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Joint Adaptive AoA and Polarization Estimation
Using Hybrid Dual-Polarized Antenna Arrays
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Abstract—The propagation of a millimeter wave (mmWave)
signal is dominated by its line-of-sight component. Therefore,
the knowledge of angle-of-arrival and polarization state of the
wave is of great importance for its reception at the receiver.
In this paper, we estimate these parameters for an information-
bearing signal in mmWave systems using hybrid antenna arrays
with dual-polarized dipoles. The estimation is studied in the
context of both the interleaved and localized arrays. Two blind
adaptive algorithms, namely, the joint differential beam tracking
and cross-correlation-to-power ratio polarization tracking, and
the differential beam and polarization search, are developed, each
tailored for an array. It is shown that the use of dual-polarized
dipoles in combination with the developed algorithms effectively
lead to polarization diversity which significantly enhances the
signal-to-noise ratio at the decoder. The simulation results also
show that the antennas with dual dipoles provide improved
accuracy and convergence rate for the estimations compared with
the conventional arrays.

Index Terms—Hybrid dual-polarized antenna array, crossed
dipoles, subarray, beamforming, angle-of-arrival estimation, po-
larization state estimation, and mmWave communications.

I. INTRODUCTION

Millimetre wave (mmWave) communication is one of the
most promising technologies for future wireless services.
Thanks to the large spectrum ranging from 30 GHz to 300
GHz, mmWave communication has potentially enabled ex-
tremely high data rate which is unprecedented in conventional
radio frequency (RF) systems. In addition, the vast spectrum is
an effective supplement to augment the currently saturated RF
bands (700 MHz to 2.6 GHz) for wireless communications.
As a result, a large number of applications, e.g., 5G cellular
systems, wireless local area networks and ad hoc networks,
have been investigated using the mmWave [1]–[3].

The short wavelength of mmWave enables the use of
massive antenna arrays in the transceivers to overcome the
path loss and to provide beamforming and spatial multiplexing.
The arrays can be configured in a number of architectures
which reflect the trade-offs between the performance and
the costs of hardware implementation, power consumption
and real-time signal processing. The fully digital array is a
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performance-orientated architecture in which each antenna is
connected to a dedicated RF chain. It is seamlessly compat-
ible with the classic multiple-input multiple-output (MIMO)
technologies and thus leads to the best performance in terms
of data rate. However, the implementation of a fully digital
array involves prohibitive costs, particularly for a large array.
Alternatively, hybrid architectures can be employed in the
array to reduce the associated costs. In these architectures,
analog beamformers (phase shifters) are used to connect the
RF chains with antennas and to adjust the directivity of
the array. Depending on the connection, a hybrid array can
be configured to be fully- or partially-connected. A fully-
connected array is known for the total connections between
each of its RF chains and all the antenna elements. It provides
narrow beams for its RF chains and thus leads to sub-optimal
data rate [4]. The challenge of implementing fully-connected
arrays stems from the dimensions and power consumption
demanded by an enormous amount of phase shifters. The
hybrid partially-connected array is a practical solution for the
transceivers [5], [6]. Unlike its fully-connected counterpart,
each RF chain in a partially-connected array is connected to
a subset of elements (subarray) only. This is more suitable
for hardware and physical deployment with massive array,
and thus makes it a topic increasingly studied in recent
years. A partially-connected array can be categorized into two
types of regular configurations according to the topology of
subarrays, i.e., interleaved and localized arrays. They have
different characteristics and satisfy different demands [5]. The
interleaved array provides narrower beam width, while the
localized array generates smaller side lobes. Therefore, the
former is more applicable to generating multi-beam for space
division multiple access, while the latter is preferred to support
systems with larger angle-of-arrival (AoA) range. From the
view of hardware implementation, the localized array is easier
to assemble multiple modules to form a large array in feeding
networks.

The channel of mmWave is characterized by limited scat-
tering and diminished diffraction in multipath environments
[5]. Therefore, the line-of-sight (LOS) propagation typically
dominates when a wave reaches its destination, leading to
the received wave having dominant polarization and AoA
over those of non-LOS (NLOS) conditions. There has been
extensive research on massive array with single-polarized
antennas for receiving incident waves [2], [4], [5], where
the effect caused by polarization mismatch is not considered.
These antennas are able to collect sufficient power of a
wave from the ubiquitous scatters in RF bands, but cannot
be directly used in mmWave due to the possible mismatch
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between the (dominant) polarization direction of the wave
and that of the antennas. The antennas can only receive the
component of an electric field projected onto them and will
miss that perpendicular to them. Alternatively, dual-polarized
antennas with crossed dipoles can be employed to enhance the
reception for both sub-6 GHz and mmWave systems [7]–[9],
whereas there are differences in subsequent signal processing
methods between both systems due to different array structures
adopted. The use of dual dipoles enables the received signal
to have the vertical and horizontal components of the electric
field, each received by a dipole. As a result, compared with
its single-polarized counterpart, the dual-polarized antennas
ensure more power received and provide more dimensions
for digital signal processing. Recent works in [10], [11] have
studied the beam alignment and selection algorithms for dual-
polarized mmWave MIMO systems, respectively. Simulation
results have shown that better system performance is achieved
by exploiting polarization diversity.

The knowledge of AoA and polarization state of an incident
wave is of great importance for its reception by a massive
array. It can facilitate the beam alignment and the combi-
nation of polarization diversity between the transmitter and
the receiver, and thus enhance the signal-to-noise ratio (SNR)
at the decoder. The existing hybrid arrays employing single-
dipole antenna elements can only perform AoA estimation.
Depending on the architecture, different methods have been
developed for fully- and partially-connected arrays. In [12],
adaptive compressed sensing (CS) technique is exploited to
estimate the AoA of mmWave signals for fully-connected
arrays, whereas the work in [13] applies the classic methods of
MUltiple SIgnal Classification (MUSIC) [14] and Estimation
of Signal Parameters via Rotational Invariance Techniques
(ESPRIT) [15] to partially-connected arrays. Although they
potentially provide outstanding performance, the prohibitive
computational complexity prevents them from being applied
in massive arrays. With the designed efficient multi-resolution
codebook, the work in [16] enables hierarchical search method
to be performed to rapidly find one single multipath compo-
nent (MPC) and thus the AoA. Furthermore in [17], a CS
based approach is proposed to recover multiple real MPCs
by exploiting the sparse nature of mmWave channel. Such
codebook based methods require the transmitter repeatedly to
narrow down the beam. This will introduce the extra overhead
and the estimation accuracy is subject to the resolutions of
the codebooks. The use of multiple subarrays means that the
signals received by adjacent subarrays have a constant phase
difference which depends on the AoA. In light of this, the
estimation using partially-connected arrays is equivalent to
evaluating this difference. In [18] and [19], the evaluation is
accomplished by adaptive filtering, which is then improved in
[20]–[22] for better accuracy and convergence speed.

Fully digital arrays with crossed dipoles have been ex-
tensively studied to estimate the AoA and polarization state
[23]–[25]. The estimation is conducted by using ESPRIT in
which the computations of the covariance matrix and singular
value decomposition (SVD) are performed to extract the
AoA and polarization state information. As the size of the
arrays increases, the computational complexity of SVD grows

cubically with the total number of antennas [21], resulting in
the impractically high cost of implementation. Therefore, the
developed techniques can be only applied to the arrays with
modest sizes.

In this paper, we study hybrid partially-connected massive
arrays using dual-polarized antennas to enhance the reception
of an information-bearing mmWave signal. The estimation
methods of AoA and polarization state are studied for two
typical partially-connected arrays, i.e., the interleaved and
localized arrays [18]. We show that the new methods lead to
polarization diversity which coherently combines the signals
from the dual-dipoles to produce enhanced SNR. The contri-
butions also include
• For the dual-polarized interleaved arrays, we develop

a joint differential beam tracking (DBT) and cross-
correlation-to-power ratio polarization tracking (CPRPT)
estimation algorithm to effectively estimate AoA and
polarization state. Unlike those based on subspace-based
methods, e.g., ESPRIT and MUSIC, the proposed al-
gorithm is a cross-correlation based approach in which
scalar (complex) multiplications and additions only are
involved. Therefore, its complexity is much less than the
existing ones. Also, the algorithm is blind adaptive and
Doppler resilient.

• To remove the phase ambiguity in the dual-polarized
localized arrays, we further develop a differential beam
and polarization search (DBPS) estimation algorithm, in
which the real phase can be identified based on the
estimated signal power.

• We formulate the polarization state estimation as the
problem of estimating the ratio of cross-correlation to
power of the beamformed signal in the presence of re-
cursive nuisance parameters. Upper bounds of the average
SNRs are derived, showing that the proposed estimator
is asymptotically unbiased. Numerical and simulation
results show that our proposed algorithms are able to
dramatically reduce the mean square error (MSE) through
a number of iterations.

The remainder of this paper is organized as follows. Section
II introduces the planar hybrid dual-polarized interleaved and
localized arrays, and describes the received signal models.
Section III and IV propose a joint DBT and CPRPT es-
timation algorithm, and a DBPS estimation algorithm for
both interleaved and localized arrays, respectively. Section
V evaluates the performance of the proposed polarization
estimation. In Section VI, numerical and simulation results
are given to demonstrate the performance of the proposed
estimation algorithms, before concluding the paper in Section
VII.

II. SYSTEM MODELS

A. Partially-Connected Array with Crossed-Dipole Antennas

A partially-connected array typically consists of several
subarrays of antenna elements. Depending on the grouping of
the elements, an array can be configured as an interleaved or
localized array [18]. Fig. 1 illustrates these configurations us-
ing a uniform planar array (UPA). As shown in the figure, the
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Fig. 1. Two-by-two planar dual-polarized interleaved array (left) versus
localized array (right). Each antenna element includes two crossed dipoles.
The profile shape of each element indicates the subarray to which it belongs.

interleaved array has subarrays with the elements distributed in
a scattered manner over the whole array, whereas the localized
array puts together neighbouring elements to form subarrays.
Denote the intervals between neighbouring subarrays in x- and
y-directions by dsx and dsy , and those between neighbouring
elements by dex and dey . Then the intervals are given by
dsx = dsy = d, dex = Mxd and dey = Myd for interleaved
arrays, and by dex = dey = d, dsx = Nxd and dsy = Nyd for
localized arrays. Here d denotes the spacing between adjacent
elements in the array, Mx and My , the numbers of subarrays in
x- and y-directions, and Nx and Ny , the numbers of elements
in a subarray in the two directions.

In line with the enormous research on the signal processing
techniques for massive antenna arrays, the considered arrays
are assumed to employ antenna elements with omnidirectional
radiation patterns [5], [20], [21]. Each element has two spa-
tially collocated orthogonal dipoles [26], denoted by x-axis and
y-axis dipoles, respectively, which without loss of generality
are assumed along the x- and y-directions respectively. The
dipoles are used to measure the components of the incoming
electric field projected onto the directions of x- and y-axes.
Therefore, an incident wave can simultaneously stimulate two
signals in an antenna, each from a dipole. Accordingly, in
an array, two sets of signals collected from all the x- and y-
axis dipoles respectively can be formed. From the perspective
of signal reception, they represent two replicas of the signal
(wave), which can be coherently combined to enhance the
SNR at the decoder. The diversity combining depends on
the individual SNRs of each dipole, and thus requires their
estimates which can be obtained through the estimations of
AoA and polarization state of the incident wave.

The reception of the wave using a two-by-two dual-
polarized localized array and the associated signal processing
modules are illustrated in Fig. 2, where the RF and down
conversion components are omitted for simplicity. The replicas
are processed separately and identically in analog and digital
domains for the estimations of AoA and polarization state. The
modules for x- and y-axis dipoles are included in the figure,
with those for x-axis dipoles elaborated in the red and blue
dashed boxes and y-axis dipoles enclosed in the correspond-
ing solid ones. Although the numbers of analog and digital
beamformers are doubled, they are the necessary components
for polarization estimation and coherent combination.
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Fig. 2. Illustration of two-by-two dual-polarized localized array.

B. Received Signal Model

We consider the reception of a narrow-band1 plane-wave
reference signal s̃(t) using a UPA consisting of Mx × My

subarrays. Identical phase shifts are assumed in all the sub-
arrays, i.e., for any given subarray, its phase shifts are given
by α0, ..., αNxNy−1, where the product, NxNy denotes the
number of elements in a subarray. The signal with an unknown
polarization state and AoA is assumed to have a carrier wave-
length of λ, subject to a Doppler frequency shift, fD. Ignoring
the mutual couplings between elements2 [18] and between the
dual dipoles in an element3 [27], the received signals at the

1The proposed estimation methods can be potentially extended to wideband
mmWave systems, where the proposed ones are applied to all subcarriers and
frequency-domain AoA estimation [19] and polarization estimation can be
performed.

2The mutual coupling effect between different antenna elements can be
considered as a distortion of the subarray radiation pattern, leading to a
degraded SNR in our model. This will deteriorate the estimation performance
determined by the SNR. However, as reported in [19], the MSE achieved by
the adaptive algorithm in an environment without mutual coupling can be also
achieved by the same algorithm in a mutual coupling environment with more
iterations.

3In the literature studying the signal processing techniques for dual-
polarized arrays [23]–[25], [27], ignoring mutual coupling effect between two
dipoles is typically assumed.
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output of the mth analog beamformer (m = myMx + mx;
mx = 0, ...,Mx− 1; my = 0, ...,My− 1) can be expressed as

[smx (t), smy (t)] =
[Ex, Ey]√
|Ex|2 + |Ey|2

s̃(t)ej2πfDtPs(θ, φ)

· ej 2π
λ (mxd

s
x sin θ cosφ+myd

s
y sin θ sinφ)

+ [ξmx (t), ξmy (t)], (1)

where

Ex = sin γ cos θ cosφejη − cos γ sinφ

Ey = sin γ cos θ sinφejη + cos γ cosφ, (2)

denote the responses of x- and y-axis dipoles respectively,
which are normalized in the form of [Ex,Ey ]√

|Ex|2+|Ey|2
. Note that

in contrast to the signal model presented in [18] not studying
the polarization, (1) considers the components of the electric
field projected onto the directions of x- and y-axes, which can
be used to estimate the polarization state and thus improve
the SNR with coherent diversity combining. (θ, φ) ∈ [−π2 ,

π
2 )

denote the AoA in terms of the incident signal’s zenith and az-
imuth angles, respectively. γ ∈ [0, π2 ) represents the auxiliary
polarization angle and η ∈ [−π, π) represents the polarization
phase difference [27], which uniquely determine the polariza-
tion state of a wave. For example, η = 0 refers to linearly-
polarized waves, while γ = π

4 and η = ±π2 refer to left/right
circularly-polarized wave. ξmx (t) and ξmy (t) are the complex
additive white Gaussian noises (AWGNs) corresponding to
the x- and y-axis dipoles at the outputs of the mth subarray.
Ps(θ, φ) denotes the normalized subarray radiation pattern,
and when the phase shift of the nth element (n = nyNx+nx;
nx = 0, ..., Nx−1; ny = 0, ..., Ny−1) in a subarray is chosen
as αn = − 2π

λ (nxd
e
x sin θ′ cosφ′+nyd

e
y sin θ′ sinφ′), it can be

written as

Ps(θ, φ) =
1

NxNy

Ny−1∑
ny=0

Nx−1∑
nx=0

ej[
2π
λ (nxd

e
x sin θ cosφ

+nyd
e
y sin θ sinφ)+αn]

=
sin
[
Nx

π
λd

e
x (sin θ cosφ− sin θ′ cosφ′)

]
Nx sin

[
π
λd

e
x (sin θ cosφ− sin θ′ cosφ′)

]
·
sin
[
Ny

π
λd

e
y (sin θ sinφ− sin θ′ sinφ′)

]
Ny sin

[
π
λd

e
y (sin θ sinφ− sin θ′ sinφ′)

] , (3)

which has the subarray main beam directed towards the
direction/AoA represented by the angles (θ′, φ′).

The outputs of the beamformers are then converted into dig-
ital signals via analog-to-digital (A/D) converters. The samples
sampled at the iT th instance are denoted by [smx [i], smy [i]] =
[smx (iT ), smy (iT )], where T represents the sampling interval
which equals the width of a symbol carried by the wave. As
shown in Fig. 2, these samples are used to estimate the AoA
and to update the phase shifters accordingly. The samples from
x- and y-axis dipoles are weighted and summed separately by
digital beamformers as

[sx[i], sy[i]] =

MxMy−1∑
m=0

wm
[
smx [i], smy [i]

]
, (4)

where ω0, ..., ωMxMy−1 denote the coefficients which align the
phases of the samples. The resulting samples, [sx[i], sy[i]],
each from a dipole, are used to estimate the polarization
state and also for maximal ratio combining (MRC) which
produces a combined sample, s[i], with polarization diversity.
The sample can be expressed as

s[i] = [κx, κy] [sx[i], sy[i]]
T

= κxsx[i] + κysy[i], (5)

where [κx, κy] are the MRC coefficients, and [·]T denotes the
transpose. It can be seen from (1) that the coefficients depend
on both the AoA and polarization state which can be estimated
using the proposed array.

III. JOINT ADAPTIVE AOA AND POLARIZATION
ESTIMATION FOR INTERLEAVED ARRAYS

In this section, we consider the reception of the wave using
an interleaved array. In order to produce the maximum SNR
at the decoder, the array calibrates its analog and digital
beamformers and the MRC coefficients through the estima-
tions of AoA and polarization state. The estimations are given
by an iterative procedure, where in each iteration the AoA
and polarization state are estimated based on the current and
previous samples.

A. Differential Beam Tracking for AoA Estimation

The reception using an interleaved array leads to the
outputs of the neighbouring subarrays,

[
smx (t), smy (t)

]
and[

sm+1
x (t), sm+1

y (t)
]
, having a constant phase difference which

depends on the AoA of the wave [18]. This holds as long
as Ps (θ, φ) is nonzero. Therefore, an estimate of AoA can
be evaluated by extracting the phase of the cross-correlation
of the outputs. This is known as the DBT. We denote the
cross-correlations between two adjacent subarrays in x- and
y-directions by [Rxx, Ryx] and [Rxy, Ryy], respectively. As-
suming the noise components to be independent, we have

[Rxx, Ryx] =[E[(smx (t))∗sm+1
x (t)],E[(smy (t))∗sm+1

y (t)]]

=
[|Ex|2, |Ey|2]

|Ex|2 + |Ey|2
E[|s̃(t)|2]|Ps(θ, φ)|2ejux (6)

and

[Rxy, Ryy] =[E[(smx (t))∗sm+Mx
x (t)],E[(smy (t))∗sm+Mx

y (t)]]

=
[|Ex|2, |Ey|2]

|Ex|2 + |Ey|2
E[|s̃(t)|2]|Ps(θ, φ)|2ejuy , (7)

where

ux =
2π

λ
dsx sin θ cosφ

uy =
2π

λ
dsy sin θ sinφ, (8)

and (·)∗, E[·] and |(·)| represent the conjugate, expectation and
absolute value of (·), respectively. It can be seen that the AoA
is included in ux and uy which are in the range [−π, π) given
dsx = dsy = d with d ≤ λ

2 . In addition, Rxx and Ryx have
an identical phase, ux, and Rxy and Ryy, uy . Therefore, the
sums, Rxx + Ryx denoted by Rx, and Rxy + Ryy denoted
by Ry , have their individual components added in phase,
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R̂(i)
x = (1− µa)R̂(i−1)

x + µa

My−1∑
my=0

Mx−2∑
mx=0

[
(smyMx+mx
x [i])∗smyMx+mx+1

x [i] + (smyMx+mx
y [i])∗smyMx+mx+1

y [i]
]

R̂(i)
y = (1− µa)R̂(i−1)

y + µa

Mx−1∑
mx=0

My−2∑
my=0

[
(smyMx+mx
x [i])∗s(my+1)Mx+mx

x [i] + (smyMx+mx
y [i])∗s(my+1)Mx+mx

y [i]
]
.

(9)

leading to ux = arg{Rx} and uy = arg{Ry}, respectively.
Here arg{·} denotes the argument of a complex number,
falling in the range [−π, π). The estimates of (θ, φ) can be
determined by using the extracted phases, ux and uy , given

by θ = sign{ux} arcsin

(
λ
√
u2
x+u2

y

2πd

)
and φ = arctan

(
uy
ux

)
,

where sign{·} takes the sign of {·}.

The estimation is implemented in digital domain where
the continuous signal waveforms,

[
smx (t), smy (t)

]
and[

sm+1
x (t), sm+1

y (t)
]
, are converted to samples,

[
smx [i], smy [i]

]
and

[
sm+1
x [i], sm+1

y [i]
]
. Also, the expectation with respect

to the statistics of the signals given by (6) and (7) is
approximated by a weighted sum of the previous and
instantaneous estimates. The correlation coefficients, Rx
and Ry , are estimated and adjusted iteratively using the
samples taken across time. Denote the estimates of the
cross-correlations in x- and y-directions returned by the first
i− 1 iterations (samples) by R̂(i−1)

x and R̂(i−1)
y , respectively.

Taking into account the ith samples, the updates in the ith
iteration can be expressed as (9), where 0 < µa < 1 is
the updating coefficient. As shown in (9), the adjustment
caused by the new samples in the ith iteration is given
by the sum across all the neighbouring subarrays in x-/y-
directions and dipoles. The resulting computation at the ith
iteration needs (Mx − 1)My and (My − 1)Mx complex
multiplications, and (Mx − 1)My + 2 and (My − 1)Mx + 2

additions for R̂(i)
x and R̂

(i)
y , respectively. As each (product)

term has a phase of ux(uy) in the absence of additive noise,
the sum of them will constructively increase the signal
component with the phase, ux(uy). Therefore, this leads
to faster convergence and higher accuracy for the tracking.
Then, the analog and digital beamformers are adjusted
accordingly to have the array align with the estimated ux
and uy , i.e., α̂(i)

nyNx+nx
= −(nxMxû

(i−1)
x + nyMyû

(i−1)
y )

and ŵ
(i)
myMx+mx

= 1
MxMy

e−j(mxû
(i)
x +myû

(i)
y ), where

û
(i)
x = arg{R̂(i)

x } and û(i)
y = arg{R̂(i)

y }.

B. Cross-correlation-to-power Ratio Polarization Tracking

As demonstrated in Fig. 2, the polarization state, (γ, η), is
estimated based on the samples, sx[i] and sy[i], at the outputs
of the digital beamformers of x- and y-axis dipoles. Using
the updated weights of the beamformers, we can express the

output samples as

[sx[i], sy[i]]

=
[Ex, Ey]√
|Ex|2 + |Ey|2

s̃[i]ej2πfDTiPs(θ, φ)Pc(ux, uy)︸ ︷︷ ︸
signal components

+
1

MxMy

My−1∑
my=0

Mx−1∑
mx=0

[ξmx [i], ξmy [i]]e−j(mxû
(i)
x +myû

(i)
y )

︸ ︷︷ ︸
noise components

,

(10)

where

Pc(ux, uy)

=
1

MxMy

My−1∑
my=0

Mx−1∑
mx=0

ej[mx(ux−û(i)
x )+my(uy−û(i)

y )]

=
sin
[
Mx(ux − û(i)

x )/2
]

Mx sin
[
(ux − û(i)

x )/2
] · sin

[
My(uy − û(i)

y )/2
]

My sin
[
(uy − û(i)

y )/2
] , (11)

and s̃[i] = s̃(iT ) denotes the sample of the reference signal
taken at the instance t = iT . Its power is given by σ2

s̃ =
E
[
|s̃[i]|2

]
. [ξmx [i], ξmy [i]] are independent complex AWGNs at

the outputs of the mth subarray with the same power σ2
n.

As shown in (10), the polarization state, (γ, η), is contained
in the normalized responses, [Ex,Ey ]√

|Ex|2+|Ey|2
, and thus can be

extracted by exploiting their relative values. We employ the
relative values given by the stochastic cross-correlation and
powers of the signal components of (10) which, denoted by
[Qxy, Px, Py], can be expressed as

[Qxy, Px, Py]

=
[ExE

∗
y , |Ex|2, |Ey|2]

|Ex|2 + |Ey|2
σ2
s̃ |Ps(θ, φ)|2 |Pc(ux, uy)|2 . (12)

Eq. (12) indicates that the polarization state included in Ex and
Ey can be obtained through the ratios, Qxy/Px and Qxy/Py .

Given [Qxy, Px, Py], two cross-correlation-to-power ratios
can be respectively expressed as

Ux + jVx =
Qxy
Px

=
E∗y
E∗x

=
sin γ cos θ sinφe−jη + cos γ cosφ

sin γ cos θ cosφe−jη − cos γ sinφ
(13)
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and

Uy + jVy =
Qxy
Py

=
Ex
Ey

=
sin γ cos θ cosφejη − cos γ sinφ

sin γ cos θ sinφejη + cos γ cosφ
, (14)

which lead to the polarization state given by
γ = arctan

{
cos−1 θ

√
(Ux tanφ+ 1)2 + V 2

x tan2 φ

(Ux − tanφ)2 + V 2
x

}
η = sign{sin η} arccos(cos η)

(15)
and γ = arctan

{
cos−1 θ

√
(Uy cotφ+ 1)2 + V 2

y cot2 φ

(Uy − cotφ)2 + V 2
y

}
η = sign{sin η} arccos(cos η),

(16)
respectively, where for (15)

sin η =
Vx
Yx

(√
(Ux tanφ+ 1)2 + V 2

x tan2 φ

(Ux − tanφ)2 + V 2
x

− tan2 φ

√
(Ux − tanφ)2 + V 2

x

(Ux tanφ+ 1)2 + V 2
x tan2 φ

)

cos η =Y −1
x

[
(Ux − tanφ)

√
(Ux tanφ+ 1)2 + V 2

x tan2 φ

(Ux − tanφ)2 + V 2
x

+tanφ(Ux tanφ+1)

√
(Ux − tanφ)2 + V 2

x

(Ux tanφ+ 1)2+V 2
x tan2 φ

]
Yx =1 + 2Ux tanφ− tan2 φ, (17)

and for (16)

sin η =
Vy
Yy

(√
(Uy cotφ+ 1)2 + V 2

y cot2 φ

(Uy − cotφ)2 + V 2
y

− cot2 φ

√
(Uy − cotφ)2 + V 2

y

(Uy cotφ+ 1)2 + V 2
y cot2 φ

)

cos η =− Y −1
y

[
(Uy − cotφ)

√
(Uy cotφ+ 1)2 + V 2

y cot2 φ

(Uy − cotφ)2 + V 2
y

+cotφ(Uy cotφ+1)

√
(Uy − cotφ)2 + V 2

y

(Uy cotφ+ 1)2+V 2
y cot2 φ

]
Yy =1 + 2Uy cotφ− cot2 φ, (18)

where cos θ and tanφ can be obtained from ûx and ûy , as

cos θ =

√
1−

(
λ

2πd

)2
(û2
x + û2

y) and tanφ = ûy/ûx. See
Appendix A for the derivation of (15)-(18).

The basic principle of the CPRPT algorithm is to compute
the polarization state by exploiting the ratios given by (13)
and (14). As the AoA estimation proceeds, the directivity of
array will be gradually adjusted to the real AoA, leading to
increasing powers of the signal components in both x- and
y-axis dipoles. In addition, the increase of signal power also
results in increasing SNR for the cross-correlation (See Section

TABLE I
THE JOINT DBT AND CPRPT ALGORITHM

Initialization: û(0)
x , û(0)

y , R̂(0)
x , R̂(0)

y , Q̂(0)
xy , P̂ (0)

x and P̂ (0)
y ;

For i = 1 : I1 (I1 is the number of iterations.)

1. Set α̂(i)
nyNx+nx

= −(nxMxû
(i−1)
x + nyMyû

(i−1)
y ),

nx = 0, ..., Nx − 1, ny = 0, ..., Ny − 1;

2. Update [smx [i], smy [i]] using α̂(i)
nyNx+nx

in (1);

3. Update R̂(i)
x and R̂(i)

y using (9);

4. Calculate û(i)
x = arg{R̂(i)

x } and û(i)
y = arg{R̂(i)

y };
5. Update ŵ(i)

myMx+mx
= 1
MxMy

e−j(mxû
(i)
x +myû

(i)
y ),

mx = 0, ...,Mx − 1, my = 0, ...,My − 1;

6. Update [sx[i], sy[i]] using ŵ(i)
myMx+mx

in (10);

7. Update
[
Q̂

(i)
xy , P̂

(i)
x , P̂

(i)
y

]
using (19);

8. Determine γ̂(i) and η̂(i) using (15) or (16);

9. Determine κ̂(i)
x and κ̂(i)

y using (20).

End for

V for details). As a result, it can be seen that the accuracy of
the estimation improves as the iteration proceeds.

In the presence of additive noise, [Qxy, Px, Py] are es-
timated by using the outputs of the digital beamform-
ers. In line with the AoA estimation, they are evaluated
iteratively, with the values derived by the ith iteration,[
Q̂

(i)
xy , P̂

(i)
x , P̂

(i)
y

]
, related to those by the (i − 1)th iteration,[

Q̂
(i−1)
xy , P̂

(i−1)
x , P̂

(i−1)
y

]
, by[

Q̂(i)
xy , P̂

(i)
x , P̂ (i)

y

]
=(1− µp)

[
Q̂(i−1)
xy , P̂ (i−1)

x , P̂ (i−1)
y

]
+ µp

[
sx[i]s∗y[i], |sx[i]|2 − σ2

n

MxMy
, |sy[i]|2 − σ2

n

MxMy

]
,

(19)

where 0 < µp < 1 is the updating coefficient, and
σ2
n/(MxMy) is the power of noise component in (10). It

can be seen that Mx + My + 3 complex multiplications and
Mx+My+1 additions are required to form

[
Q̂

(i)
xy , P̂

(i)
x , P̂

(i)
y

]
at the ith iteration. Then the MRC coefficients, [κ̂

(i)
x , κ̂

(i)
y ] =

[ν̂
(i)
x , ν̂

(i)
y ]/

√
|ν̂(i)
x |2 + |ν̂(i)

y |2, can be obtained accordingly by

ν̂(i)
x = sin γ̂(i) cos θ̂(i) cos φ̂(i)e−jη̂

(i)

− cos γ̂(i) sin φ̂(i)

ν̂(i)
y = sin γ̂(i) cos θ̂(i) sin φ̂(i)e−jη̂

(i)

+ cos γ̂(i) cos φ̂(i). (20)

Since the above algorithm uses the ratios of cross-
correlation to powers of the beamformed output signals to
obtain the polarization state information and to track it adap-
tively, it is referred to as cross-correlation-to-power ratio
polarization tracking (CPRPT). The joint DBT and CPRPT
algorithm is summarized in Table I.
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IV. JOINT ADAPTIVE AOA AND POLARIZATION
ESTIMATION FOR LOCALIZED ARRAYS

In this section, we study the estimations of AoA and
polarization state using a localized array. The DBPS algorithm
is proposed to remove the phase ambiguity in AoA estimation,
and to determine the signal, the power of which is to be used
in polarization state estimation.

For a localized array, dsx = Nxd and dsy = Nyd. This
indicates that the values for ux (uy) will no longer be
constrained within the range of [−π, π), resulting in the phase
ambiguity. For the cross-correlations in (9), R̂(i)

x (R̂(i)
y ), there

are 2bNx/2c + 1 (2bNy/2c + 1) possible values for the
estimates of ux (uy), given by û(i)

x,p = 2πp+ arg{R̂(i)
x }, p =

−bNx/2c,−bNx/2c+1, ..., bNx/2c (û(i)
y,q = 2πq+arg{R̂(i)

y },
q = −bNy/2c,−bNy/2c + 1, ..., bNy/2c), where b·c denotes
the floor function. Therefore, a search over all the possible
ps and qs is needed to identify the real AoA. Because of
the alignment between the array and the incident wave, the
maximum received power is produced when the real AoA is
used to configure the analog and digital beamformers.

The search is conducted through receiving a sequence of
reference signals which are referred to as a scanning frame.
The frame consists of (2bNx/2c + 1) × (2bNy/2c + 1)
subframes each with I2 symbols. Each possible AoA is used to
configure the analog and digital beamformers, and then tested
by the reception of a subframe. ∀(p, q), the phase shifters of
a subarray and the weights of digital beamformers can be
expressed as α̂0, ..., α̂NxNy−1 and ω̂0, ..., ω̂MxMy−1, respec-
tively, where α̂

(i)
nyNx+nx

(p, q) = −
(
nx
Nx
û

(i−1)
x,p +

ny
Ny
û

(i−1)
y,q

)
and ŵ

(i)
myMx+mx

(p, q) = 1
MxMy

e−j(mxû
(i)
x,p+myû

(i)
y,q). Thus, the

outputs of the digital beamformers for x- and y-axis dipoles
can be expressed as

[sx[i, p, q], sy[i, p, q]]=
1

MxMy

My−1∑
my=0

Mx−1∑
mx=0

e−j(mxû
(i)
x,p+myû

(i)
y,q)

·
[
smyMx+mx
x [i], smyMx+mx

y [i]
]
. (21)

The resulting powers can be estimated iteratively as

P̂
(i)
l (p, q) = (1− β)P̂

(i−1)
l (p, q)

+ β

(
|sl[i, p, q]|2 −

σ2
n

MxMy

)
, (22)

where l denotes the subscript x or y, and 0 < β < 1 is
the updating coefficient, which is preferred to be inversely
proportional to the length of the subframe. After the whole
frame is received, the signal power estimated in the last
iteration of each subframe, P̂ (I2)

l (p, q), is used to determine
the estimate of AoA, i.e.,

(pmax, qmax, lmax) = argmax
p,q,l

{
P̂

(I2)
l (p, q)

}
. (23)

In fact, the search can be extended by using multiple scanning
frames (See Fig. 6).

In addition to the values for p and q, (23) also reflects the
powers collected by x- and y-axis dipoles for all the possible
AoAs. In the absence of additive noise, identical values are

TABLE II
THE DBPS ALGORITHM

Initialization: û(0)
x , û(0)

y , R̂(0)
x and R̂(0)

y ;

∀(p, q, l), P̂ (0)
l (p, q);

For p = −bNx/2c : bNx/2c
For q = −bNy/2c : bNy/2c

For i = 1 : I2

1. Set α̂(i)
nyNx+nx

(p, q)

= −
[
nx
Nx

(2πp+ û
(i−1)
x ) +

ny
Ny

(2πq + û
(i−1)
y )

]
,

nx = 0, ..., Nx − 1, ny = 0, ..., Ny − 1;

2. Update [smx [i], smy [i]] using α̂(i)
nyNx+nx

(p, q) in (1);

3. Update R̂(i)
x and R̂(i)

y using (9);

4. Calculate û(i)
x = arg{R̂(i)

x } and û(i)
y = arg{R̂(i)

y };
5. Update ŵ(i)

myMx+mx
(p, q)= 1

MxMy
e−j(mxû

(i)
x,p+myû

(i)
y,q),

mx = 0, ...,Mx − 1, my = 0, ...,My − 1;

6. Update [sx[i, p, q], sy[i, p, q]] using (21);

7. Calculate P̂ (i)
l (p, q) using (22);

End for i

End for q

End for p

Output: (pmax, qmax, lmax) using (23).

expected for the estimates of polarization state given by (15)
and (16). However, this does not hold in the presence of noise.
The performance of estimation will depend on the relative
values between the signal and noise powers in P̂ (i)

x and P̂ (i)
y .

The search returns the dipole that collects more signal power
for CPRPT. This is because the additive noises in x- and y-
axis dipoles result in identical noise powers in P̂ (i)

x and P̂ (i)
y ,

and thus the dipole with higher signal power will have higher
relative value which leads to better performance. The search
procedure using one scanning frame is summarized in Table
II. Once the values for p and q, and the dipole are determined,
they can be used in conjunction with DBT and CPRPT for the
estimations of AoA and polarization state.

The joint DBT and CPRPT algorithm, and DBPS algorithm
are blind adaptive since no knowledge about the reference
signal is required. These provide not only efficient online
estimation approaches, but also the benefit of bandwidth
saving and no need of specific training sequences. They are
applicable to the scenarios where the system available band-
width is limited and/or training sequences are not specified.
When there exists relative motion between the transmitter and
the receiver, the Doppler effect will happen and the AoA
and polarization state may vary with the time. However, as
shown in (6), (7) and (12), the phase shift ej2πfDt induced
by the Doppler frequency shift fD affects neither the cross-
correlations [Rx, Ry], nor the cross-correlation and powers
[Qxy, Px, Py], since this phase shift is the same for any
beamformer output signal at any given instance. That means
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fD does not affect the instantaneous estimates of AoA and
polarization. When the AoA and polarization state are time-
varying, the proposed adaptive filtering based algorithms can
track AoA and polarization state adaptively. As a result, the
proposed algorithms are also Doppler resilient.

V. PERFORMANCE OF CROSS-CORRELATION-TO-POWER
RATIO POLARIZATION TRACKING

In this section, we present an analysis on the CPRPT in
the context of a linear hybrid dual-polarized array with M

interleaved subarrays4 5. It is shown that the ratios, Q̂(i)
xy/P̂

(i)
x

and Q̂(i)
xy/P̂

(i)
y , converge to E∗y/E

∗
x and Ex/Ey , respectively,

as the number of iterations increases. Therefore, the estimate
of the polarization state obtained by CPRPT is asymptotically
unbiased.

Because of the similar statistic distributions of P̂ (i)
x and

P̂
(i)
y , we present an elaborated derivation for the ratio,
Q̂

(i)
xy/P̂

(i)
x , only. Eq. (10) can be rewritten as

[sx[i], sy[i]] =
[Ex, Ey]√
|Ex|2 + |Ey|2

s̃[i]Ps(∆û
(i−1))Pc(∆û

(i))

+ [ξx[i], ξy[i]], (24)

where Ps(∆û(i−1)) = sin[MN∆û(i−1)/2]
N sin[M∆û(i−1)/2]

denotes the normal-
ized subarray radiation pattern, with ∆û(i−1) = u − û(i−1)

representing the difference between the real and estimated
phases, and N , the number of elements in each subarray.
For a linear array, the phase, u, is given by u = 2π

λ d sin θ,

and Pc(∆û(i)) can be rewritten as sin[M∆û(i)/2]
M sin[∆û(i)/2]

. [ξx[i], ξy[i]]
are the independent complex AWGNs both with power of
σ2
n/M . Then the updates, qxy[i] = sx[i]s∗y[i] and px[i] =
|sx[i]|2 − σ2

n/M can be expressed as

qxy[i] =
ExE

∗
y |s̃[i]|2

|Ex|2 + |Ey|2
∣∣∣Ps(∆û(i−1))

∣∣∣2 ∣∣∣Pc(∆û(i))
∣∣∣2+ξxy[i]

(25)

and

px[i] =
|Ex|2|s̃[i]|2

|Ex|2 + |Ey|2
∣∣∣Ps(∆û(i−1))

∣∣∣2 ∣∣∣Pc(∆û(i))
∣∣∣2 + ξxx[i],

(26)

respectively, where

ξxy[i] =
Exs̃[i]Ps(∆û

(i−1))Pc(∆û
(i))√

|Ex|2 + |Ey|2
ξ∗y [i] + ξx[i]ξ∗y [i]

+
E∗y s̃

∗[i]P ∗s (∆û(i−1))P ∗c (∆û(i))√
|Ex|2 + |Ey|2

ξx[i] (27)

4The performance of AoA estimation has been studied in the previous
research in the context of a linear array with one-directional dipole antennas
[18]. The methods used in [18] can be directly extended for the dual-polarized
arrays. Thus, the analysis for AoA estimation is omitted in this paper, but the
resulting MSEs are presented in the simulation results.

5As shown in (3) and (11), both Ps(θ, φ) and Pc(ux, uy) are the products
of the corresponding patterns along x- and y-directions, respectively. These
two directional patterns are independent and can be decoupled from each
other. Therefore, the result for the planar array is a direct extension of the
linear array. To simplify the analysis, we consider a linear array here.

and

ξxx[i] =
Exs̃[i]Ps(∆û

(i−1))Pc(∆û
(i))√

|Ex|2 + |Ey|2
ξ∗x[i] + |ξx[i]|2

+
E∗xs̃

∗[i]P ∗s (∆û(i−1))P ∗c (∆û(i))√
|Ex|2 + |Ey|2

ξx[i]− σ2
n

M
(28)

denote the noise components induced in the ith
iteration. They can be approximated by complex
Gaussian noises with zero means, and noise powers
|s̃[i]|2

∣∣Ps(∆û(i−1))
∣∣2 ∣∣Pc(∆û(i))

∣∣2 σ2
n/M for (27) and

2|Ex|2|s̃[i]|2
|Ex|2+|Ey|2

∣∣Ps(∆û(i−1))
∣∣2 ∣∣Pc(∆û(i))

∣∣2 σ2
n/M for (28),

respectively.

The CPRPT algorithm estimates the polarization state using
the ratio, Q̂(i)

xy/P̂
(i)
x , where

Q̂(i)
xy =

i∑
k=1

qxy[k] =
ExE

∗
y

|Ex|2 + |Ey|2
i∑

k=1

|s̃[k]|2
∣∣∣Ps(∆û(k−1))

∣∣∣2
·
∣∣∣Pc(∆û(k))

∣∣∣2 +

i∑
k=1

ξxy[k] (29)

and

P̂ (i)
x =

i∑
k=1

px[k] =
|Ex|2

|Ex|2 + |Ey|2
i∑

k=1

|s̃[k]|2
∣∣∣Ps(∆û(k−1))

∣∣∣2
·
∣∣∣Pc(∆û(k))

∣∣∣2 +

i∑
k=1

ξxx[k]. (30)

Since the polarization state information is included in the
terms,

ExE
∗
y

|Ex|2+|Ey|2 and |Ex|2
|Ex|2+|Ey|2 , in (29) and (30), respec-

tively, they are taken as the wanted components which are sub-
ject to scaling and additive noise. As a result, the conditional
SNRs of Q̂(i)

xy and P̂
(i)
x , in the presence of random nuisance

parameters s̃[k], k = 1, 2, ..., i, and û(k), k = 0, 1, ..., i,
denoted by s̃ and û(i) respectively, can be expressed as

ρ
(i)
Q s̃,û(i)

=

∣∣∣∣ i∑
k=1

|s̃[k]|2|Ps(∆û(k−1))|2|Pc(∆û(k))|2
∣∣∣∣2

i∑
k=1

|s̃[k]|2
∣∣Ps(∆û(k−1))

∣∣2 ∣∣Pc(∆û(k))
∣∣2σ2

n/M

=
M

σ2
n

i∑
k=1

|s̃[k]|2
∣∣∣Ps(∆û(k−1))

∣∣∣2 ∣∣∣Pc(∆û(k))
∣∣∣2 (31)

and

ρ
(i)
P s̃,û(i) =

1

2

(
1 +
|Ey|2

|Ex|2

)
ρ

(i)
Q s̃,û(i)

, (32)

respectively. As shown in (31) and (32), the SNRs increase
with increasing number of iterations. For a value for i great
enough, both Ps(∆û

(i−1)) and Pc(∆û
(i)) approach to ones,

indicating that |s̃[i]|2
∣∣Ps(∆û(i−1))

∣∣2 ∣∣Pc(∆û(i))
∣∣2 does not

approach to zero. Therefore, as i approaches to ∞, both the
SNRs also approach to∞, implying that the noise components
in (29) and (30) gradually become negligible as the iteration
proceeds. As a result, the noise components can be omitted
after a sufficient number of iterations, leading to the ratio,
Q̂

(i)
xy/P̂

(i)
x , converging to E∗y/E

∗
x. Therefore, the estimator
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based on the ratio is asymptotically unbiased.
The evaluation of the resulting MSE requires the exact form

of probability density function (pdf) of the ratio, Q̂(i)
xy/P̂

(i)
x .

However, as far as we know, its closed form is unknown as the
pdf of the ratio of two correlated complex Gaussian random
variables with non-zero means is not available. Therefore,
instead of providing the MSE, the upper bounds of the average
SNRs of Q̂(i)

xy and P̂
(i)
x are derived to indirectly illustrate

the accuracy of CPRPT as the estimation proceeds. Taking
the expectations of ρ

(i)
Q s̃,û(i)

and ρ
(i)
P s̃,û(i) on s̃ and û(i),

respectively, one can obtain the corresponding average SNRs
at the ith iteration as ρ̄(i)

Q and ρ̄(i)
P , which are upper bounded

by (See Appendix B)

UB(ρ̄
(i)
Q ) =

ρ

2πMN2

i∑
k=1

∫ π

−π

sin2(MNû(k)/2)

sin2(û(k)/2)

·

√
ρ̄

(k)
s π2 + 1[

ρ̄
(k)
s (û(k))

2
+ 1
]3/2 dû(k) (33)

and UB(ρ̄
(i)
P ) = 1

2

(
1 + |Ey|2/|Ex|2

)
·UB(ρ̄

(i)
Q ), respectively,

where ρ = σ2
s̃/σ

2
n, and ρ̄(i)

s is the average SNR of R̂(i), which
is recursively determined as

ρ̄(i)
s =



(M−1)ρ
2N , i = 1

ρ̄
(i−1)
s + (M−1)ρ

4πN2

∫ π
−π

sin2(MNû(i−1)/2)
sin2(Mû(i−1)/2)

·
√
ρ̄
(i−1)
s π2+1[

ρ̄
(i−1)
s (û(i−1))2+1

]3/2 dû(i−1). i > 1

(34)

VI. NUMERICAL AND SIMULATION RESULTS

In this section, we present the numerical and simulation
results to demonstrate the performance of the proposed array.
The planar arrays with interleaved and localized subarrays are
studied, where the arrays are divided into two subarrays in
both x- and y-directions, respectively, i.e., Mx = My = 2.
Each subarray consists of four antenna elements in both x-
and y-directions respectively, with the spacing between the
neighbouring elements given by half of the wavelength of
the incident wave, i.e., Nx = Ny = 4 and d = λ/2.
Unless otherwise specified, we consider the reception of an
elliptically-polarized wave with the polarization state and AoA
given by γ = π/4 = 0.7854, η = −π/4 = −0.7854, θ = π/4
and φ = 0. These correspond to ux =

√
2π/2 = 2.2214 and

uy = 0 for the interleaved array, and ux = 2
√

2π = 8.8858
and uy = 0 for the localized array, respectively. The ratio
of the received signal power on x-axis dipoles to that on y-
axis dipoles is 0.5, i.e., |Ex|2/|Ey|2 = 0.5. Note that circular
and linear polarization can be considered to be special cases of
elliptical polarization. Although a state-determined elliptically-
polarized wave is used in the simulation, the proposed algo-
rithms are still applicable to circularly or linearly-polarized
wave. We assume that the reference signal, s̃(t), is a complex
Gaussian process due to the absence of synchronization be-
tween the transceivers, and denote the equivalent average SNR
per antenna element by ρa which is given by ρa = ρ/(NxNy).
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Fig. 3. ûx and ûy using DBT for interleaved arrays.
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Fig. 4. γ̂ and η̂ using CPRPT for interleaved arrays.

The updating coefficients, µa, µp and β, are set to 0.01, 0.001
and 0.25 respectively in the simulation.

The simulation results using joint DBT and CPRPT for
interleaved arrays versus the number of iterations are shown
in Figs. 3-5, where an SNR per element of -5dB is as-
sumed. Fig. 3 shows some realizations of the estimated AoA
information. As a comparison, the AoA estimations using
a conventional array [18] (using only x- or y-axis dipoles)
with the same number of antennas are also plotted. It is
seen that the proposed array (dashed lines) outperforms the
conventional ones (solid and dotted lines) in terms of the speed
of convergence and fluctuation variance. The estimation of
polarization state information is shown in Fig. 4. As shown in
the figure, both the estimates, γ̂ and η̂ based on Q̂(i)

xy/P̂
(i)
x and

Q̂
(i)
xy/P̂

(i)
y , respectively, converge to the real polarization state

with increasing number of iterations. The results obtained after
400 iterations are given by {0.7894, -0.7494} and {0.7841, -
0.7494}, respectively.
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Fig. 5. The combined output SNRs using joint DBT and CPRPT for
interleaved arrays.

Fig. 5 shows the SNRs of the combined signal using the
proposed array, and of the signals using a conventional array
using x- or y-axis dipoles only. Here, the SNR of the combined
signal is defined as the output SNR of s[i] in (5) with MRC.
The results are obtained by averaging 1000 independent simu-
lations. It is seen that the coherent combination in the proposed
array produces the highest output SNR compared with those
by the conventional array with one-directional dipoles. Since
the accuracy of estimated AoA and polarization state improves
with increasing number of iterations, the resulting SNRs
increase accordingly. Note that the simulated output SNRs
using the proposed and conventional arrays after 400 iterations
are given by 13.04dB, 7.72dB (x-axis dipoles) and 11.19dB (y-
axis dipoles), respectively. These are close to the SNRs that
are achieved by the arrays perfectly aligned with the real AoA
and polarization state, given by −5 + 10 log(4× 16) = 13dB,
13 + 10 log(1/3) = 8.23dB and 13 + 10 log(2/3) = 11.24dB,
respectively.

The simulation results using DBPS for localized arrays
are shown in Fig. 6, where the SNR per antenna element
is configured at -9dB. The signal powers collected from x-
and y-axis dipoles for all the possible AoAs are demonstrated
through the reception of four scanning frames, each consisting
of 100 symbols. Given the AoAs and Nx = Ny = 4, the
possible values for ux are given by 2(

√
2− 3)π, 2(

√
2− 2)π,

2(
√

2 − 1)π, 2
√

2π and 2(
√

2 + 1)π, and those for uy , by
−4π, −2π, 0, 2π and 4π. Therefore, there are 25 possible AoA
combinations that need to be searched over one frame, leading
to four symbols included in each subframe. From Fig. 6, it can
be seen that the indexes of the subframes which can achieve
the maximum powers in all the four frames are identical given
by 18. It corresponds to the beam with the fourth value of
ux = 2

√
2π and the third value of uy = 0. As a result, the

corresponding AoAs are determined as the estimates which
match the real AoAs. We can also see that y-axis dipoles
can collect more power than x-axis dipoles because of the
polarization state of the wave. Therefore, the power P̂ (i)

y will

0 50 100 150 200 250 300 350 400

0

0.5

1

1.5

Fig. 6. Estimated beamformed signal power profile for all the possible AoAs.
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Fig. 7. Simulated ρ̄(i)Q and its corresponding upper bounds.

be used in CPRPT.
The upper bound of ρ̄(i)

Q , UB(ρ̄
(i)
Q ), is verified in Fig. 7

for ρa = −10,−5 and 0dB, respectively. A linear hybrid
array with four interleaved subarrays each consisting of eight
elements is considered. We assume that the reference signal
has a fixed AoA, θ = π/4 and polarization state, γ = π/4
and η = −π/4. As shown in the figure, the upper bound
is relatively loose for low SNRs per antenna element, but
becomes tight as the SNR increases. It can be seen that the
bound almost matches the simulated values for an SNR of
0dB. From the figure, we can also see that the simulated
average SNR, ρ̄(i), increases as the iteration proceeds, but
its rate of increase gradually drops. This is confirmed by
(45) which shows that the ratio, ρ̄(i+1)

Q /ρ̄
(i)
Q , can be ap-

proximated by 1 + 1/ρ̄
(i)
Q for a sufficiently large i. In this

case, E
{∣∣Ps(∆û(i))

∣∣2 ∣∣Pc(∆û(i))
∣∣2} is close to one as the

difference of phase, ∆û(i), approximately equals zero.
Figs. 8 and 9 show the simulated MSEs achieved by the

proposed array and algorithm, where the results for AoA are
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Fig. 8. Simulated MSEs of û versus the number of iterations.

plotted in Fig. 8 and those for polarization state in Fig. 9.
The received signal is assumed to experience a LOS path
with ρa = 0dB and a NLOS path with ρa = −10dB. For
AoA estimation, the real values of AoAs in the LOS path
and NLOS path, u and uN , are assumed to follow uniform
distribution within [π/6, π/3] and [−π/3,−π/6], respectively.
For polarization estimation, γ and η, are uniformly distributed
over [0, π2 ] and [−π, π], respectively. The results are obtained
by averaging 10,000 independent simulations in an array
identical to that for Fig. 7. For comparison, the MSEs achieved
by x-/y-axis dipoles only are also plotted in Fig. 8. It can
be seen from Fig. 8 that the proposed array and algorithm
outperform its conventional counterparts in estimating the
AoA. After 400 iterations, the proposed array can achieve
an MSE of 0.012, whereas the conventional array using x-
axis dipoles only, 0.367. We can also see that compared with
the case of LOS only, the presence of a NLOS path leads to
a degradation in AoA estimation. This is because the NLOS
component leads to signal-dependent interference in the cross-
correlations given by (6) and (7), resulting in the estimated
AoA deviating away from the LOS. It can be seen from Fig. 9
that the MSEs of polarization state estimated by using (15) and
(16) decrease with the number of iterations. This is in line with
the analysis of the CPRPT estimator where the SNRs of the
nominator and denominator improve as the iteration proceeds.
Due to the randomness of the real AoA and polarization
state, the curves evaluated by using (15) is observed to have
similar performance to those by using (16). In addition, similar
with AoA estimation, the accuracy of polarization estimation
degrades when a NLOS path is present.

VII. CONCLUSION

In this paper, we have proposed a hybrid dual-polarized
adaptive antenna array, which not only significantly lowers
full digital implementation complexity, but also makes use
of polarization diversity to greatly enhance the capacity and
reliability of mmWave communication systems. For the inter-
leaved and localized configurations, we develop a joint DBT

0 50 100 150 200 250 300 350 400
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10
-1

10
0

Fig. 9. Simulated MSEs of γ̂ and η̂ versus the number of iterations.

and CPRPT algorithm, and a DBPS algorithm respectively,
which are blind adaptive and Doppler resilient. The former is
applicable for tracking fast time-varying AoA and polarization
state due to its high estimation convergence speed. The latter
is suitable in the AoA and polarization acquisition stage due to
the ambiguity caused by the localized array. Furthermore, we
have formulated the polarization state estimation as the ratio
estimation of cross-correlation to powers of two beamformed
signals under recursive nuisance parameters, and proved the
CPRPT estimator to be asymptotically unbiased. Numerical
and simulation results show that the proposed algorithms can
be efficiently and effectively performed for AoA and polar-
ization state estimations with a large hybrid dual-polarized
antenna array of subarrays.

APPENDIX A
THE DERIVATION OF (γ, η) ESTIMATION

From (13), we have

Ux + jVx =
sin γ cos θ sinφe−jη + cos γ cosφ

sin γ cos θ cosφe−jη − cos γ sinφ

(a)
=

tanφ · x2 + cos η(1− tan2 φ)x− tanφ

x2 − 2 cos η tanφ · x+ tan2 φ

+
j sin η(1 + tan2 φ)x

x2 − 2 cos η tanφ · x+ tan2 φ
, (35)

where (a) holds assuming x = tan γ cos θ > 0. From the
equality between the real parts (and the imaginary parts) of
two sides of (35), respectively, we can derive

sin η =
Vx(x2 − tan2 φ)

(1 + 2Ux tanφ− tan2 φ)x

cos η =
(Ux − tanφ)x2 + tanφ(Ux tanφ+ 1)

(1 + 2Ux tanφ− tan2 φ)x
. (36)

According to sin2 η+cos2 η = 1, the unknown variable x can
be obtained as

x = tan γ cos θ =

√
(Ux tanφ+ 1)2 + V 2

x tan2 φ

(Ux − tanφ)2 + V 2
x

. (37)
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As a result, (15) is derived based on (37) and (36). Similarly,
(16) is derived.

APPENDIX B
RECURSIVE UPPER BOUNDS OF ρ̄

(i)
Q AND ρ̄

(i)
P

From (32), we have ρ̄(i)
P = 1

2

(
1+|Ey|2/|Ex|2

)
ρ̄

(i)
Q , resulting

in UB(ρ̄
(i)
P ) = 1

2

(
1 + |Ey|2/|Ex|2

)
· UB(ρ̄

(i)
Q ). As a result,

we only derive UB(ρ̄
(i)
Q ) in the following. Firstly, we derive

(34). The differential signal between smx [i] and sm+1
x [i] is

rmx [i] =(smx [i])∗sm+1
x [i]

=
|Ex|2|s̃[i]|2

|Ex|2 + |Ey|2
|Ps(∆û(i−1))|2eju + (ξmx [i])∗ξm+1

x [i]

+
Exs̃[i]√

|Ex|2 + |Ey|2
Ps(∆û

(i−1))ej(m+1)u(ξmx [i])∗

+
E∗xs̃

∗[i]√
|Ex|2 + |Ey|2

P ∗s (∆û(i−1))e−jmuξm+1
x [i]

=
|Ex|2|s̃[i]|2

|Ex|2 + |Ey|2
|Ps(∆û(i−1))|2eju + zmx [i]. (38)

Equally, the differential signal rmy [i] on the y-axis dipoles is

rmy [i] =
|Ey|2|s̃[i]|2

|Ex|2 + |Ey|2
|Ps(∆û(i−1))|2eju + zmy [i]. (39)

In (38) and (39), zmx [i] and zmy [i] can be approx-
imated as complex Gaussian noises with zero means
and total noise powers 2|Ex|2|s̃[i]|2

|Ex|2+|Ey|2 |Ps(∆û
(i−1))|2σ2

n and
2|Ey|2|s̃[i]|2
|Ex|2+|Ey|2 |Ps(∆û

(i−1))|2σ2
n, respectively.

According to the DBT algorithm, û(i) is obtained by

û(i) =arg
{
R̂(i)

}
=arg

{
i∑

k=1

M−2∑
m=0

(rmx [k] + rmy [k])

}
, (40)

where R̂(i) follows complex Gaussian distribution with the
conditional mean and variance [18]

mR̂(i) =(M − 1)

i∑
k=1

|s̃[k]|2|Ps(∆û(k−1))|2eju

σ2
R̂(i) =2(M − 1)

i∑
k=1

|s̃[k]|2|Ps(∆û(k−1))|2σ2
n.

Thus, the conditional SNR of R̂(i), ρ(i)
s s̃,û(i−1) , is given by

ρ(i)
s s̃,û(i−1) =

|mR̂(i) |2

σ2
R̂(i)

=
M − 1

2σ2
n

i∑
k=1

|s̃[k]|2|Ps(∆û(k−1))|2.

Taking the expectation of ρ(i)
s s̃,û(i−1) over s̃, û(i−1), we have

the average SNR of R̂(i), ρ̄(i)
s , as

ρ̄(i)
s =Es̃,û(i−1)

{
ρ(i)
s s̃,û(i−1)

}
=

(M − 1)ρ

2

i∑
k=1

E
{
|Ps(∆û(k−1))|2

}
. (41)

From (41) and using the assumption that Ps(∆û) is a
periodic function [28], ρ̄(1)

s can be determined as

ρ̄(1)
s =

(M − 1)ρ

2
· E
{
|Ps(∆û(0))|2

}
=

(M − 1)ρ

4π

∫ π

−π

sin2(MNû(0)/2)

N2 sin2(Mû(0)/2)
dû(0) =

(M − 1)ρ

2N
,

(42)

where the initial û(0) is assumed to be uniformly distributed
in [−π, π). ρ̄(i)

s for i > 1 can be recursively determined as

ρ̄(i)
s =

(M − 1)ρ

2

i−1∑
k=1

E
{
|Ps(∆û(k−1))|2

}
+

(M − 1)ρ

2

∫ π

−π
|Ps(û(i−1))|2pû(i−1)(û(i−1))dû(i−1),

(43)

where pû(i−1)(û(i−1)) is the pdf of û(i−1). Because the pro-
posed algorithms are blind and do not require any signal
synchronization, s̃[i] is generally assumed to be complex
Gaussian distributed, and thus |s̃[i]| is Rayleigh distributed.
In high SNR regions of Rayleigh fading channels, the known
pdf of û(i), pû(i)(û(i)) = p1(û(i), ρ̄

(i)
s ) [18], where

p1(û(i), ρ̄(i)
s ) ≈

√
ρ̄

(i)
s π2 + 1

2π
[
ρ̄

(i)
s (û(i))

2
+ 1
]3/2 ,−π ≤ û(i) < π.

(44)

Based on (42)-(44), (34) can be derived.
Secondly, ρ̄(i)

Q can be represented by

ρ̄
(i)
Q =Es̃,û(i)

{
ρ

(i)
Q s̃,û(i)

}
=M

i∑
k=1

E
{
|s̃[k]|2

σ2
n

}
E
{∣∣∣Ps(∆û(k−1))

∣∣∣2 ∣∣∣Pc(∆û(k))
∣∣∣2}

≈Mρ

i∑
k=1

E
{∣∣∣Ps(∆û(k))

∣∣∣2 ∣∣∣Pc(∆û(k))
∣∣∣2} . (45)

With a Gaussian distributed reference signal, if Ps(∆û) =

1, p1(û(i), ρ̄
(i)
s ) will be the true pdf of û(i) in Rayleigh

fading channel. However, since |Ps(∆û)| ≤ 1 throughout
the iterative process, which will cause an SNR reduction,
E
{∣∣Ps(∆û(k))

∣∣2 ∣∣Pc(∆û(k))
∣∣2} in (45) will be always less

than that calculated using p1(û(i), ρ̄
(i)
s ), i.e.,

E
{∣∣∣Ps(∆û(k))

∣∣∣2 ∣∣∣Pc(∆û(k))
∣∣∣2}

≤
∫ π

−π

sin2
(
MNû(k)

2

)
N2 sin2

(
Mû(k)

2

) · sin2
(
Mû(k)

2

)
M2 sin2

(
û(k)

2

)p1(û(k), ρ̄(k)
s )dû(k)

=
1

2πM2N2

∫ π

−π

sin2
(
MNû(k)

2

)
sin2

(
û(k)

2

) ·

√
ρ̄

(k)
s π2 + 1[

ρ̄
(k)
s (û(k))

2
+ 1
]3/2 dû(k).

(46)

Substituing (46) into (45), (33) is proved.
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