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ABSTRACT 62 

Plant phenology – the timing of cyclic or recurrent biological events in plants – offers insight 63 

into the ecology, evolution, and seasonality of plant-mediated ecosystem processes. Traditionally 64 

studied phenologies are readily apparent, such as flowering events, germination timing, and 65 

season-initiating budbreak. However, a broad range of phenologies that are fundamental to the 66 

ecology and evolution of plants, and to global biogeochemical cycles and climate change 67 

predictions, have been neglected because they are “cryptic” – that is, hidden from view (e.g root 68 

production) or difficult to distinguish and interpret based on common measurements at typical 69 

scales of examination (e.g leaf turnover in evergreen forests). We illustrate how capturing cryptic 70 

phenology can advance scientific understanding with two case studies: wood phenology in a 71 

deciduous forest of the northeastern USA and leaf phenology in tropical evergreen forests of 72 

Amazonia. Drawing on these case studies and other literature, we argue that conceptualizing and 73 

characterizing cryptic plant phenology is needed for understanding and accurate prediction at 74 

many scales from organisms to ecosystems. We recommend avenues of empirical and modeling 75 

research to accelerate discovery of cryptic phenological patterns, to understand their causes and 76 

consequences, and to represent these processes in terrestrial biosphere models. 77 

78 
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1. INTRODUCTION 79 

All organisms have physical limits beyond which they function poorly or perish, and face trade-80 

offs in the allocation of finite resources to different structures and functions (Araújo et al., 2013; 81 

Bennett & Lenski, 2007). Evolutionary strategies to establish, survive, grow, and reproduce are 82 

shaped by such fundamental constraints and trade-offs (Roff & Fairbairn, 2007; Stearns, 1989). 83 

When physical constraints or available resources vary regularly through time, organisms often 84 

evolve temporal patterns in their activities to match or complement these variations (Diamond, 85 

Frame, Martin, & Buckley, 2011). Temporal rhythms can also arise from time-dependent 86 

biological process such as ontogeny and demography (Niinemets, García-Plazaola, & Tosens, 87 

2012; Thomas & Winner, 2002). The Earth surface experiences seasonal cycles in temperature, 88 

precipitation, and light that influence the availability of resources and the potential to carry out 89 

the chemistry underlying biological processes (Schwartz, 2013; A. H. Strahler & Strahler, 2006). 90 

Sessile organisms, such as most multicellular plants, are subjected to these seasonal cycles in-91 

place. Plant phenology—the timing of cyclic or recurrent biological events in plants—represents 92 

functional strategies to persist within the bounds of natural climate seasonality and biological 93 

possibility (Forrest & Miller-Rushing, 2010; Rathcke & Lacey, 1985). The study of phenology 94 

has thus long been used as a means for gaining insight into the ecology and evolution of plants 95 

and other organisms (Lieth, 1974). 96 

 The term ‘phenology’ traces to the Greek root phaino, meaning ‘to show,’ or ‘to appear’ 97 

(Schwartz, 2013), and early influential works on phenology promoted observations of 98 

phenomena that were ‘sharp,’ ‘visible,’ and easy to detect (Leopold & Jones, 1947). In today’s 99 

lexicon, common definitions of phenology broadly encompass the timing of cyclic or recurrent 100 

biological events in plants, along with the causes and consequences of that timing (e.g. Lieth 101 
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1974, and (phenology, n. : Oxford English Dictionary, 2005). In contrast with broad 102 

contemporary definitions of phenology, studies of phenology often reflect the origin and history 103 

of the term by focusing on readily apparent biological events. These are generally aboveground 104 

and accompanied by changes that are readily and reproducibly distinguished with human senses 105 

such as visible changes in color, position, mass and volume. In plants, these include phenomena 106 

such as germination in annual plants, synchronized leaf production (leaf flush) and abscission in 107 

deciduous forests (Murali & Sukumar, 1993; Richardson & O’Keefe, 2009), and the onset of 108 

anthesis (flower opening) (Schwartz, 2013). Some phenological patterns, such as deciduous 109 

forest leaf onset, are also apparent at canopy and larger spatial scales with remote sensing tools 110 

ranging from phenocams to satellites (Badeck et al., 2004; Buitenwerf, Rose, & Higgins, 2015). 111 

Studying the timing and controls of such apparent biological events has contributed to 112 

understanding the evolution of plant traits and strategies in response to cycles in temperature, 113 

precipitation, photoperiod, and other physical variables (Chuine, 2010; Z. Huang, Liu, Bradford, 114 

Huxman, & Venable, 2016; Pau et al., 2011; van Schaik, Terborgh, & Wright, 1993). 115 

Phenological studies have also advanced our understanding of ecology, as many phenological 116 

patterns are coupled to biotic interactions such as intra-annual dynamics of predator or mutualist 117 

populations (Pau et al., 2011; Schwartz, 2013). More recently, some phenological events, such as 118 

date of anthesis or first leaf emergence, have proven useful indicators of biological responses to 119 

climate change (e.g. Parmesan & Yohe, 2003), and the relative ease of observing such events has 120 

enabled citizen science at regional and continental scales (Schwartz, Betancourt, & Weltzin, 121 

2012).  122 

However, many processes in plants are not readily apparent, but are no less cyclic or 123 

seasonal than the more easily observed phenomena that humans have historically monitored. 124 
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These phenologies are what might be called ‘cryptic.’ Some phenological patterns are difficult to 125 

detect because they are hidden, including below-ground activities such as allocation to roots, and 126 

internal processes such as allocation to carbohydrate reserves or cell differentiation. Other 127 

phenological patterns are missed or misinterpreted based on common measurements at typical 128 

scales of examination (e.g. changes in mass, area or volume of plant organs or of biomass pools).  129 

Cryptic phenologies are not as well understood as apparent phenologies, and they have not been 130 

used as indicators of climate change. Yet phenologies, including cryptic phenologies, play 131 

critical roles in ecosystems, and mediate large-scale fluxes of carbon, nutrients, water, and 132 

energy that are essential to consider as Earth’s climate changes (Abramoff & Finzi, 2015; 133 

McCormack, Adams, Smithwick, & Eissenstat, 2014; Noormets, 2009; Richardson, Keenan, et 134 

al., 2013b).  135 

To address the disparity between the narrow scope of apparent phenology and the much 136 

broader scope of cyclic and seasonal plant activities, we first offer a framework with terminology 137 

that identifies the underlying challenges to observing, interpreting, and modeling cryptic 138 

phenologies. Then, focusing on trees, we review specific case studies in which missing cryptic 139 

phenology leads to problems for understanding and modeling seasonal ecosystem processes: 140 

wood allocation in a temperate mixed forest, and leaf phenology in tropical evergreen Amazon 141 

forests. We emphasize that attention to cryptic phenology is timely because many terrestrial 142 

biosphere models (TBMs, the models used to represent vegetation of the land surface in Earth 143 

system models and needed for climate change predictions; Fisher, Huntzinger, Schwalm, & 144 

Sitch, 2014), assume that cryptic phenologies are strongly correlated with apparent phenologies, 145 

and that such assumptions can lead to misattribution of the causes behind observed fluxes of 146 

carbon, water, nutrients, and energy. Although we focus on trees, we argue that cryptic 147 
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phenologies are ubiquitous, and their conceptualization, characterization, and interpretation are 148 

essential for accurate prediction at scales from organisms to ecosystems across the globe. 149 
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Table 1.  Categorization of plant phenologies based on our current capacity for successful measurement, observation, and/or interpretation.  150 
Plant phenology 
category 

Specific examples Frequently 
measured? 

Model representation 
examples 

Examples of current or possible 
use 

Apparent     
 Phases and events 

easily observed by 
humans. 

• Bud burst1  
• Leaf abscission2 
• Anthesis3 
• Fruit maturation4 

Yes, and some records 
extend for decades or 
longer. 

May be prescribed by 
relying directly on 
observations to force the 
model (e.g. remote sensing 
indices), or may be 
simulated based on 
environmental controls 
(e.g. growing degree 
days).5 

• Defining the duration of the 
growing season in seasonally 
dormant systems.6,7 

• Testing capacity of 
hydrothermal models to predict 
events such as germination.8,9 

• Using changes in timing of 
phenological events as 
indicators of climate 
change.10,11,12 

Cryptic: hidden     
 Phases and events 

that are internal or 
obstructed by some 
barrier and thus 
difficult to detect. 

• Below-ground processes 
such as root production.13,14  

• Structural changes within 
cells or tissues such as 
xylem formation.15 

• Remote sensing in cloudy 
regions such as wet tropical 
forests.16 

No, but these blind 
spots are generally 
acknowledged.  

Often assumed to be linked 
to or dependent on 
apparent phenology.17,18 
This assumption is 
generally explicit.  

• Modeling of whole plant carbon 
and water dynamics.19,20 

• Estimating intra-annual cycles 
of biomass gain.15 

• Identifying temporal variation 
in below-ground interactions 
and associations.21,22 

Cryptic: ambiguous     
 Phases and events 

that are missed or 
misinterpreted due 
to summed variables 
or compensatory 
processes in the 
same variable. 
 

• Leaf quantity appears 
constant despite leaf 
turnover because new leaf 
production compensates for 
simultaneous old leaf 
abscission.23 

• Bole diameter can be 
affected by both wood 
formation and water 
status.24  

No, and these blind 
spots are not widely 
acknowledged. 
Measurements are 
needed at fine spatial 
or temporal scales, or 
with specialized tools, 
to capture and/or 
interpret the 
phenological pattern. 

Often assumed to be 
represented by apparent 
phenology and/or assumed 
constant. These 
assumptions are generally 
implicit and often 
unrecognized.  

• Decomposing measurements 
into components that reveal 
phenological strategies.25,26 

• Attributing cycles of ecosystem 
flux to endogenous versus 
exogenous drivers.27,28 

• Resolving lagged responses 
from instantaneous responses 
and their relationship to periods 
of stress.29,30 
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 151 

1 Budburst. (2019). Budburst: An online database of plant observations, a citizen-science project of the  
Chicago Botanic Garden. Glencoe, Illinois. https://budburst.org/plant-groups 
2 (Escudero & Del Arco, 1987) 
3 (Smith-Ramirez, Armesto, & Figueroa, 1998) 
4 (Spellman & Mulder, 2016) 
5 (Huntzinger et al., 2012) 
6 (Churkina, Schimel, Braswell, & Xiao, 2005)} 
7 (Schwartz, 2013) 
8 (Bauer, Meyer, & Allen, 1998) 
9 (Hardegree, 2006) 
10 (Badeck et al., 2004) 
11 (Schwartz, AHAS, & AASA, 2006) 
12 (Cleland, Chuine, Menzel, Mooney, & Schwartz, 2007) 
13 (Steinaker & Wilson, 2008) 
14 (Radville, McCormack, Post, & Eissenstat, 2016) 
15 (Cuny et al., 2015) 
16 (Asner, 2001) 
17 (Delpierre, Berveiller, Granda, & Dufrene, 2015) 
18 (Abramoff & Finzi) 
19 (Hu, Moore, Riveros-Iregui, Burns, & Monson, 2010) 
20 (Michelot et al., 2012) 
21 (Mullen & Schmidt, 1993) 
22 (S. W. Simard et al., 2012) 
23 (Albert et al., 2018) 
24 (Chitra-Tarak et al., 2015) 
25 (Tang & Dubayah, 2017) 
26 (Smith et al. 2019) 
27 (Wu et al., 2016) 
28 (Migliavacca et al., 2015) 
29 (Ogle et al., 2015) 
30 (Guo & Ogle, 2018) 
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2. THE CHALLENGE OF CRYPTIC PHENOLOGY: A FRAMEWORK 152 

As discussed above, we describe apparent phenologies as those that were selected for clear 153 

observation by humans, often with minimal technological support. By contrast, cryptic 154 

phenologies require extensive investigation or validation to capture, and as a consequence have 155 

rarely been measured at the temporal or spatial scale necessary to document and understand 156 

(Table 1). ‘Cryptic’ is a useful term because it implies concealment and ambiguity—two general 157 

challenges to capturing and understanding the full scope of cyclic/recurrent biological events in 158 

plants. To highlight these challenges, here we frame cryptic phenology as ‘hidden’ or 159 

‘ambiguous.’ 160 

Plant phenological patterns are hidden when some physical or technological barrier 161 

obstructs observation (Table 1). Soil conceals below-ground processes such as cycles of root 162 

production and turn-over (Abramoff & Finzi, 2015; Delpierre et al., 2016). Internal plant 163 

structures are (by definition) hidden behind layers of cells, making the timing of recurrent 164 

processes such as secondary xylem (wood) formation difficult to observe in vivo (Chaffey, 1999; 165 

Plomion, Leprovost, & Stokes, 2001). Large-scale phenological processes can also be hidden, as 166 

cloud cover can consistently obstruct satellite observations of vegetation reflectance over humid 167 

regions such as tropical forests (Asner, 2001). In dense forests, the upper canopy leaves partly 168 

obstruct remote sensing observations of mid- and understory leaf area patterns (Tang & 169 

Dubayah, 2017) and vice versa for ground-based observations, (Smith et al., 2019). When 170 

phenological processes are hidden, describing them often requires time-consuming methods, 171 

such as minirhizotrons or soil cores (for roots; Abramoff & Finzi, 2015; Gaudinski et al., 2010), 172 

fixation of tissue samples from multiple time periods (for wood formation; Arend & Fromm, 173 

2007), or ‘ground truth’ observations (for remotely-sensed vegetation greenness indices; 174 
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Chavana-Bryant et al., 2017; Lopes et al., 2016; Richardson et al., 2018; Wu et al., 2017). 175 

Hidden phenological patterns are challenging and/or time-consuming to measure, but the 176 

scientific community frequently acknowledges the scarcity of these measurements, and models 177 

including hidden phenology explicitly define their representation within allocation schemes (e.g. 178 

Abramoff & Finzi, 2015).  179 

Phenological patterns in plants are ambiguous if phases and events are missed or 180 

misinterpreted due to summed variables or compensatory processes in the same variable (Table 181 

1). A measured variable (e.g. plant mass, canopy leaf area, or bole volume) may be a function of 182 

multiple variables that are not synchronized with each other (Fig. 1a), making it difficult to 183 

interpret the temporal changes in the measured variable. For example, determining whether 184 

changes in tree stem diameter are caused by long-term carbon gain (such as xylem wall 185 

thickening), or reversible changes in plant water status (such as stem expansion or shrinkage), is 186 

difficult solely on the basis of stem diameter measurements (Chitra-Tarak et al., 2015; Cuny et 187 

al., 2015; Sheil, 1997). Additional examples of ambiguous phenological patterns arise when, for 188 

a given system, there are inputs and outputs of the same variable that are compensatory, 189 

maintaining the appearance of constancy despite change. For example, compensatory leaf 190 

production and abscission could maintain a constant total quantity of leaves in the canopy, 191 

belying underlying cycles in leaf production and abscission (Albert et al., 2018; Doughty & 192 

Goulden, 2008; Wu et al., 2016). In this example, at least two of the three terms (inputs, outputs, 193 

and total) need to be sufficiently constrained by measurements to determine whether the steady 194 

state of the total is achieved due to constant inputs and outputs (Fig. 1b) versus cyclic, but 195 

compensatory inputs and outputs (Fig. 1c). Whatever the scale of study, measuring multiple 196 
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terms over time requires more effort and/or instrumentation, and this difficulty contributes to the 197 

challenge of recognizing and resolving ambiguous phenology.  198 

Whereas hidden phenological patterns are often acknowledged to exist, but rarely 199 

measured, ambiguous phenological patterns are not frequently acknowledged because 200 

measurements are being made—the challenge lies in interpreting those measurements. For 201 

example, we understand that root phenology is hidden, and difficult to measure, because roots 202 

are underground. By contrast, we may not even realize that leaf production and loss show 203 

seasonal rhythms if the quantity of leaves in a canopy is largely constant (a compensatory 204 

scenario). The distinction between hidden and ambiguous categories is not absolute because 205 

phenology could be both hidden and ambiguous. For example, the mechanism of biomass gain 206 

(xylogenesis) is hidden within stems, and stem diameter represents an integration of cells at 207 

different stages in the sequence of xylogenesis: cell expansion, secondary cell wall thickening, 208 

lignification and dead cells (Cuny et al., 2015; Plomion et al., 2001). Thus changes in stem 209 

diameter emerge from expansion as well as biomass gain (Cuny et al., 2015), resulting in some 210 

ambiguity. 211 

Cryptic phenologies do not follow fundamentally different rules than their more apparent 212 

counterparts. Plant phenologies, in general, are consequences of biology, climatic seasonality, 213 

and their interactions. Yet a focus on cryptic phenology challenges us to explicitly consider our 214 

current observational blind spots. These blind spots may prevent us from gaining a 215 

comprehensive understanding of organismal strategies and limitations in relation to their biology 216 

and physical environment, with consequences for our understanding of population, community, 217 

and ecosystem ecology. Ultimately, our ability to document, understand, and model the 218 

component processes that contribute to large-scale biosphere/atmosphere exchange of CO2 and 219 
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water vapor, impacts our ability to predict responses of natural systems to global change (Getz et 220 

al., 2017; Noormets, 2009; Richardson et al., 2012). 221 

 222 
Figure 1: Examples of ambiguous phenological patterns. In example 1, multiple variables (Y and 223 
Z) contribute to some total that is measured. Variables Y and Z may have different peak timing, 224 
different rates of change, and/or different amplitudes, that become summed for the measured total. 225 
Thus the phenological patterns of individual variables Y and Z are ambiguous. In examples 2 and 226 
3, the total for some biological variable X is the sum of an incoming (new) pool and outgoing (old) 227 
pool. In example 2, the total, the incoming, and the outgoing pools are constant. In example 3, the 228 
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total is also constant, but the incoming and outgoing pools are dynamic, with inputs compensating 229 
for losses. Distinguishing between the scenarios represented by examples 2 and 3 is difficult based 230 
solely on measurements of the variable X total, and so phenological patterns of the incoming and 231 
outgoing pools remain ambiguous. 232 

  233 

3. CASE STUDIES IN CRYPTIC PHENOLOGY 234 

In the two case studies below, we draw upon available studies, data, and models to examine the 235 

evidence for, and implications of, cryptic phenology in two different plant processes in distinct 236 

ecosystems: allocation to wood in temperate deciduous forests, and gross primary productivity in 237 

tropical evergreen forests. For each case study we compare observations with simulations from 238 

terrestrial biosphere models (TBMs; models that represent land surface vegetation in the Earth 239 

system models used to simulate current and future global energy, carbon and water budgets 240 

(Fisher et al., 2014; Le Quéré et al., 2015). These model-observation comparisons serve two 241 

purposes. First, comparisons of TBMs with observations offer a test of our current ability to 242 

reproduce the seasonality of biosphere-atmosphere mass exchanges and represent phenological 243 

processes (Richardson et al., 2012) with implications for improving models (Richardson, 244 

Keenan, et al., 2013b). Second, the model-observation comparisons, placed in the context of 245 

current literature examining multiple scales and using multiple tools, allows us to ask whether 246 

cryptic phenology presents obstacles to our ability to test hypotheses about the drivers, 247 

consequences, and even the presence of phenology. Together, these case studies represent 248 

different plant organs and ecosystems, demonstrating how capturing cryptic phenological 249 

processes can be necessary for correct attribution of cause and effect—and ultimately modeling 250 

ecosystem processes—in many systems. 251 

 252 

3.1 Cryptic phenology of bole growth in temperate forests: implications for the timing of 253 
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carbon allocation to wood 254 

A TBM model-data comparison of bole growth at Harvard Forest, a temperate mixed forest site, 255 

reveals the challenge of estimating and modeling the hidden phenology of biomass gain from 256 

wood allocation. Wood is a major component of aboveground biomass, and is important for 257 

characterizing fast versus slow growth strategies across species (Chave et al., 2009; Reich, 258 

2014). The intra-annual timing of wood allocation may show how carbon gain responds to 259 

seasonal climate, and reveal periods of vulnerability or resilience to stress (Babst et al., 2014; 260 

Battipaglia et al., 2010). The process of woody biomass gain (from xylogenesis) is hidden within 261 

boles (Cuny et al. 2015), and tree or plot scale biomass cannot be directly measured without 262 

harvesting trees (Clark & Kellner, 2012). Because of this, woody biomass gain is rarely 263 

measured (Cuny et al. 2015). Aboveground biomass change, which includes non-wood 264 

components such as leaves, can be estimated by measuring bole diameter growth increment for 265 

use with taxa-specific allometric equations (Chave et al., 2014; Chojnacky, Heath, & Jenkins, 266 

2014). This approach is used in both multi-year (e.g. McMahon, Parker, & Miller, 2010) and 267 

seasonal studies (McMahon & Parker, 2015; Delpierre et al., 2016).  268 

 We asked whether TBMs captured the phenology of carbon allocation to wood, and the 269 

phenology of carbon allocation to leaves, with equal success. We expected that TBMs would be 270 

challenged to capture the phenology of carbon allocation to wood because it is hidden and hence 271 

rarely measured at fine timescales, so there are few datasets available to improve, constrain, and 272 

test models (Delpierre et al., 2016).  By contrast, carbon allocation to leaves is more apparent, 273 

particularly in forests with many deciduous tree species with spring leaf emergence and autumn 274 

senescence. We used fine scale changes in bole diameter growth as an estimation of the net 275 

primary productivity (NPP) allocated to wood (NPPwood). The allometric regression equations 276 
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were applied to a bi-weekly time series of high accuracy diameter at breast height (DBH) 277 

measurements from dendrometer bands (McMahon & Parker, 2015) for three tree species at 278 

Harvard Forest (supporting information appendix S1). We estimated NPP allocated to leaves 279 

(NPPleaf, Fig. 2a) at Harvard Forest based on leaf area index and litterfall time series (J. W. 280 

Munger, n.d.; W. Munger & Wofsy, 2018; Urbanski et al., 2007; supporting information 281 

appendix S2). Resulting NPPleaf and NPPwood reveal that carbon investment in leaves and wood is 282 

highest early in the growing season (Fig. 2). The peaks in simulated NPPleaf were within days of 283 

the estimated peak NPPleaf (and close to leaf budburst, which typically occurs around May 6 284 

(Keenan and Richardson, 2015). By contrast, simulated phenological patterns in wood-related 285 

output variables from three TBMs showed greater variation (Fig. 2, appendix S3). While the 286 

Community Land Model version 4.5 (CLM4.5) shows a peak close to that seen in the 287 

observations (around the time of budburst, at May 5), the peak for ORCHIDEETRUNK and 288 

CLASS are months later (August 1 and August 11 respectively).  289 

 290 

Figure 2: Seasonality of observed (black ± gray standard deviation) versus model-simulated 291 
(colors) Net Primary Productivity (NPP) allocated to a) leaf biomass (NPPleaf), and b) woody 292 
biomass (NPPwood) metrics at a mixed deciduous evergreen temperate forest. NPPleaf observations 293 
were calculated as (dLAI/dt) • LMA + litterfall where LAI is leaf area index and LMA is leaf mass 294 
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per area. For models, NPPleaf is calculated as the change in leaf biomass. NPPwood observations 295 
were from allometry using diameter-at-breast-height (DBH) increment measurements compared 296 
with outputs from three land surface models. For models, NPPwood was calculated as (Xi - Xi-1) / (ti 297 
- ti-1) where X is the model output variable most comparable to aboveground woody biomass (in 298 
gC m-2 day-1) for each model (which was vegetation biomass for CLASS, aboveground heartwood 299 
plus sapwood for ORCIDEETRUNK, and wood biomass for CLM4.5) and t is time in days. Temporal 300 
resolution is 16-day averages. The gray shaded area in all panels indicates the growing season, and 301 
the horizontal dotted line indicates zero. NPPleaf simulations were not available for CLASS. Full 302 
NPPwood estimation and model details are available in online supporting information. 303 

In interpreting this model-observation comparison, it is important to remember that using 304 

DBH with allometric scaling equations produces estimates—not direct measurements—of 305 

biomass (Clark & Kellner, 2012), and to consider that TBMs differ in how the wood pool is 306 

defined, which is not necessarily identical to aboveground woody biomass (see Table S1 and S2 307 

for model-specific definitions). In addition, there is some ambiguity in DBH-derived wood 308 

phenology because DBH represents multiple summed variables (Fig. 1a). DBH can be affected 309 

by changes in plant water status in addition to changes in biomass, and so seasonal changes in 310 

water availability could affect biomass estimations derived from allometry unless a correction is 311 

applied (Chitra-Tarak et al., 2015). The actual biomass gain (from xylogenesis) may also lag 312 

increases in DBH by weeks (Cuny et al., 2015). Explicit recognition of the distinction between 313 

measurable metrics (such as DBH) and the underlying variable we want to characterize or model 314 

(such as carbon biomass gain) motivates investigators to quantify uncertainty, and test for 315 

scenarios when proxies do not work well.  316 

Despite the limitations of the observations and models, the comparison suggests that 317 

some models (like CLM 4.5) align moderately well with DBH-derived NPPwood, while others lag 318 

DBH-derived NPPwood by months. This divergence in model behaviors highlights the importance 319 

of understanding the mechanisms driving both simulated and observed phenologies. The timing 320 

of allocation to biomass and wood-related variables in these TBMs is primarily determined by 321 

the pattern of NPP across seasons. In ORCHIDEE for example, the allocation fractions to 322 



 

19 

different tissues primarily respond to environmental conditions: water, light, and nitrogen 323 

(Krinner et al., 2005).  For the wood allocation in ORCHIDEE, a fraction of NPP is 324 

instantaneously allocated to sapwood, then sapwood biomass is converted into heartwood 325 

biomass based on a one-year time constant (Krinner et al., 2005). Ultimately, model NPP is 326 

controlled by site-specific climate conditions and representations of forest physiology (e.g. plant 327 

functional type), including leaf phenological patterns (e.g. leaf onset/abscission).  328 

In contrast with model representations, physiological and tree-ring studies suggest that 329 

the mechanisms underlying wood phenology go beyond environmental controls to also include 330 

ontogeny of wood cells (Cuny et al., 2015; Plomion et al., 2001) and priorities in allocation 331 

through time (e.g. allocation of carbon to wood growth versus storage as nonstructural 332 

carbohydrates; Richardson, Carbone, et al., 2013a). Xylem production and differentiation follow 333 

a sequence, and shifts in one phase are associated with comparable shifts in successive phases 334 

(Rossi et al., 2013). This sequence offers a mechanism for wood phenology to respond to 335 

environmental conditions that are integrated over time—not just instantaneous drivers (Rossi et 336 

al., 2013). This sequence may also play a role in determining when trees are vulnerable or 337 

resilient to stress. For example, developing wood cells expand before their cell walls thicken 338 

with carbon-rich polysaccharides and lignins, and late wood is more dense than early wood in 339 

temperate species (Plomion et al., 2001), so trees at different stages in the sequence of wood 340 

development could be more or less sensitive to drought stress.  Testing and developing model 341 

frameworks for such hypotheses is currently challenging because the timing of carbon allocation 342 

to wood is hidden in vivo. More direct measurements of wood formation (e.g. Cuny et al. 2016), 343 

and nonstructural carbohydrates (e.g. Newell, Mulkey, & Wright, 2002), synchronized with 344 

frequent measurements of DBH and leaf phenological patterns, would help us to understand and 345 
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model controls over wood phenological patterns (Delpierre et al., 2016; Guillemot et al., 2017), 346 

and how the timing of wood allocation relates to growth strategy, environmental fluctuations, 347 

and other plant traits. 348 

 349 

3.2 Amazon evergreen forests: implications of cryptic phenology for seasonality of 350 

ecosystem carbon fluxes  351 

The challenge of cryptic phenology is not confined to a particular plant organ. Amazon 352 

evergreen forests near the equator offer a case study where leaf phenology is ambiguous. Much 353 

of the Amazon basin experiences annual wet and dry seasons (Restrepo-Coupe et al., 2013), and 354 

this regular seasonal variation in cloud cover and precipitation may select for phenological 355 

strategies that match plant activities with resource availability (Doughty et al., 2014; Graham, 356 

Mulkey, Kitajima, Phillips, & Wright, 2003; M. O. Jones, Kimball, & Nemani, 2014; van Schaik 357 

et al., 1993). Most of the Amazon is remote, making ground-based observations of phenology 358 

difficult, especially given the many observations needed to sample the high diversity of tree 359 

species (Cardoso et al., 2017) and strategies (Reich, 1995). Observations of canopies from 360 

satellites are often obstructed by clouds (Asner, 2001), difficult to interpret (Samanta et al., 361 

2012), and the subject of controversy surrounding technical artifacts and their correction (Huete 362 

et al., 2006; Morton et al., 2014; Saleska et al., 2016). Yet many recent studies offer evidence 363 

that leaf production, leaf abscission, wood production and root production exhibit annual 364 

rhythms in Amazon forests (Doughty et al., 2014; Girardin, Malhi, & Doughty, 2016; Lopes et 365 

al., 2016; Wagner et al., 2016).  366 

Many TBMs seem to be missing these phenological processes (Restrepo-Coupe et al., 367 

2017). Evidence that TBMs are lacking adequate phenological representation comes from a 368 
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model inter-comparison for a network of ecosystem flux observations sites (eddy flux towers) in 369 

Amazonia (Restrepo-Coupe, et al., 2017). For illustration, we discuss the contrasting cases of 370 

equatorial versus southern evergreen forest sites in the Amazon basin of Brazil. At the equatorial 371 

site (K67 in the Tapajós National Forest, Brazil), four TBMs showed significant divergence from 372 

the estimated interannual pattern of whole-system photosynthetic fluxes (Fig. 3a, gross primary 373 

productivity, (GPP; gC m-2 d-1) and a metric of photosynthetic capacity, (Pc; gC m-2 d-1) for K67; 374 

(Restrepo-Coupe et al., 2017). The reason for the divergence is that modeled photosynthetic 375 

patterns are driven by environmental variability -- measures of soil water stress in this case 376 

(model calculated soil water stress index ‘FSW’ for K67, Fig. 3b-g) -- which suppresses GPP 377 

during the long dry season. Yet the observed interannual pattern of photosynthesis in this 378 

ecosystem appears to be driven by something beyond instantaneous responses to seasonal 379 

climate fluctuations. 380 

 Since TBMs already include climatic seasonality, their failure to capture GPP seasonality 381 

suggests that phenological processes operate at the equatorial site that are separate from the 382 

instantaneous physiological responses already represented. Canopy phenological activity could 383 

drive the observed GPP via two mechanisms: 1) dry season increases in quantity of canopy 384 

leaves (quantified as leaf area index, or LAI) and/or 2) dry season increases in canopy 385 

photosynthetic capacity on a per unit area basis (Lopes et al., 2016; Restrepo-Coupe et al., 2017; 386 

Wu et al., 2016). Observations of leaf quantity (LAI) from equatorial Amazon sites show that 387 

LAI varies little across seasons (e.g. Fig. 3c ‘LAI’ shows low seasonality at K67). Leaf turnover, 388 

however, exhibits a dry season pulse (Fig. 3e,f: ‘NPPleaf’ and ‘NPPlitter-fall’), suggesting that LAI 389 

is maintained because leaf production compensates for near-simultaneous leaf fall during the dry 390 

season. As a result, LAI exhibits modest seasonal variation relative to seasonal variation in leaf 391 
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litterfall and leaf flush (Fig. 4).  The seasonality of total LAI also fails to represent within-canopy 392 

dynamics, as compensatory leaf area patterns have been identified between the upper and lower 393 

canopy levels at K67 (Smith et al., 2019). Since new (recently expanded) leaves have high rates 394 

of photosynthesis, replacing old leaves with new leaves can increase photosynthetic capacity of 395 

the canopy on a per unit area basis (Albert et al., 2018; Doughty & Goulden, 2008; Niinemets et 396 

al., 2012; Pantin, Simonneau, & Muller, 2012; Wu et al., 2016).397 
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Figure 3: Annual cycles of observed (black ± gray standard deviation) versus model-simulated 399 
(colors) forest metrics in two Amazon forests (an equatorial Amazon forest, K67, and a southern 400 
Amazon forest, RJA), including (panels from top to bottom): daily average ecosystem-scale 401 
photosynthesis (GPP); daily average ecosystem-scale photosynthetic capacity (Pc, GPP at a fixed 402 
PAR range (725-875umol m-2 s-1), vapor pressure deficit, air temperature and light quality 403 
measured as cloudiness index (all time mean ± 1 standard deviation)); leaf area index (LAI); net 404 
primary productivity (NPP) allocated to leaves (leaf production; NPPleaf); NPP going to litterfall 405 
(NPPlitterfall), and NPP allocated to wood (NPPwood); soil water stress metric (FSW), where 1=no 406 
stress (Ju et al., 2006). The light gray shaded box all panels represents the dry season. For K67 407 
LAI data, we use data from the control plot of a close-by drought experiment (Juárez et al. 2007; 408 
Brando et al. 2010). LAI and NPP observations were not available for the RJA site. Lines are 409 
dashed for IBIS NPP to indicate that NPP is allocated only at the end of the year. For further details 410 
on model intercomparison, see Restrepo-Coupe et al. (2017). 411 

The combination of leaf turnover and leaf age-dependent CO2 assimilation capacity creates a 412 

scenario at K67 in which ecosystem photosynthetic capacity varies more than LAI (Fig. 3b,c). 413 

Therefore, the observable canopy total LAI time series does not fully capture phenological 414 

patterns of leaf turnover or the resulting shifts in canopy photosynthetic capacity at this site (Fig. 415 

5) because leaf phenology is compensatory (Fig. 1c).  416 

  In contrast to the equatorial Amazon site, at a southern Amazon forest (Reserva Jarú, 417 

RJA), observations and models coincide, with GPP and Pc declining during the dry season, 418 

consistent with increasing water limitation as the dry season progresses (Fig. 3h,i,n). We lack an 419 

observational time series of LAI and litterfall for the southern site, but remote sensing (GLAS 420 

satellite lidar) suggests that in the southern Amazon, LAI decreases during the dry season (Tang 421 

& Dubayah, 2017). Thus the equatorial (K67) and southern (RJA) Amazon sites appear to 422 

include trees with different phenological strategies (Restrepo-Coupe et al., 2013). We 423 

hypothesize that many trees in high water availability equatorial sites may be adapted to optimize 424 

light use over time, synchronizing leaf production with the sunny dry season as a strategy for 425 

increasing annual carbon gain (Restrepo-Coupe et al., 2017). The tree communities at southern 426 

sites like RJA may experience a weaker peak in dry season sunlight (Restrepo-Coupe et al., 427 

2013), and may shed leaves during dry seasons to protect plant water status. 428 
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 429 

Figure 4: Seasonal canopy dynamics of Leaf Area Index (LAI), leaf litterfall, and leaf production 430 
averaged across five Amazonian sites, showing that large leaf turnover is concealed by near-431 
constant LAI. The pulses of litterfall and leaf production support compensatory leaf phenology 432 
(Fig 1c) rather than constant leaf phenology (Fig 1b). Bars show mean values of annual amplitude 433 
scaled for studies (n=5 sites) of lowland evergreen tropical forests where both LAI and litterfall 434 
have been measured. Seasonal range is the annual amplitude scaled by mean value and is calculated 435 
as the difference between the maximum dry season value and the minimum wet season value, 436 
divided by the mean annual value (%). Error bars show standard deviation of the mean. Studies 437 
included in this figure: Tambopata-Candamo Reserve, south-eastern Peru (Girardin et al. 2016); 438 
Caxiuana, Floresta Nacional de Caxiuana, Pará, Brazil (Girardin et al. 2016); K83 (Doughty & 439 
Goulden 2008) and K67 (Brando et al. 2010 and Malhado et al. 2009) are located in the Tapajós 440 
National Forest, Pará, Brazil. Sites experience a range of mean annual precipitation values (1900 441 
– 2572 mm). 442 

This interpretation is consistent with studies asserting that tropical evergreen forests produce new 443 

leaves during periods of high light if they are not strongly water-limited (Doughty & Goulden, 444 

2008; Graham et al., 2003; Guan et al., 2015; M. O. Jones et al., 2014; Reich & Borchert, 1984; 445 

Restrepo-Coupe et al., 2013; van Schaik et al., 1993; Wu et al., 2016). This continuum between 446 

precipitation-driven and light-driven tropical evergreen forest phenological strategies is not 447 
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included in most TBMs, and therefore might account for some of the divergence in their GPP 448 

projections (Restrepo-Coupe et al., 2017). 449 

 450 

Figure 5: Illustration of how cryptic leaf turnover creates a phenological pattern in canopy 451 
photosynthetic capacity. Top: Individual crowns drop old leaves and produce new leaves with 452 
some degree of synchronization. Middle: the proportion of leaf area index belonging to previous 453 
year’s growth (old leaves) and new leaf growth (new leaves) changes through the dry season. Here 454 
leaf phenology is difficult to detect because of compensatory inputs and outputs (see Fig 1c). Inset: 455 
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leaf photosynthetic capacity depends upon leaf age.  Lower panel: the combination of leaf turnover 456 
and leaf ontogeny increase the canopy photosynthetic capacity, but neither total LAI nor satellite-457 
based proxies for LAI and greenness show this same increase. 458 

 Equatorial Amazon sites such as K67 provide an example where resolving ambiguous 459 

phenology by testing whether leaf phenology is compensatory versus constant, and 460 

acknowledging the age-dependent physiology of leaves, is important for understanding and 461 

modeling a process, such as forest photosynthesis, at a large scale. Some plant functional types 462 

(PFTs) within TBMs allow for photosynthesis to vary with leaf age, but with a focus on 463 

temperate deciduous plants. For example, the Joint UK Land Environment Simulator (JULES) 464 

accounts for damage and senescence accumulation by reducing photosynthesis during the 465 

growing season (Clark et al., 2011), and the Ecosystem Demography model (ED2) decreases the 466 

maximum carboxylation rate of Rubisco (Vcmax) in the autumn as a function of Julian day 467 

utilizing historical MODIS data (Medvigy, Wofsy, Munger, Hollinger, & Moorcroft, 2009). In 468 

these cases, time of year or ‘season’ serves as a proxy for leaf age, which may work well for 469 

some PFTs, but not for tropical evergreen broadleaf forests where the ‘evergreen’ canopy belies 470 

cyclic leaf turnover that the PFT ruleset does not include. This case study suggests that 471 

accounting for cryptic phenology is necessary for correctly detecting, attributing, and modeling 472 

the carbon exchange dynamics of tropical forests (De Weirdt et al., 2012; Y. Kim et al., 2012; 473 

Manoli, Ivanov, & Fatichi, 2018; Restrepo-Coupe et al., 2017). 474 

 475 

4. IMPLICATIONS OF CRYPTIC PHENOLOGY FOR PREDICTION ACROSS 476 

SCALES 477 

Fine-scale processes, integrated over space and time, create large-scale exchanges of mass and 478 

energy between the biosphere and the atmosphere (Monson & Baldocchi, 2014). Here we 479 

consider some of the fine-scale processes associated with cryptic phenology that, scaled up, have 480 
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implications for our ability to understand, model, and predict biosphere-atmosphere interactions 481 

under climate change.  482 

  483 

Organ scale 484 

Plant traits can show very high within-species variation due to phenology (Chavana-485 

Bryant et al., 2017), and this variation can surpass interspecific variation for some traits (Fajardo 486 

& Siefert, 2016). Specifically, leaf development and aging is associated with changes in internal 487 

leaf structure (Lim, Kim, & Gil Nam, 2007; Niinemets et al., 2012), concentrations of secondary 488 

metabolites (Z. Liu et al., 1998; Virjamo & Julkunen-Tiitto, 2014), emissions of volatile organic 489 

compounds (Alves, Harley, Goncalves, da Silva Moura, & Jardine, 2014; Niinemets et al., 2010), 490 

and metabolic rates (Albert et al., 2018; Niinemets et al., 2012; Pantin et al., 2012). For the goal 491 

of scaling fluxes from leaves to canopies, these many physiological changes associated with leaf 492 

age suggest that distinguishing between constant leaf phenology and compensatory leaf 493 

phenology is important not only for tropical forests (as we describe in the first case study above), 494 

but for evergreen forests in general.  495 

Similarly, root production is accompanied by physiological changes. There are species-496 

specific relationships between root age and root physiology such as respiration rates and nutrient 497 

uptake capacity (Bouma et al., 2001; Fukuzawa, Dannoura, & Shibata, 2011). Existing studies 498 

that have characterized the hidden phenology of roots have shown evidence of interspecific 499 

differences in cycles of fine root production—single flushes, multiple flushes, or constant 500 

growth—that could represent strategies for responding to seasonal changes in climate or resource 501 

availability (Fukuzawa et al., 2011; McCormack et al., 2014). 502 

 503 
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Organismal scale 504 

Natural selection would be expected to favor coordination in the timing of resource acquisition 505 

with resource storage and allocation (Sala, Woodruff, & Meinzer, 2012). Since selection acts at 506 

the level of individuals, if we want to understand the adaptive value of phenological changes, we 507 

need to understand how all plant organs function together, as a unit, through time. It is very 508 

difficult to study ‘whole’ plants in the wild, especially woody plants. Few (if any) studies have 509 

quantified the phenologies of all plant organs in wild woody plants to gain an integrated 510 

organism-level perspective on phenology (but see Hu et al., (2010) for whole-tree carbon 511 

assimilation during the growing season; see Würth, Peláez-Riedl, Wright, & Korner (2005) for 512 

seasonal variation in non-structural carbohydrate pools by plant organ; and see Doughty et al., 513 

(2014) for an example plot-scale study of wood, fine root, and canopy phenology). Studies 514 

examining phenologies of two organs suggest that phenology is often asynchronous across 515 

organs (Abramoff & Finzi, 2015; Wagner, Rossi, Stahl, Bonal, & Hérault, 2013). Comparing 516 

phenological patterns of roots and shoots frequently reveals offsets between maximum root 517 

growth and shoot growth, and these offsets vary across biomes (Abramoff & Finzi, 2015). In 518 

tropical forests, leaf and wood production is often asynchronous (Wagner et al., 2013). The onset 519 

and/or termination of growth may also vary; roots in temperate deciduous white oak, for 520 

example, continue to elongate in winter after senescence of leaves (Teskey & Hinckley, 1981). 521 

Nonstructural carbohydrate reserves also show phenological patterns that are species-dependent 522 

(Würth et al., 2005) and affected by phenological patterns of leaves (Palacio, Maestro, & 523 

Montserratmarti, 2007). Rates of carbon use regulate carbon uptake in plants (sink-driven 524 

photosynthesis; Fatichi, Leuzinger, & Korner, 2014), so phenological changes in carbon demand 525 

should impact the timing of photosynthetic activity.  526 
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These findings show that capturing the patterns and drivers of hidden and ambiguous 527 

phenologies will be needed for a comprehensive understanding of how plants prioritize amongst 528 

competing uses of resources and maintain carbon balance, with implications for modeling plant 529 

resource use. In most TBMs, the temporal patterns of leaf activity (the size of the leaf pool and 530 

the rate of photosynthesis) drive temporal patterns of carbon allocation because carbon allocation 531 

to other plant organs is often modeled as a constant proportion of carbon uptake (Abramoff & 532 

Finzi, 2015; Delpierre et al., 2016; Guillemot et al., 2017). However, if different plant organs 533 

respond to different environmental drivers (Wagner et al., 2016), then models that use leaf 534 

activity to generate interannual patterns of activity in hidden organs may fail to simulate 535 

observed patterns of root or bole activity at seasonal timescales. 536 

How plants prioritize their allocation, through time, to various plant organs or to storage 537 

may have consequences for plant resilience or vulnerability to extreme events, and several 538 

studies already show that plant vulnerability and/or resilience to extreme events varies due to 539 

phenological status and/or season (Craine et al., 2012; M. Huang, Wang, Keenan, & Piao, 2018). 540 

We suggest that the timing of extreme events in relation to plant phenological status may be 541 

necessary for predicting plant community responses to future climate. For example, plant 542 

tolerance to drought or cold could depend on nonstructural carbohydrates (Dietze et al., 2014; 543 

Sala et al., 2012), and nonstructural carbohydrates follow seasonal cycles that could indicate 544 

internal phenology (Richardson et al., 2013a). Tests of such hypotheses are timely, given that the 545 

frequency of extreme climate events is increasing under global climate change (Bellprat & 546 

Doblas-Reyes, 2016; Ummenhofer & Meehl, 2017). 547 

 548 

Community scale 549 
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 As climate changes, many studies have demonstrated that phenological patterns shift, 550 

impacting species interactions (CaraDonna, Iler, & Inouye, 2014; Memmott, Craze, Waser, & 551 

Price, 2007; Miller-Rushing, Hoye, Inouye, & Post, 2010; Polgar & Primack, 2011; Rafferty, 552 

CaraDonna, & Bronstein, 2014; Yang & Rudolf, 2010). Fewer studies have probed how hidden 553 

phenologies shape species interactions, or how those interactions may be changing. To do so 554 

could reveal that phenology mediates impacts of species interactions on plant mortality, 555 

reproduction, and metabolism. For example, the timing of insect outbreaks in relation to 556 

nonstructural carbohydrate reserves (which are affected by the timing of leaf renewal) may 557 

explain interspecific differences in tolerance to defoliation (Chen, Wang, Dai, Wan, & Liu, 558 

2017). Further investigation into how species interactions affect hidden phenologies would help 559 

gain a more complete understanding of the interplay between climate change, whole plant 560 

physiology, and species interactions. 561 

 562 

Ecosystem to global scale 563 

Projections of Earth’s future climate are particularly sensitive to uncertainties in the land 564 

carbon cycle (Friedlingstein et al., 2014). Improving representation of the land carbon cycle in 565 

TBMs requires understanding the drivers of phenology, and the role of phenology in mediating 566 

biosphere-atmosphere exchanges (Richardson, Keenan, et al., 2013b). Recognizing phenological 567 

rhythms at scales from plant organs to communities is prerequisite to identifying their role in 568 

large scale (ecosystem to global) cycling of carbon. For example, investigating the distribution of 569 

root ages at different times of the year could elucidate larger scale autotrophic respiration or soil 570 

resource acquisition processes (because root age affects root respiration and nutrient uptake 571 

capacity; Bouma et al., 2001). TBMs which are calibrated to match current observations, but that 572 
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include inaccurate relationships between drivers and vegetation responses, risk making biased 573 

predictions of forest response to future climate changes because they do not incorporate 574 

underlying biological mechanisms (De Weirdt et al., 2012; Restrepo-Coupe et al., 2017).  575 

 576 

5. RECOMMENDATIONS FOR MEASURING AND MODELING CRYPTIC 577 

PHENOLOGY 578 

5.1 Recommendations for empirical research 579 

To reveal cryptic phenological patterns empirically, we need to consider the target, frequency, 580 

and methods of measurements. We recommend complementing existing studies and 581 

measurements of aboveground, clearly visible phenological changes with measurements of 582 

hidden phenological changes (Table 1). Specifically, we need more time series of development 583 

and growth of roots (e.g. Abramoff and Finzi 2015, McCormack et al 2014), and internal 584 

structures (e.g. Cuny et al. 2015), to learn when leaf phenology directly fuels the phenological 585 

patterns of other plant organs (and thus can represent them by proxy), and when it does not. 586 

Building upon studies examining synchrony in phenology of multiple plant organs (Bazié et al., 587 

2017; Delpierre et al., 2016; Michelot, Simard, Rathgeber, Dufrene, & Damesin, 2012; Omondi, 588 

Odee, Ongamo, Kanya, & Khasa, 2016; Perrin, Rossi, & Isabel, 2017; Wagner et al., 2013), 589 

whole-plant phenology studies in which all plant organs and their associated processes 590 

(acquisition and allocation of carbon, water, and nutrients) are continuously monitored in the 591 

same individual plants across seasons could elucidate the relationship between the phenology of 592 

plant organs with each other, and with climate, and test the representation of phenology for 593 

various PFTs.  594 
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Revealing cryptic phenological patterns will require more studies explicitly testing 595 

whether compensatory processes (Fig. 1c) mistaken for constancy (Fig. 1b) mislead our 596 

interpretation of mass, area, or volume time series. To this end, sampling schemes need to go 597 

beyond measuring mass, area or volume of plant organs or “pools” (in aggregate) to also 598 

measure rates of inputs and outputs to and from organs/pools across time. (Since mass-balance 599 

equations have three terms—inputs, outputs, and the accumulated pool—at least two must be 600 

measured to obtain a single solution). For example, litterfall time series should be collected to 601 

correspond with total leaf area time series. To examine the metabolic consequences of constant 602 

versus compensating phenology, we need more (1) measurements of plant organ activity as 603 

organs develop and age, and (2) experiments manipulating phenological status to test the 604 

interaction between phenology and physiology (including photosynthesis and respiration) under 605 

various treatments (e.g. drought, temperature, and herbivory). When a measured variable (e.g. 606 

mass or volume) is the sum of multiple component variables (Fig 1a) then those components 607 

should be characterized (if possible) in tests for scenarios when the time series of the measured 608 

variable is not aligned with that of the component variable of interest. Fourier analysis is a 609 

promising tool for decomposing phenological cycles (Bush et al., 2016), and should be explored 610 

for revealing phenology that is otherwise ambiguous.  611 

 Phenological events can happen quickly and vary across landscapes. Fine temporal and 612 

spatial resolution will capture patterns that might otherwise be missed (e.g. Smith et al. 2019). 613 

How we measure phenological patterns has moved beyond plant-level measurements to 614 

landscape measurements as technology has evolved, and we need to continue expanding our 615 

capacity for detecting plant phenological activity at multiple spatial scales (e.g. leaves to 616 

canopies to landscapes). Remote sensing technologies offer valuable tools for gathering 617 
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phenological data on large spatial scales. Chlorophyll fluorescence remote sensing products 618 

promise to test the physiological interpretation of ‘greenness’ from the more traditional MODIS 619 

products (Guan et al., 2015; Lee et al., 2013; Porcar-Castell et al., 2014). Continuous or frequent 620 

high resolution near-surface remote sensing instrumentation such as phenocams (Klosterman et 621 

al., 2014; Lopes et al., 2016; Wu et al., 2016) and lidar (Calders et al., 2015) offer finer spatial 622 

resolution data to complement and potentially validate satellite-based phenology-related 623 

products.  624 

Although satellite-derived products are valuable tool for phenology (e.g. Guan et al 625 

2015), some phenological patterns remain cryptic when relying on remote sensing tools. 626 

Reflectance-based indices from satellites reveal more about the phenological status of upper 627 

canopy leaves and shoots than about the hidden phenological activity of roots, boles, and internal 628 

plant processes. Further development of remote sensing tools may help reveal hidden 629 

phenologies; for example, lidar can be used to estimate LAI at all canopy heights, helping infer 630 

leaf phenological patterns for deeper canopy layers that are hidden from other sensors (Tang & 631 

Dubayah, 2017). We urge more tests to evaluate when remote sensing signals do, and do not, link 632 

to phenology, including time series of comparisons between remote sensing signals and plant-633 

level measurements (e.g. changes in leaf production or woody biomass). In addition, the 634 

development of high-throughput methods for evaluating gene expression (Kris et al., 2007), 635 

together with the growing databases of annotated genomes, offer the opportunity to complement 636 

aboveground measurements with information about regulation of internal or below-ground 637 

activities.  638 

 639 

5.2 Recommendations for model development 640 
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In TBMs, plant structures (e.g. leaves) are produced or shed, and processes are switched ‘on’ or 641 

‘off’, based on rule sets about temperature, moisture, and photoperiod, or (in about a third of 642 

TBMs), are prescribed based on remotely sensed indices and other derived products instead of 643 

being simulated internally (Fisher et al., 2014; Huntzinger et al., 2012). In either case, the TBM 644 

representation of phenological processes relies heavily on observations that are readily collected 645 

at large scales, such as climate data and satellite-based remote sensing products. We need to 646 

determine when this reliance on apparent phenology limits our ability to make robust long-term 647 

predictions of terrestrial carbon, water, and energy budgets or future boundary shifts of biomes.  648 

A process or parameter in a model is important, in terms of our predictive ability, if it 649 

causes large changes in a response that we want to predict (high sensitivity), and/or if it is highly 650 

uncertain (Dietze, 2017). For TBMs, we need more sensitivity analyses that evaluate the impact 651 

of including or excluding potential phenological schemes, and uncertainty assessments that 652 

quantify sources of uncertainty (e.g. Migliavacca et al., 2012). Specific phenological dynamics 653 

ripe for possible implementation in TBMs include asynchronous allocation to various plant 654 

organs (e.g. through prioritization schemes or time lags), environmental controls over carbon 655 

allocation (Guillemot et al., 2017), and plant organ age-dependency of metabolic capacity (e.g. 656 

photosynthetic capacity as a function of leaf age and root respiration as a function of root age; 657 

(Albert et al., 2018; De Weirdt et al., 2012; Fukuzawa et al., 2011). By examining the sensitivity 658 

of modelled ecosystem-scale fluxes to such processes, modelers can strike a balance between 659 

over-parametrizing versus excluding important processes in TBM models. Knowledge of which 660 

phenological states, processes, and parameters within models show high sensitivity or 661 

uncertainty can also help guide empirical research priorities. 662 
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Evaluations of uncertainty and sensitivity require first having model formulations of 663 

phenology. As we have argued, study efforts are not uniform, and phenological patterns may be 664 

cryptic such that they can only be resolved with multiple measurements (e.g. inputs and outputs 665 

or multiple variables). In these cases, it may be difficult to find enough information to develop 666 

phenology schemes. Model-data comparisons, with observational data coming from multiple 667 

independent sources (and multiple organs) at multiple scales (e.g. eddy covariance time series, 668 

and measurements of allocation in individuals) should help determine if an important 669 

phenological process could be wholly missing from models. Joint model and empirical efforts 670 

can then identify, characterize, model, and evaluate the importance of the excluded phenological 671 

processes.  672 

Finally, we emphasize the value of drawing upon empirical and theoretical ecology, 673 

evolution, and physiology for the development and refinement of phenological models. In 674 

systems where the temporal dynamics of plant acquisition and allocation have been shown to be 675 

under selection to increase fitness within climatic and biological constraints, optimization models 676 

may be useful (e.g. Caldararu, Purves, & Palmer, 2014; Kikuzawa, 1991; 1996), but they should 677 

be expanded to include multiple resources (e.g. moisture and nutrient optimization in addition to 678 

carbon), and trade-offs between multiple purposes, such as growth and reproduction (Iwasa, 679 

2000). However, it is also important to recognize that life history imposes temporal structure 680 

relevant to modelling at the seasonal time scale, such as timelines for recruitment, maturation, 681 

and mortality in annual plants, or timelines for development of the photosynthetic apparatus in 682 

new leaves with different lifespans. Thus, a valuable challenge will be to formalize demographic 683 

and physiological timelines in models and test their impact on model sensitivity and uncertainty.  684 

 685 
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6. CONCLUSION 686 

A growing body of research shows that capturing cryptic phenologies is required for a complete 687 

picture of seasonal resource allocation and acquisition strategies, constraints, and consequences 688 

across many scales. Understanding the full scope of cyclic and recurrent biological events in 689 

plants is critical for advancing our understanding of plant ecology and evolution, and for 690 

predicting responses and feedbacks to climate change. We call for further recognition and 691 

exploration of cryptic phenologies—including compensatory processes, non-structural 692 

carbohydrates dynamics, wood formation, and root production —through new technologies, 693 

TBM development, and time series of intensive plant-scale measurements.  694 
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