio of 365 

toluene in the dope solution brought about an increase in the surface pore size. Surface roughness and 366 

the contact angle of TEPT-2 are the second highest (112.8 nm and 114.2°, respectively) among all the 367 

samples. The porous surface layer with improved hydrophobicity is expected to contribute to higher 368 

mass transfer rate in MD with TEPT-2. 369 
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 370 

Fig. 3. SEM images displaying the surface morphology of hollow fiber membranes cast from 11 wt.% 371 
PVDF in (a) NMP; (b) TEP; (c, d) TEP with acetone; (e, f) TEP with DBP; (g, h) TEP with toluene. 372 

 373 
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 374 

Fig. 4. The water contact angles measured on the shell surface of hollow fiber membrane prepared using 375 
dope solutions containing various non-solvents. 376 

 377 

3.5 MD flux performance 378 

3.5.1 Comparison of MD performance using various membranes 379 

Fig. 5 shows the flux permeation of different membranes in DCMD.  Given that same high salt rejection 380 

of 99.99% is observed, the tested HF membrane samples demonstrate various permeation performance 381 

as their morphologies and properties are significantly different. TEP0 has higher water flux than NMP0 382 

possibly due to its increased porosity and mean pore size. TEPA-2 had a lower flux than NMP0 although 383 

they consisted of similar porosity, mean pore size and contact angles. The increased thickness of TEPA-384 

2 could be the main contributor towards the increased mass transfer resistance that curtain the 385 

permeation performance. On the other side, both TEPD-0 and TEPD-1 suffered from rapid wetting 386 

within half an hour of starting experiments due to their large pore size; hence, their results are not 387 

demonstrated in Fig. 5. TEPT-2 showed a significantly improved flux over TEP0 from 14.9 to 18.9 388 

LMH. The much-improved inner structure with large porosity and mean pore size offset the large 389 

thickness of TEPT-2; besides, this membrane had much reduced mass transfer resistance at membrane 390 

surface due to its porous skin layer (Fig. 3h). Therefore, TEPT-2 had the highest flux among all tested 391 

membrane samples. 392 
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 393 

 394 

Fig. 5. Flux permeation comparison of membrane samples prepared by using dope solutions containing 395 
various non-solvents in direct contact membrane distillation 396 

3.5.2 Long-term operation of membrane distillation 397 

Fig. 6 presents the flux performances of TEP0, TEPT-2 and the commercial membrane from Econity 398 

in the same DCMD configuration for 72 h.  The commercial HF membranes demonstrated a stable low 399 

flux of 6.4 LMH. In contrast, NMP0 had a higher initial flux but its flux and salt rejection steadily 400 

decreased during 72 h operation. The deteriorated permeation performance can be caused by partial 401 

pore wetting. On the other hand, TEPT-2 had a high and stable flux of 18.8 LMH for 72 h operation 402 

owing to its bicontinuous structure and porous skin morphology. Also, it showed no sign of wetting as 403 

it maintained a high salt rejection of 99.99%.  The performance test results confirm that the addition of 404 

toluene into dope solution produces high-performance HF membranes with improved flux while 405 

maintaining high rejection of inorganic salts in the feed.  406 

TEPT-2 shows high permeation performance comparable to those at similar DCMD configurations in 407 

the literature. Lu, Zuo, and Chung (2016) developed a super hydrophobic HF PVDF membrane via 408 

surface-modification; the membrane had an average flux of 21 LMH at 60 °C feed and 16 °C permeate. 409 

Chang et al. (2017) developed a HF membrane with a green solvent, which had an average flux of 20 410 

LMH at 60 °C feed and 15 °C permeate temperature. In this study, a flux of 18.8 LMH was achieved at 411 

a higher permeate temperature of 20 °C (same feed temperature). Since this study is focused on the 412 

effects of morphology on the improvement of MD performance, the composition of dope solutions and 413 
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spinning conditions were not optimized; hence, the thickness of TEPT-2 was higher than those reported 414 

in the literature, leading to significantly higher mass transfer resistance. Moreover, TEPT-2 can be 415 

further improved via surface modifications, which means that the technique of using toluene as NS into 416 

dope solutions is vastly compatible with other modification methods to obtain high-performance HF 417 

membranes for MD. 418 

 419 

Fig. 6. Flux performance of the commercial membrane, NMP0 and TEPT-2  420 

 421 

4. Conclusions 422 

The effect of various dope solution NSs on the inner structure and surface morphology of hollow fiber 423 

membranes was investigated to improve MD performance. The viscosity and water affinity of dope 424 

solutions were controlled to manipulate the sequence of L-L and S-L demixing rates of NIPS process 425 

to obtain a desirable membrane morphology. Permeation performance of HF membranes in MD was 426 

evaluated in association with improvement in membrane morphology and mean pore size. The sequence 427 

of L-L and S-L demixing rates between solvent and coagulant in NIPS was determined from the 428 

viscosity and water affinity of dope solutions. The mixing of various NSs into the dope solutions 429 

resulted in formation of HF membranes with very different morphologies and properties. The results 430 

indicated that bicontinuous inner structures with porous shell skins could be achieved by adding toluene 431 

into the dope solution. TEPT-2 demonstrated significant improvement in porosity and mean pore size 432 

while maintaining mechanical integrity. Using this membrane, a high flux of 18.9 LMH with a salt 433 
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rejection of 99.99% was achieved in the DCMD process at 60 °C/20 °C (feed/permeate) when tested 434 

for 72 h. In conclusion, this fabrication strategy is compatible with other membrane modification 435 

techniques for mass production of HF membranes with high selectivity and permeation performance 436 

owing to its low complexity and economic cost. 437 
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