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Abstract: Emerging contaminants of concern have become a serious issue for the scientific community
and society more broadly in recent years due to their increasingly widespread environmental
distribution and largely unknown environmental and human health impacts. This study aimed to
explore the use of fluorescence excitation-emission (F-EEM) spectroscopy as an alternative analytical
method to evaluate the presence of key drugs of addiction (benzoylecgonine, methamphetamine,
MDMA, codeine and morphine) in wastewater treatment plants. The chemicals of interest from
wastewater were extracted by mixed-mode solid phase extraction and quantified using liquid
chromatography tandem mass spectrometry. The same wastewater samples were also analysed
by a fluorescence spectrophotometer for fluorescence spectra at wavelengths 280–600 nm (emission)
and 200–600 nm (excitation). The study also investigated the relevance of different methods for
interpreting F-EEM matrices data including parallel factor analysis (PARAFAC) modelling and
fluorescence regional integration technique. PARAFAC identified four components, and among them,
component C2, identified at the λex/λem = 275/340 nm wavelength associated with proteinaceous
compounds most likely related to tryptophan amino acid, showed significant correlation with
codeine removal. MDMA and morphine were not correlated to any of the fluorescence regions. The
fluorescence regions related to aromatic protein-like fluorescence were correlated significantly with
drug concentration and so may offer a suitable alternative approach for monitoring drugs including
benzoylecgonine, methamphetamine and codeine.

Keywords: codeine; EEM spectroscopy; fluorescence spectroscopy; methamphetamine; PARAFAC
modelling; removal efficiency

1. Introduction

There is an exponential increase in the usage of drugs of addiction (DOA) that has led to
concomitant increases of these compounds in different environmental systems, including wastewater,
recycled water, surface water, groundwater and even drinking water [1–3]. Yadav, et al. [4] reported
that the production, synthesis and usage of DOA are increasing at an unprecedented pace globally
and at a rate above that of normal global population growth. Wastewater effluents are recognised as
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the primary source for the transfer of DOA into the environment or used in recycling schemes [5,6],
and frequent monitoring of these compounds is the only means of assessing their removal efficiency
during treatment and residue levels in discharged water (effluent).

The analytical methods currently used for detection and quantification of DOA are expensive,
time-consuming, difficult to use and require high-level training and guidance. Thus, a simple, rapid
and cost-effective alternative method would be beneficial to a wide range of stakeholders. Amongst
several techniques under consideration, fluorescence spectroscopy is a potential tool since it has shown
promising results over a wide range of analytes [7,8]. This technique is highly sensitive and can
be used to characterize organic matter in water sources through three-dimensional spectra called
excitation-emission matrices (EEM) [9]. There are several methods to interpret complex EEM data,
such as parallel factor analysis (PARAFAC) in which the data is mathematically decomposed into
chemically independent components determining both qualitative and quantitative analysis [10,11]
and fluorescence regional integration (FRI), where EEM data is divided into a number of regions, each
representing a group of substances of similar characteristics [12].

This study aimed to determine possible relations between the compounds of interest and
fluorophore components that can best describe the compounds of interest. To our knowledge, this work
is the first of its type that presented the relationship between these drugs and the nature of organic
chemicals present in wastewater identified/quantified by fluorescence spectra using PARAFAC and
FRI. The outcome shows that the fluorescence method could be used to monitor some of these emerging
contaminants on a regular basis as an alternative to more complex analytical methods.

2. Materials and Methods

2.1. Sample Collection and Preparation

Twenty-four hour composite wastewater samples (influent and effluent) were collected for seven
consecutive days on alternative months from June to December 2016 from four Australian Wastewater
Treatment Plants (WWTPs). Each WWTP was operated with different secondary treatment processes,
and detailed characteristics of each WWTP is presented in Table S1. The samples were preserved at
4 ◦C, and analysis was performed within 48 h.

2.2. Analytical Methods

The DOA chosen for this study, based on recorded concentrations from our previous work [13],
were: cocaine in the form of its major metabolite benzoylecgonine (BE); methamphetamine (METH);
3-4-methylenedioxymethamphetamine (MDMA); codeine; and morphine. These compounds were
extracted by solid phase extraction (SPE) and analysed using liquid chromatography-tandem mass
spectrometry (LC-MS/MS) according to published methods [14].

For dissolved organic carbon (DOC), UV-Vis absorbance, and fluorescence spectral analysis, the
samples were filtered using 0.45 µm pre-rinsed sterile cellulose membrane filters the same day and
analysed within 48 h. DOC was determined by the non-purgeable organic carbon (NPOC) method
using a Sievers TOC analyser (Sievers InnovOX, GE Analytical Instruments, USA) attached to an
autosampler. UV-Vis absorbance was measured by spectrophotometer (UV 340, MIOSTECH, China)
at 200–700 nm wavelength at 1 nm interval in medium scanning mode. Fluorescence EEM spectra
were acquired by a Perkin Elmer LS55 fluorescence spectrophotometer (United Kingdom) using 1 cm
quartz cuvette at wavelengths of 280–600 nm emission (Em) and 200–600 nm excitation (Ex) at 7 nm
slit widths. F–EEM spectroscopic method generates three-dimensional spectra where fluorescence
intensities are scanned for wide-ranging excitation and emission wavelengths (Figure 1). The samples
were pre-diluted with Milli-Q water to minimize the inner-filter effect [9].
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2.3. Fluorescence Excitation-Emission Matrix Data Analysis

F-EEM data were analysed by two methods: i) PARAFAC and ii) FRI. PARAFAC was performed
using drEEM toolbox through MATLAB R2015b, as defined by Andersson and Bro [15]. The raw EEM
data were pre-processed including spectral and inner filter corrections, Raman normalization and
blank subtraction, as described by Murphy, et al. [11], prior to PARAFAC modelling. The PARAFAC
modelling was used to decompose the data sets into diverse fluorescent components applying
non-negativity constraints using alternating least square solution. Four fluorophore component
models were validated after split-half validation method and Fmax intensities of each sample was
obtained, which was used as a specific fluorescence index.

The FRI method suggested by Chen, et al. [12] was used to calculate five regions: protein 1 (P1),
protein 2 (P2), fulvic-acid like (FA), humic-acid like (HA) and soluble microbial by-products (SMP).

2.4. Statistical Analysis

Statistical analyses were performed using IBM SPSS Statistics, Version 23.0. (Armonk, NY:
IBM Corp.). Relationships between F-EEM regions (PARAFAC components and FRI regions) were
investigated using Bivariate Pearson correlation (alpha significance ≤ 0.05 at 95% confidence interval)
with a two-tailed test of significance.

3. Results and Discussion

3.1. Fluorescence-EEM

F-EEM spectra obtained from fluorescence spectroscopy can provide a qualitative assessment of
the performance of the treatment plant regarding organics removal, but lacks quantitative evaluation.
Figure S1 compares the influent and effluent F-EEM’s of WWTP1 and WWTP4 operated with a
conventional activated sludge reactor (ASR) and integrated fixed-film ASR secondary treatment,
respectively. A significant decolourization effect in the EEM spectra of WWTP4 effluent relative to
WWTP1 indicates better removal of the fluorescent organic matter by WWTP4 which is in agreement
with the higher DOC removals recorded by that plant (see Table S2 for DOC data). Although the
EEM spectra provide useful information, it is only semi-quantitative; thus, fluorescent regions were
evaluated by PARAFAC modelling and FRI method, as per Section 2.3, to provide a quantitative
assessment. The PARAFAC analysis identified four fluorophore components through a split-half
validation method for wastewater samples, as presented in Figure 1. Each component had a single
peak with single excitation and emission maxima, as reported in Table 1.

Table 1. Peaks identified from parallel factor analysis (PARAFAC)-derived components and compared
with other studies.

Components Peak Identified * Maximum Ex/Em
(nm)

Existing substances
in the samples

Previously reported
by References

C1 A * 250/460 Humic-like: Terrestrial [16–18]
C2 T * 275/340 Protein-like: Tryptophan [19–21]
C3 C * 345/420–440 Wastewater: Fulvic acid-like [22,23]

C4 M * 310/400 Humic-like: Microbial
Carboxylic acid [24,25]

* According to Coble [26].

Figure 1 shows the corresponding EEM contour plots and line plots presenting spectral loadings
for each component. According to the emission and excitation peaks, C1 was identified as a humic-like
component traditionally named peak A, C2 as proteinaceous component most likely related to
tryptophan amino acid, component C3 as fulvic-acid like and C4 as a humic-like microbial component.
The component C1 (λex/λem~250/460) dominated in almost all effluent samples, and the peak
identified represents terrestrial humic-like organics known to be present in wastewater-impacted
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environments [22]. The protein-like region, component C2 (λex/λem~275/340), was dominant in
influent samples, and a clear decline was observed in effluents across WWTPs. The component C2,
also known as Peak T, generally contributes the highest intensity peak in wastewater. This component
was mostly related to different biological activities, including bacterial [20], and thus preferential
decline is expected during the treatment process. Component C3 (λex/λem~345/420-440) peaks are
associated with a fulvic acid-like fluorophore (peak C) that characterises wastewater and was detected
at reduced intensity in the effluent. Our component C3 is similar to a component (C2) described by
Yamashita, et al. [16] that resembles the humic-like fluorophore. Mostofa, et al. [27] observed a similar
peak in their study and identified this as a household detergent-like component. Finally, the C4 region
(λex/λem~310/400) is designated as a humic-like fluorophore that signifies microbial contamination
(peak M; Coble [26]). Goslan, et al. [25] recognised a similar peak in their study for carboxylic acid
representing a nitrogen-containing compound. Accordingly, its intensity was reduced here in effluent
samples as compared to influent samples.

A Pearson correlation coefficient was computed to assess the relationship between DOC
concentrations and PARAFAC components. Overall, a significant correlation was identified between
DOC concentration and C1 (p = 0.027) and C4 (p = 0.005) components for Fmax intensities of effluent
samples. This observation suggests that an increase in DOC was possibly due to increased humic
substances [28] as component C1 and C4 are identified to consist of humic-like substances.
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Figure 1. Contour plots of the four components derived from the excitation-emission matrices (EEM)
dataset after PARAFAC analysis (Left), and line plots showing spectral loadings on four components
(Right). The relative abundances of five regions identified based on the method of Chen, et al. [12] are
summarised in Figure 2. The results showed higher percentages of protein compounds (P1, P2 and
SMP) as compared to organic compounds (HA and FA), and these findings are comparable to others
that supported a higher proportion of proteins in wastewater [29,30].
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3.2. Fluorescence-EEM Removal during Treatment Processes

The removal efficiency of each WWTP for an individual component is illustrated in Figure 3. For
each WWTP, Fmax intensities with respect to four components were recognised as ‘H-Terres’ (humic-like:
terrestrial C1), ‘P-Tryp’ (protein tryptophan-like C2), ‘FA’ (fulvic acid-like C3) and ‘H-Microbial’
(microbial humic C4). Overall, the C2 proteinaceous component was reduced most efficiently during
wastewater treatment among all WWTPs, especially by WWTP3b (membrane bioreactor followed by
UV disinfectant).

The results of Pearson correlation analysis between identified PARAFAC components (n = 4) and
FRI regions (n = 5) are shown in Table 2. A positive relationship was identified between component C4
and other components C1, C2 and C3 (p = 0.001) because C4 was linked with carboxylic acid, and other
components C1 (HA) and C3 (FA) may contain carboxylic groups in their structure. Similarly, C1 and
C3 are very well correlated since both humic and fulvic acids have similar structure and likely have
similar methods for removal from investigated WWTPs. On the other hand, a negative significant
relationship was confirmed between P1–C1 (p = 0.04) and P1–C3 (p = 0.002) components. P1 is related
to proteinaceous compounds. The increase of microbial activity during activated sludge treatment
may have helped to degrade C1 and C3, and while doing so, may have left a microbial footprint of P1
protein compounds. Yu, et al. [31] describe how operational conditions such as sludge retention time
(SRT) can affect the characteristics of SMPs in activated sludge WWTP. For example, with increased
SRT during ASR treatment, the amount of SMP decreases, but the reactivity and aromaticity of SMPs
also increases. Similarly, longer SRT generates more high molecular weight compounds (>10,000 Da).
Accordingly, if the nature and levels of these compounds vary so much depending on ASR operation,
it is possible that DOA removal efficiency might have been affected by WWTP operation in ways that
may not necessarily correlate with the measured fluorophore components.
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Figure 3. The removal efficiency (%) of fluorescence excitation-emission (F-EEM) components derived
from EEM datasets in the studied WWTPs. C1: H-Terres (humic acid-like terrestrial); C2: P-Tryp
(protein-tryptophan), C3: FA (Fulvic Acid-like), C4: H-microbial.

Table 2. Pearson correlation coefficients (r) and associated significance level between the removal
efficiencies of different F-EEM indexes in the investigated WWTPs (n = 40).

F-EEM Indexes P2 FA SMP HA C1 C2 C3 C4

P1 0.544 ** 0.262 0.060 −0.146 −0.326 * −0.020 −0.469 ** −0.212
P2 - 0.010 −0.019 −0.101 0.090 −0.034 −0.239 0.130
FA - - 0.133 0.258 0.088 −0.059 0.153 −0.011

SMP - - - −0.035 −0.204 −0.033 −0.083 −0.098
HA - - - - 0.081 0.199 −0.217 −0.053
C1 - - - - - 0.315 * 0.749 ** 0.597 **
C2 - - - - - - 0.402 * 0.611 **
C3 - - - - - - - 0.609 **

* Correlation is significant at the 0.05 level (2-tailed); ** correlation is significant at the 0.01 level (2-tailed).

3.3. Targeted Drugs Removal during Wastewater Treatment

All the compounds (DOA) were detectable in influent and effluent wastewater samples ranging
from a few ng/L to µg/L. Codeine and METH had the highest concentrations of all the examined
drugs in all WWTPs. Concentration profiles of all the DOA are reported in Figure 4 and presented as
the average of four WWTPs during the sampling period (4 months × 7 days = 28 samples/WWTP).
There was a significant decrease in the concentrations of all the targeted DOA in effluent samples after
the treatment processes; however, their presence in effluents proves they are only partially eliminated
during the wastewater treatment process. Thus, the removal rate of targeted DOA was estimated by
evaluating the relative concentration in effluent versus influent wastewater.
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Figure 4. Targeted drugs average concentration profiles in influent and effluent wastewater samples
collected from each WWTP during the study period. The concentrations are presented as mean ± SD
where n = 112 for influent and n = 140 for effluent samples. Asterisks represent statistically significant
differences between influent and effluent concentrations (significance level of 2-tailed t-test where:
**** = p < 0.001).

Varying removal efficiencies were observed for the DOA in the WWTPs depending on the
secondary treatment process and physical-chemical properties of drugs [13]. For example, differences
in removal efficiency were observed for BE (91% vs. 28%) and MDMA (40% vs. 30%) in WWTP1
and WWTP2, respectively, operating with two different secondary treatment processes. Figure 5
summarises the removal efficiencies (mean ± SD) of the DOA with respect to WWTP during
the sampling period. The variation in removal efficiency can be associated with several factors,
including WWTP operational conditions (hydraulic or sludge retention time), influent load or drugs
type [13,32,33]. A relationship was determined between removal efficiencies and DOA load, and it
was found that BE, METH and codeine removal was significantly correlated with their respective drug
loads (p < 0.01).

In this study, METH and morphine were removed most effectively (average ≈ 90%). BE removal
was >80% in all WWTPs except for WWTP2, which also showed an overall low performance for all
DOA and dissolved organic carbon. MDMA showed highly diverse removal rates (30–90%) among
WWTPs as well as within the WWTP. Codeine was almost completely removed by WWTP3 and
WWTP4, but less than 50% average removal efficiency was achieved by WWTP1 and WWTP2.
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each of the four WWTPs.

3.4. Relationship between DOA Removal and F-EEM Regions

To determine the relationship between the targeted DOA removal and F-EEM indexes (PARAFAC
components and FRI regions), a Pearson correlation analysis was carried out. The results are
summarised in Table 3, and a correlation was examined for BE, METH and codeine removal with
F-EEM regions. A significant negative relationship was observed between proteinaceous related
regions (aromatic proteins, tyrosine and tryptophan-like substances) with BE and METH removal
efficiency, while a significant positive relationship was seen with codeine removal. The results from
this study show that the removal efficiency of BE and METH decreases with an increase in protein-like
substances, and the possible reason for this might be their protein binding properties. Both compounds
(BE and METH) have a low binding affinity with protein [34,35], and this could be the reason for
their negative relationship with their removal efficiency. Alternatively, protein binding of codeine is
higher (≈30%) compared to BE and METH [36]; therefore, component C2 related to tryptophan-like
substances was positively correlated with codeine removal. Regarding MDMA and morphine, no
significant correlations were observed with any of the F-EEM regions.

Table 3. Summary of the Pearson correlation analysis between drug removal and F-EEM indices.

Compounds F-EEM correlated regions Pearson coefficient (r) p-value

Benzoylecgonine P1 −0.407 0.009 **
P2 −0.329 0.038 *

Methamphetamine

P1 −0.324 0.041 *
P2 −0.436 0.005 **

SMP −0.401 0.010 *
HA 0.329 0.038 *

Codeine
C2 0.433 0.005 **
FA −0.369 0.019 *

* Denotes correlation is significant at the 0.05 level (2-tailed); ** denotes correlation is significant at the 0.01 level
(2-tailed).

Regarding organic regions (humic and fulvic), METH was correlated with HA (p = 0.038) and
codeine with FA (p = 0.019) FRI regions. It is not clear at present what the reason was for the positive
relationship between HA and METH removal, while the relationship was negative between FA and
codeine removal, but we can postulate that it may be associated with the compounds’ physio-chemical
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properties. No correlation was observed between DOA removal and PARAFAC components except for
C2 with codeine removal. The findings obtained from this study lead to the conclusion that there was
some relationship between DOA removal and protein regions, but relatively little for humic/fulvic-like
substances. Thus, follow up research should consider investigating different water matrices and study
relationships between drugs at controlled concentrations and fluorescence spectra.

4. Conclusions

In this study, wastewater samples collected from different WWTPs were analysed to find the
possibility of using fluorescence spectroscopy to monitor DOA. The fluorescence data were analysed by
different methods (PARAFAC and FRI), and a positive relation was observed between the same regions,
while negative relation was observed between different regions. The DOA with higher estimated
removals (METH and codeine) were correlated well with fluorescence indexes related to proteinaceous
substances. However, no correlation was observed with PARAFAC components; this could be due
to less identified components during the PARAFAC modelling. Overall, this study provides a first
assessment of the feasibility of using fluorescence spectroscopy for the monitoring of DOA in relation
to their removal in WWTPs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/2/377/s1,
Table S1: Characteristics of wastewater treatment plants selected for the study, Table S2: Average dissolved organic
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