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16  Abstract—The Constrained Application Protocol (CoAP) is a 

specially designed web transfer protocol for use with constrained 
nodes  and  low-power  networks.  The  widely  available  CoAP 

18 implementations have failed to validate the remote CoAP  clients. 
19 Each CoAP client generates a random source port number when 
20 communicating with the CoAP server. However, we observe that 
21 in such implementations it is difficult to distinguish the regular 

packet and the malicious packet, opening a door for a potential 
off-path attack. The off-path attack is considered a weak attack 

23 on a constrained network and has received less attention from 
24 the research community. However, the consequences resulting 
25 from such an attack cannot be ignored in practice. In this 
26 paper, we exploit the combination of IP spoofing vulnerability 

and the remote server access support of CoAP to launch an 
off-path attack. The attacker injects a fake request message to 

28 change the credentials of the 6LoWPAN smart door keypad lock 
29 system. This creates a request spoofing vulnerability in CoAP, 
30 and the attacker exploits this vulnerability to gain full access 
31 to the system. Through our implementation, we demonstrated 

the feasibility of the attack scenario on the 6LoWPAN-CoAP 
network using smart door keypad lock. We proposed a machine 

33 learning based approach to mitigate such attacks. To the best 
34 of our knowledge, we believe that this is the first article to 
35 analyze the remote CoAP server access support and request 
36 spoofing vulnerability of CoAP to launch an off-path attack and 

demonstrate how a machine learning based approach can be 

38 
deployed to prevent such attacks. 

39 
Index Terms—IoT security, CoAP, 6LoWPAN, Machine Learn- 

40 
ing model, off-path attack. 

41 
42 I. INTRODUCTION 
43 A  playbook  consisting  of  rules  and  actions  is  created to 
44 protect  the  network  communication  against  various  attacks 
45 such as Man In The Middle (MITM) attack, Denial Of Service 
46 (DoS) attack and off-path attacks. Preventing and mitigating 
47 attacks in a constrained network is more challenging than 
48 in the well-established Internet world. Emerging applications 
49 such as smart home, smart city, healthcare monitoring systems, 
50 transportation, industrial automation, and agriculture [1] [2] 
51 use the communication of constrained devices with the In- 
52 ternet. Such communication becomes possible because of the 
53 vital roles of the protocols in each layer of the communication 
54 stack. 
55 Like HTTP (Hyper Text Transport Protocol), CoAP (Con- 
56 strained Application Protocol) is an application layer protocol 
57 specifically designed for constrained network devices [3] [4] 
58 [5] [6]. It facilitates communication between the Internet and 

constrained devices. CoAP follows the REST (Representa- 
tional State Transfer) architecture and supports GET, PUT, 
POST methods on the resources. 

CoAP reinforces a request-response model of communica- 
tion between the endpoints. It involves four types of mes- 
sages: CON (Confirmable), NON (non-confirmable), ACK 
(Acknowledgment) and RST (Reset). Whenever a CoAP client 
sends a request to the CoAP server, a connection is opened  
with the server. When the client receives a response, the 
connection with the server is closed. CoAP is built on top of 
the UDP (User Datagram Protocol) transport protocol. UDP is 
not as reliable as TCP (Transmission Control Protocol) since  
it does not offer a proper handshake between the client and 
server. To increase the reliable communication, CoAP supports 
a simple stop and wait mechanism for re-transmission with  
an exponential back-off mechanism for CON messages and 
duplicate detection for both CON and NON messages. 

The off-path attack does not need to interfere with the IoT 
traffic irrespective of whether it is cryptographically secured. 
The off-path attack does  not  insert  or  modify  the  payload 
of a message like a MITM attack. Instead, it sends a fake 
packet between the communicating entities by spoofing the IP 
address. Fig. 1 shows an off-path attack model on the CoAP 
protocol. The off-path attacker gets into the victim machine  
by installing malicious software. The attacker extracts the IP 
address of the CoAP server through the browser extension [7]. 
It then performs an off-path attack by directly communicating 
with the server via another path bypassing the credential 
checks. 

We  further explain the off-path attack using a case study  
of the smart door keypad lock. Using the current CoAP 
implementation whenever the CoAP server receives a PUT 
request from a CoAP client to update the doorlock  re-  
sources, it accesses the database which contains the authen- 
tication/authorization credentials. The CoAP server does not 
validate the requests coming from the remote CoAP clients. 
Hence these implementations open the door for the off-path 
attack. Even if the smart door keypad lock application is 
protected with the standard IoT authentication protocol such as 
DTLS, the injection of a fake pin code by the off-path attack  
is possible in such implementations. 

Furthermore, we demonstrate the attack in the presence of a 
firewall and a two-factor authentication method for the remote 
CoAP client. The consequences of fake information injection 

CoAP protocol 
Exploiting the remote server access support of 
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13 or smart metering. Therefore, we choose smart door keypad 
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55 II. BACKGROUND 
56 A. 6LoWPAN protocol stack with CoAP 
57 6LoWPAN  communication  protocol  used  in  Low  Power 
58 Area Networks (LoWPAN) has the ability of adopting IPv6 

 

 
 

 
 
 

 
 

Internet protocol [3] [9] [10] [11]. Since IPv6 has large address 
space, it can subsume many constrained devices into the 
Internet. Fig. 2 shows the presence of CoAP and associated 
protocols in different layers of 6LoWPAN and explains the 
application layer in detail. 6LoWPAN supports CoAP protocol 
in its application layer and UDP in transport layer [12] [13]. 
6LoWPAN adaptation layer does the job of header compres- 
sion that grants the communication of IPv6 packets over the 
IEEE802.15.4 network. 

6LoWPAN adopts the bottom-most two layers (Physical and 
MAC layers) from IEEE 802.15.4 standard and supports 127 
bytes of data. Although link-layer security inside a LoWPAN 
(employing the 128-bit AES encryption in IEEE 802.15.4) 
provides some protection, communication beyond LoWPAN 
Routers is still vulnerable which increases the need for end- 
to-end security at the application layer [3]. 

 
B. CoAP message format and its functionality 

A CoAP client, which needs a reliable transmission, sends  
a request CON message to the CoAP server and gets an ACK 
message back. 

NON messages from the client do not get an acknowledg- 
ment back from the server, but still, have MessageID to avoid 
duplication of the same message. If the server is not able to 
process the CON message, then it replies with RST message 
instead of ACK. 

Fig. 3 shows the CoAP packet format. CoAP packet consists 
of four bytes header information followed by optional token 
values and payload. The version field (two bits) indicates the 
CoAP version number. The CoAP server automatically ignores 
the CoAP messages that are having an unknown version 
number. The type field indicates the type of CoAP messages 
such as CON, NON, ACK, and RST. TKL field specifies the 

Fig. 3: CoAP packet 

Fig. 2: 6LoWPAN protocol stack with abstract layering of 

 
 

 
 CoAP 

Fig. 1: Off-path attack model on CoAP protocol 

protocol. Our contributions are summarized as follows:  
 

We identify the “Request Spoofing” vulnerability of 
CoAP by exploiting the remote server access support of 
CoAP implementation along with the IP spoofing vulner- 
ability of CoAP using an off-path attack. We observe that 
most available CoAP implementations are not performing 
the validation of remote CoAP clients. Even the widely 
used Python implementation of CoAP (CoAPthon [8]) 
has this vulnerability. It is thus a critical vulnerability in 
CoAP implementations which has not been reported  thus 

 
 

far.  

We analyze and demonstrate the limitations of DTLS and 
firewall respectively to defend against the identified off- 
path attack. Also, we experiment the attack in a two-way 
authenticated environment and present a detailed analysis 
of our results to show that such authentication method 

 

alone cannot defend against such attack.  

We   provide  a  detailed  description  of  why  an off-path 
attack is possible so that it can be repeated by researchers 
in their lab environment for different applications. More 
specifically, the difficulty of distinguishing the packets 
from an actual CoAP client and the attacker is discussed 
in detail. Also, the possible solutions to prevent the  
attack are discussed in detail. Without adding much 
overhead to IoT devices, we propose a simple machine 
learning approach to detect the abnormal behavior of the 
compromised CoAP client for preventing the identified 

 

off-path attack.  
 The rest of the paper is organized as follows. Section II 
provides a background information on how the CoAP protocol 
and WebSocket works. Section III describes the works related 
to the off-path attack. Our testbed architecture is described    
in Section IV. Section V outlines how the  identified  off-  
path attack works. The limitations of existing IoT security 
protocol such as DTLS, firewall, and two-factor authentication 
is explained in Section VI. Section VII outlines the potential 
defense mechanisms including a machine learning approach to 
mitigate the off-path attack. Finally, we conclude our  analysis 
with a discussion in Section VIII.  
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19 TABLE I: Potential attacks on CoAP 
20 
21 length of the variable token field which is followed by the 22 CoAP header information. The usual length of TKL field is 23 0-8 bytes. Code field represents the unique code for request 24 and response messages. The Message ID is a 16-bit indicator 25 used to detect duplicate messages and to match ACK/RST 26 messages to CON/NON messages. The token value will be 0- 27 8 bytes used to correlate request and response messages. In the 28 presence of payload, payload field is prefixed with one-byte 29 payload marker (0xFF) which denotes the end of options and 30 the start of payload. Since CoAP relies on UDP in its transport 31 layer, it uses stop and wait scheme for re-transmission of CON 32 messages  and  duplicate  detection  for  both  CON  and NON 33 messages to increase reliability between CoAP endpoints. 34 The endpoint (node) is determined by its IP address and 35 UDP port number in the case of “NoSec” mode. CoAP-to- 36 CoAP proxy maps a CoAP request to a CoAP request which 37 means both the client and server uses the CoAP protocol to 38 communicate. A CoAP-to-CoAP forward proxy is acting on 39 behalf of the CoAP client to make requests to the CoAP server. 40 CoAP-to-CoAP reverse proxy acting on behalf of the CoAP 41 server to give the resources to the CoAP clients. Reverse proxy 42 builds a namespace so that the client will get more control over 43 where the request goes by embedding information such as host 44 IP address and port number of the URI (Unified Resource 45 Identifier) to direct the request to its intended resources. 46 CoAP URI consists of URI-Host (Host IP address), URI-Port 47 (transport  layer  port  number),  URI-Path  (Absolute  path  of 48 the resource) and URI-Query (Argument parameterizing the 49 request). UDP port is the port where the CoAP server locates. 
50 
51 C. Potential attacks on CoAP 
52 Potential attacks on CoAP [4] are stated in Table I. Our 
53 work focuses on IP spoofing, more specifically on “Request 
54 Spoofing” vulnerability, which is not even described/captured 
55 in RFC7252, of CoAP by exploiting the remote server access 
56 support of CoAP implementation. According to RFC7252, 
57 spoofing attacks on CoAP “response messages” can be per- 
58 formed as follows. 

The malicious programmer prevents the CoAP client from 
re-transmitting the CON message by spoofing the ACK mes- 
sage and stops the actual response of the CoAP server. Another 
method is making the CoAP server disabled so that it is unable 
to receive any CON messages. This can be done by spoofing 
the RST messages. 

The attacker spoofs the NON messages by making the 
CoAP server unable to receive any CON messages by spoofing 
RST messages. Spoofing the entire response is done by chang- 
ing the entire payload of CoAP message with fake information. 
Spoofing a multicast request can lead to congestion in the 
network, DoS (Denial of Service) attack, and intentionally 
wake up the constrained device from sleeping (energy deple- 
tion attack). 

However, we spoof a CoAP request CON messages to cause 
significant damage to the smart door keypad lock system, even 
before the actual user realizes the presence of an attack. This 
attack is different from the potential attacks identified above. 

 
III. RELATED WORK 

Security issues caused by off-path attacks on TCP and DNS 
are very well researched and how they compromise challenge- 
response defense are analysed in [14] [15] [16] [17] [18]. 
Gilad et al. [19] showed that TCP injection is possible by    
the following method. Off-path attackers learn the connection 
sequence numbers of both the client and server in a TCP 
connection by exploiting a globally increasing IP-ID counter 
of Windows machine. Moreover, they suggested the use of 
security protocols such as SSL/TLS or IPsec to defend against 
such off-path attacks. 

In [20], Gilad et al. experimented a practical off-path TCP- 
injection attack which allows web-cache poisoning. They 
suggested to modify the client port selection algorithm  at  
NAT (Network Address Translation) level and deploy cryp- 
tographic methods  such  as  SSL/TLS  at  the  server  side  as 
a defensive mechanism against such off-path TCP injection 
attack. However, we analyze and present in Section VI that 
SSL/TLS (i.e., DTLS) based defensive mechanisms do not 

Potential attacks on CoAP Description of Attack Possible Countermeasures 

Attack on Complex protocol 
parsers 

Crash a node remotely and execute 
arbitrary code remotely on parsers 

Reducing parser complexity; moving much of the URI 
processing to CoAP clients; Care must be given to CoAP 
access control implementations 

 
Man In The Middle attack 
on proxies 

Breaks the confidentiality and integrity 
of the CoAP message by breaking any 
IPSec or DTLS protection on a direct 
CoAP message exchange through 
caching of proxies 

Access control of resources must be considered. Do not 
perform caching on requests that have lesser transport-security 
properties 

 
Amplification 

The attacker attempts to overload a victim 
packet by turning a small packet into a 
large packet leading to a denial of service 
attack 

Make the constrained network to generate a small amount of traffics. 
CoAP server can use Slicing/Blocking modes of CoAP. Limiting 
the support of multicast requests to 
specific resources. 

IP address spoofing 
Attacks the endpoint and even a whole 
network by spoofing the response and 
multicast request messages. 

Response spoofing: by choosing the randomized token in the 
request. Use the security mode of communication. 
Request Spoofing: the focus of this paper. 

Cross Protocol Attacks Attackers send and receive a message 
to the CoAP endpoint 

Strictly check the syntax of the 
received packets. Authorization of endpoints needed 

 
Timing attacks 

As constrained nodes are low in 
processing power, the attack can happen on 
cryptographic key generation and 
recovery of keying materials. 

Care must be taken on the implementation of cryptographic 
primitives. 
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1 
2 work in our identified attack. Hence, we use a machine 
3 learning based approach to monitor the malicious activities 
4 of the compromised client and defense against our attack. 
5 Source Port Randomization (SPR) is the mitigation tech- 
6 nique for an off-path attack on TCP [21]. Fernandes et al. 
7 [22] used the vulnerability of the mobile app to launch the 
8 pin code injection attack on the smart door lock. However, our 
9 off-path attack uses the remote server access support of CoAP 
10 implementation to launch the off-path attack thereby  injecting 
11 the fake password into the Smart Door Keypad lock system. 
12 Hence, the following defensive approaches do not work for 
13 our attack. As a mitigation technique of an off-path attack 
14 on TCP, DNS resolvers send a challenge - 16-bit TXID field 
15 with the request and expecting the same TXID in the response. 
16 Unpredictable port randomization of the client and dropping 
17 the connection with too many empty ACKs at the server side 
18 are the defensive mechanisms supported by a majority of the 
19 resolvers against the off-path attack. References [15] [23] used 
20 side channels for port prediction in order to execute the off- 
21 path attack. 
22 In summary, existing works on the off-path attack for TCP 
23 focus on how such response spoofing is executed along with 
24 their countermeasures. However, our off-path attack on CoAP 
25 analyses how a “request spoofing” causes the damage to the 
26 constrained devices. In the case of CoAP; SPR technique 
27 is built in with the protocol, making it more vulnerable to 
28 “request spoofing”. Since the off-path attacker injects the fake 
29 password value with the request CON message; the server 
30 cannot distinguish the spoofed packet from the original packet. 
31 Our article is the first and novel approach to explore the vulner- 
32 ability of CoAP through the off-path attack. And, we identified 
33 the request spoofing vulnerability of CoAP by exploiting the 
34 remote server access support of CoAP implementations. Also, 
35 we have tested a machine learning model on our private 
36 network to predict the abnormal behavior of the infected CoAP 
37 client. 
38 IV. OUR TESTBED ARCHITECTURE 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

 
A. Construction of Testbed 

The testbed consists of a constrained 6LoWPAN IoT net- 
work and the Internet. We explore the vulnerability of CoAP 
protocol and investigate how a smart door lock application 
may be exploited by the adversary injecting malicious infor- 
mation. Our overall implementation is based on Raspberry   
Pi. A similar implementation is possible using ARDUINO 
platform. Fig. 4 shows the architecture components and the 
communication between them. 

We use the following hardware components to establish the 
6LoWPAN  IoT network. Raspberry Pi 3 Model B+ is used 
for a door lock and a border router. Raspberry Pi 802.15.4 
radio from openlabs [34] is used to enable 6LoWPAN com- 
munication over 802.15.4 to the door lock. GrovePi is placed 
on top of the Raspberry Pi and connects the Grove LCD. 
GroveLCD is used to display the smart door lock status to the 
user.  The keypad allows the user to enter the password and  
the LEDs reflect the user action on the door lock. 6LoWPAN 
IoT network establishment has the following two modules. 
Module 1: Building a CoAP enabled 6LoWPAN smart door 
keypad lock to perform the off-path attack. 

There are two ways to have  the  CoAP  enabled  smart  
door keypad lock system which follows the 6LoWPAN/CoAP 
communication stack protocol. One is to use a commercially 
available product such as IKILOCK [35]. Moreover, the other 
way is to build the prototype of the smart door keypad lock.  
At the time of establishing a test-bed, commercial 6LoWPAN 
smart door keypad lock was not available in our region as    
per our specifications. So we developed a prototype of 6LoW- 
PAN smart door keypad lock using hardware components as 
mentioned earlier. Fig. 5 shows our smart door keypad lock 
prototype and explains the process flow of the prototype. 

We opted Python programming language to develop the 
software of our smart door keypad lock prototype. The proto- 
type software has three separate components. Firstly, a Python 
program for handling the hardware components. Secondly, a 
CoAP server which deals with how to access the resources of 
the prototype and communicating with a database. Thirdly a 
password management database which stores a password of 
the smart door keypad lock as shown in Fig. 6. 

The Smart door keypad lock prototype displays two options 
such as “Enter Password,” and “Change Password” on its 

LCD. The user will choose option A and enter the four-digit 
password if he wants to enter the home. The prototype accepts 

the four-digit password and validates it with the Password 
Management Database. The door will open once the validation 
of password returns success and the LCD displays the “Access 
Granted” message. Otherwise, the main options start to display 
on the LCD followed by the error message “Try again Later”. 

On the other hand, option B is for changing the password  
of the smart door keypad  lock.  To  change  the  password, 

the user provides the old password for a credibility check 
with the database and then sets the  new  password  which 

will be updated in the  password  management  database  by 
the CoAP server. The connection between the CoAP server 
and a password management database is established by giving 
the access control list credentials such as username, password 

Our testbed architecture has two major  parts.  The  first  
part focuses on the construction of testbed and the second   
part provides Two Factor Authentication (2FA) to the CoAP 
user. The Communication flow of our testbed starts with the 
user entering his/her credentials to authenticate themselves 
using 2FA mechanism as discussed in Section IV-B. Then the 
authenticated user can open the door, close the door, or even 
change the passcode of the door remotely. We enabled port- 
forwarding mechanism in Internet Protocol Router (IPR) to 
achieve CoAP communication with the 6LoWPAN network. 
6LoWPAN border router acts as a bridge between Internet 
packets and 6LoWPAN packets by compressing Ethernet pack- 
ets into IEEE 802.15.4 packets. Section II-A describes the 
6LoWPAN protocol stack and the border router. We strongly 
assume that the off-path attacker enters the private network of 
the smart home to inject the fake passcode into the 6LoWPAN 
door lock, as discussed in Section V-A. Network traffic capture 
tool captures the network traffic of the CoAP remote clients 
and attacker to train the Machine Learning (ML) models in 
order to analyze and predict the behavior of the user agents. 
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53 and the name of the database. Since MySQLdb implements 
54 the Python database API v2.0, we have used MySQLdb as 55 an interface for the connection between a MySQL password 56 management database and the CoAP server. 
57 There are many open source CoAP protocol implementa- 
58 tions available. Among them, we preferred CoAPthon imple- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

mentation [8] of CoAP server and FireFox ESR with copper 
add-on as a CoAP client. The Firefox Copper has been dis- 
abled by Firefox after Firefox Quantum has been announced. 
We can use “Copper for Chrome (Cu4Cr) CoAP user-agent 
[36]” as a CoAP web interface to interact with the 6LoWPAN 
smart door lock. However, if still want to use Firefox browser, 
downgrade the Firefox Quantum to Firefox ESR 52.7.2. Since 
CoAPthon has the implementations of more CoAP features 
(CoAP server, client, forward proxy, reverse proxy, observe, 
multicast server discovery, CoRE Link Format parsing and 
block-wise transfer) as described in RFC7252 compared to 
other available CoAP implementations. We modified their code 
found in [37] according to our resources available in the 
6LoWPAN smart door keypad lock prototype. 

We execute our CoAP server on 6LoWPAN smart door 
keypad lock prototype and the CoAP client on the laptop. 
Also, we use Aneska and IoT-CoAP Android mobile apps 
which are available in the play store and app store as CoAP 
clients to access the CoAP resources of the 6LoWPAN 
prototype. The CoAP user gets the existence of the CoAP 
resources through CoAP resource discovery. Our prototype 
has three CoAP resources such as “OptionA”, “OptionB” 

Fig. 6: Software components of smart door keypad lock 
 

 

 
 

Fig. 5: Smart door keypad lock prototype and its process flow 

Fig. 4: Our testbed architecture 
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18 and “Password”. The user gets the status of the door, by 
19 accessing the OptionA and OptionB CoAP resources through 
20 GET command. If the door is not used by the user at that 
21 moment, the corresponding resources return OptionA/OptionB 
22 is in standby mode. Otherwise, GET command returns “The 
23 Door is Opened” or “Access Denied” messages respective to 
24 the CoAP resources accessed. The “Password” CoAP resource 
25 is used to change the password of the 6LoWPAN smart door 
26 lock prototype remotely through the PUT command of CoAP 
27 protocol. The users of the prototype can successfully change 
28 the password remotely using their Android or iOS mobile apps. 
29 Module 2: Building a 6LoWPAN border router on Raspberry 
30 pi. For the 6LoWPAN border router, we use the native border 
31 router GitHub code found in [38]. We changed the RADVD 
32 configuration file by setting the prefix of the IPv6 address of 
33 the constrained 6LoWPAN network. When the RADVD server 
34 starts at the border router, the 6LoWPAN prototype within the 
35 constrained network is assigned with the IPv6 address using 
36 Neighbor Discovery Router Advertisement (RA) messages. 
37 This facilitates the CoAP client to access the CoAP resources 
38 of the 6LoWPAN prototype from the internet. 
39 
40 B. Two Factor Authentication (2FA) for the CoAP user 
41 
42 Fig. 7 explains the communication flows of remote CoAP 
43 user authentication process-2FA in detail. We choose the 2FA 
44 method code which is available online [39] in conjunction with 
45 CoAP. CoAP server starts its service only after a successful 
46 2FA user authentication process. This method of IoT user au- 
47 thentication includes authentications of regular user password 
48 and a one-time token thereby increasing the level of security 
49 in a web application. The one-time password is based on 
50 the Time-based One-Time Password (TOTP) algorithm [40] 
51 and changes every 30 seconds. The user passwords are not 
52 stored as plaintext in the database. Instead, the hash value 
53 of  the  password  is  saved  for  verification.  Upon successful 
54 password verification, the user receives a QR code to proceed 
55 further. This QR code is scanned by a Free OTP app which is 
56 available in android and app store. The user is authenticated 
57 when  providing  the  TOTP  within  its  validity  time, thereby 
58 getting the access of CoAP resources. This TOTP is not a 
59 CoAP responses payload. After successful user authentication, 

 

 
 

 
CoAP server of our 6LoWAPN prototype will be enabled, and 
by hitting the “Discover” button, we get to know the available 
CoAP resources on the CoAP server. Communication flow-5 
of Fig. 4 represents the CoAP resources accessed by CoAP 
clients. 

We agree that the 2FA implementation in the context of 
CoAP for low power devices is computationally complex. 
Also, the CoAP endpoint user has to wait until the authen- 
tication process is finished and getting the response from the 
CoAP server. However, we have implemented 2FA with CoAP 
to provide the endpoint security to the CoAP client. We firmly 
believe that the existing standard security protocol DTLS in 
the context of CoAP for constrained devices provides data 
integrity between the communicating endpoints as per RFC 
7252 and has limitations related to IP Spoofing and cross- 
protocol attacks as we discussed clearly in section IV-A. 

 
V. OUR OFF-PATH ATTACK 

We assume that the attacker gets into the user’s device 
(laptop) to spoof the IP address and communicate with the 
desired 6LoWPAN device. To launch the off-path attack, the 
attacker needs IP address and port number of the CoAP server. 
Even if the port number is not mentioned in the browser, the 
attacker uses the default port number 5683, of CoAP server    
to execute the attack. 

 
A. Off-path attack scenario 

Fig. 8 explains the attack scenario of off-path attack which 
involves the attacker, user agent-laptop and a 6LoWPAN door 
lock in detail. 

Make a connection with CoAP Client: An attacker reaches 
the victim’s machine (the client) by making it install a malware 
thereby the attacker loads a JSON file on the browser. This 
creates an extension in the client’s browser. The attacker’s code 
running inside the client’s machine is making a TCP 3-way 
handshake (SYN, SYN-ACK, ACK) connection with a CoAP 
client whenever the malicious extension bar gets clicked by the 
user. Thereby a TCP socket connection is opened for malicious 
communication. We use WebSockets and asyncio libraries of 
Python to establish such a malicious connection. The execution 

Fig. 8: Off-path attack scenario 

 
 Fig. 7: Two factor authentication process for CoAP user 
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1 
2 of off-path attack follows the establishment of a WebSocket 
3 connection between the malicious code and the CoAP client 
4 [41] [42]. CoAP proxy at the WebSocket endpoint forwards 
5 the request to the CoAP server with a CoAP UDP endpoint. 
6 Such a malicious connection stays alive until the malicious 
7 program terminates. 
8 Launching an off-path attack: The malicious code running 
9 behind the browser extracts the browser information upon suc- 
10 cessful establishment of a malicious WebSocket connection. 
11 The attacker receives the CoAP server’s IP (destination IP) 
12 address and a destination port number with the help of the 
13 victim browser’s extension bar. Then the attacker attempts to 
14 inject the malicious passcode value to the CoAP server by 
15 exploiting remote server access support of CoAP protocol. 
16 The off-path attack happens following a sequence of message 
17 transmission which uses TCP and WebSocket protocol. 
18 Moreover, the attack is possible despite the usage of the 
19 addresses IPv4 or IPv6 user communication with the CoAP 
20 server. The attacker updates the password database of the 
21 6loWPAN prototype by sending the CoAP request with his/her 
22 own hard-coded password value without the knowledge of the 
23 actual user. By this way, the attacker creates the “Request 
24 Spoofing” vulnerability on CoAP protocol to inject the fake 
25 password in the desired 6LoWPAN device’s database. Once 
26 the attacker succeeds in his/her off-path attack, he gets the 
27 full access of the 6LoWPAN smart door keypad lock. 
28 Such an off-path attack can be performed in any commercial 
29 device which follows the 6LoWPAN/CoAP protocol stack 
30 if the attacker reaches the authenticated/non-authenticated 
31 client’s machine. Our work will be enhanced in the future, 
32 with an IoT testbed that includes a large number of constrained 
33 IEEE 802.15.4 sensor nodes to check the scalability, packet 
34 losses, and packet delay of constrained devices. 
35 
36 B. 6LoWPAN-CoAP packet analysis with off-path attack 
37 We analyze 6LoWPAN-CoAP packet based on the CoAP 
38 message format as discussed in Section II-B. We presented 
39 the actual user CoAP request packet in Fig. 9 and the off- 
40 path attacker request packet in Fig. 10 which are captured by 
41 Wireshark tool. 
42 CoAP over WebSocket: If the CoAP communication hap- 
43 pens over WebSocket, then the message packet will have zero 
44 in its length (Len=0) field thereby the version field of CoAP 
45 packet is suppressed with Len field of WebSocket [42]. Also, 
46 CoAP over WebSocket transmission does not distinguish CON 
47 and NON messages and does not provide ACK/RST messages. 
48 However, the off-path attack’s CoAP request packet does have 
49 all the fields as in CoAP over UDP transmission packet, and 
50 it is being sent as a CON message. Moreover, it receives 
51 the ACK message from the CoAP server. Since the attacker’s 
52 request packet is very similar to CoAP client request packet, 
53 it is hard to distinguish the poisoned packet from the actual 
54 client packet. 
55 Off-path in TCP and SPR: The conventional method to 
56 prevent the off-path attack in TCP and UDP is to include 
57 a nonce value with the client’s request so that validation of 
58 the request message is possible when receiving the response 

 

 
 

 
 

 

message. Unlike the TCP injection attack, the CoAP off-path 
attacker is spoofing the request message (injecting the fake 
passcode), not the response message from the server. So the 
countermeasure of including the nonce value with the request 
message is not enough in our case. Moreover, CoAP supports 
SPR technique in its clients; making the protocol more prone 
to off-path attack. From Fig. 9 and Fig. 10; we can not 
distinguish the CoAP packets based on its origin (either the 
user or the hacker) since both of the packets are having random 
source port numbers. 

Server Port Number: According to RFC6335 [43] IANA 
(Internet Assigned Numbers Authority) has assigned 5683 as  
a default port number for CoAP server. If the UDP port is   
not given in the URI or the field is empty,  then the default 
port 5683 will be assigned as a CoAP server port. Hence 
CoAP server port is explicit to the endpoints; leads the off-path 
attacker easy to guess the CoAP server port number. 

Randomized token number: A randomized token number 
is generated when the CoAP messages are not protected by 
the transport layer security to mitigate the response spoofing 
[42]. CoAP client must generate a randomized token ID for 
every request it makes to the CoAP server to match the request 
and response. The token ID also referred as “request ID”. This 
token length would be up to eight bytes, and at least 32 bits of 
token length must be used if the CoAP endpoint is connected 
to the Internet. CoAP server will echo the same token value 
with its response. In some situation, the token ID generation  
is not mandatory. For example, when the CoAP client sends   
a serial request to the CoAP server and CoAP client gets 
piggybacked responses from the CoAP server.  Hence  it  is 
not possible to differentiate the malicious and original CoAP 
request packets based on randomized token ID value. 

Payload length field: According to the RFC7252, in the 
spoofed CoAP packet format; after the one-byte payload 

shark 
Fig. 9: Actual user’s CoAP request packet captured by Wire- 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 marker  (0xFF),  the  payload  length  must  be  zero.  Then au- 
25 tomatically the  packet will be  thrown out for  message format 
26 error. Also, the code field must be set with the reserved class 
27 (1, 6, or 7). However, our captured off-path attacker’s packet 
28 does have the payload length the same as the original CoAP 
29 packet. 
30 The CoAP server rejects the packets which are having ran- 
31 dom token length beyond 8 bytes (i.e., 9-15 bytes). However, 
32 CoAP allows same token length value for different client port 
33 and supports SPR. This makes an off-path attack very easy to 
34 implement. 
35 
36 VI. LIMITATIONS OF EXISTING IOT SECURITY PROTOCOL 
37 AND IOT USER AUTHENTICATION 
38 
39 
40 
41 
42 
43 
44 
45 
46 A. Limitations of DTLS 
47 DTLS (Datagram Transport Layer Security) security pro- 
48 tocol is the most common method used in conjunction with 
49 CoAP to reduce the communication vulnerability of IoT [24] 
50 [25]. Existing works [26] [27] [28] [29] use standard security 
51 protocol DTLS to secure the payload of CoAP communication. 
52 However, DTLS does not provide security against the cross- 
53 protocol attack if the same DTLS security connection is 
54 used to carry the data of multiple protocols [4]. All the 
55 modes of DTLS are not applicable for all constrained devices. 
56 Running of DTLS is impossible on class 0 devices and nearly 
57 impossible to be hosted on class 1 devices (10k RAM/100k 
58 ROM). 

 
Implementation complexities of DTLS in constrained de- 

vices are high. Initial handshake overhead is high. DTLS adds 
13 bytes of per-datagram overhead, excluding initialization 
vectors/nonce, integrity check values and padding values of 
cipher suite, which increase the overhead of LoWPAN devices. 
DTLS does not applicable to group keying communication 
(multicast communication). Since UDP protocol will not verify 
the source address of the request packet, CoAP is vulnerable to 
cross-protocol attacks with the fake source address. UDP based 
protocols are relatively easy targets for the cross-protocol 
attacks. Also, the probability of network delay is higher for 
asymmetric based handshake security protocols [30] [10]. 

Cross-protocol attacks are possible in UDP based commu- 
nication if the security properties of the CoAP server and 
client rely only on the process of checking the source IP 
address. Also if we use proxies such as HTTP to CoAP or 
CoAP to HTTP, the transport layer security called DTLS has 
to be terminated at the proxy [31]. So we need a security 
protocol with features that offer defensive mechanisms against 
the combination of vulnerabilities such as IP spoofing and 
cross-protocol attacks of CoAP. 

 
B. Limitations of user authentication 

The possible best practice to protect the remote server ac- 
cess capability in the Internet world is protecting the network 
by VPN (Virtual Private Network), tunneling the network 
traffic [32] and know the user (the process of authenticating the 
user). We strongly assume that the attacker somehow reached 
the authenticated client’s machine and started the malicious 
server program to extract the browser information. The widely 
used mitigation technique on the Internet against remote server 
access exploitation is by knowing the user using two-factor  
authentication mechanisms [33]. None of the research papers 
addressed CoAP user authentication through 2FA (Two Factor 
Authentication) method. We implemented it in our testbed as 
in Section IV-B. 

Despite a secured 2FA CoAP user authentication, the off- 
path attack is possible, and we demonstrated it since we access 
the CoAP server resources by the IP address and port number 
of the 6LoWPAN device. Moreover, the memory occupancy 
by the 2FA authentication process is high on 6LoWPAN 
constrained devices, and obviously, it is adding additional 
initial computational time (user validation time) on the normal 
communication of CoAP. 

 
C. Limitations of firewall 

As discussed in Section V, the off-path attacker spoofs the 
IP address of an authenticated client. So filtering the packets 
based on their source IP address using the firewall is  not 
going to prevent the off-path attack. Specifically, from the 
Section V-B we observed that the user CoAP packets and the 
poisoned packets are following the same protocol stack for the 
communication. Thereby we cannot merely deny the incoming 
UDP port transmission on the firewall. Though we installed 
and configured the UFW (Uncomplicated Firewall) firewall to 
reject the standard UDP port communication on our testbed, 
the off-path attack by-passes the firewall and gains access 

 
 

of the firewall briefly. 

protocols are not giving protection against our implemented 
off-path attack. They are thereby creating the loophole/ vulner- 
ability in CoAP protocol. This section describes the limitations 
of DTLS, limitations of user authentication, and the limitations 

We analyzed and observed that the existing IoT security 

Wireshark 
Fig. 10: The attacker’s CoAP request packet captured by 
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1 
2 to the 6LoWPAN doorlock device. We believe that the SPR 
3 feature of the CoAP protocol makes the 6LoWPAN network 
4 unable to use the firewall to defend against the off-path attack. 
5 
6 
7 VII. MITIGATION TECHNIQUE 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 machine learning algorithm is 
31 used in [46] [47] to identify the IoT device traffic from non-IoT 
32 device traffic based on the characteristics of network traffic, it 
33 generates. Detecting the IoT nodes in wireless sensor network 
34 also presented in [48]. However, we used a machine learning 
35 algorithm to classify the traffic of the infected CoAP client 
36 which is trying to access the CoAP IoT server maliciously. 
37 Multiple experiments carried out on our IoT testbed network 
38 dataset with different ML algorithms to find out the best ML 
39 model. We have used the WEKA machine learning tool [49] 
40 to create the ML models. 
41 
42 
43 A. Dataset 
44 
45 The training dataset (internal traffic of the infected client) 
46 which is captured by Rawcap tool, has “2676” instances. The 
47 dataset is converted into Attribute-Relation File Format (.arff) 
48 for processing using the WEKA tool. There is no feature 
49 selection algorithm applied to our IoT network traffic dataset 
50 since we are interested in all the features of the dataset except 
51 the number of attributes. We add one attribute called “Threat” 
52 to specify the label of each traffic instance. After labeling 
53 the training dataset, “Threat” attribute weight is distributed 
54 among the classes “No” and “Yes” with the weights “2449.0” 
55 and “227.0” respectively. It is obvious that the real-time IoT 
56 traffic dataset has the unbalanced weight distribution among 
57 the classes. The attribute “Protocol” weight is shared among 
58 “TCP”,  “HTTP”  and  “Websocket”  with  the  corresponding 

weight of “2611.0”, “26.0” and “39.0” respectively. 

 

 
 

 
 

B. Training phase: Building ML models 

We applied the ML algorithms such as Naive Bayes (NB), 
K*, K-NN (k-nearest neighbors), J48, Random Forest, Random 
Tree and Support Vector Machine (SVM) algorithms to build 
ML models and presented a graph in Fig. 11 with their perfor- 
mance comparison statistics. We use 10-fold cross-validation 
method to evaluate the performance of our ML models. This 
approach divides the data set of samples into ten groups/fold. 
For each group, keep the group as a test dataset and treat the 
remaining as the training dataset to evaluate the ML model. 
Hence keep the evaluation score for the corresponding ML 
model [50]. 

Classifier accuracy, True Positive Rate (TPR: number of ex- 
amples predicted positive that are positive), False Positive Rate 
(FPR: number of examples predicted positive that are actually 
negative) and ROC (Receiver Operating Characteristic) is the 
parameters used to compare the performance of different ML 
classifiers. In our dataset, the payload and the structure of the 
malicious packet are very similar to the original CoAP packet 
as described in Section V-B. Generally, the FPR value is high, 
when the dataset is going through an intrusion detection with 
anomaly-based technique. We follow the hybrid of anomaly 
detection and signature-based intrusion detection so that we 
could detect unknown attacks in IoT. 

Ranking an instance based on the area under the  ROC  
curve is a widely accepted parameter to evaluate the ML 
algorithms [51]. We present the values of Classifier accuracy, 
FPR, TPR and ROC parameters for our dataset by applying 
ML algorithms such as NB, K*, K-NN, J48, Random Forest, 
Random Tree and SVM in Fig. 11. From the observation of 
Fig. 11, the ML algorithms such as K-Star and random forest 
have higher accuracy and ROC value as well. 

Naive Bayes (NB): Naive Bayes ML classifier uses a prob- 
abilistic approach based on Bayes theorem with independence 
assumptions among the features of a dataset. Malicious traffic 
is classified based on the prior knowledge of the condition  
that might be related to the occurrence of suspicious network 
traffic. NB classifies the dataset according to every attribute 
into two intended classes. For our dataset, the obtained NB 
classifier model accuracy is “93.42%” and “82.50%” ROC area 
under the curve. 

ML classifiers 
Fig. 11: Training phase: performance comparison of different 

model for outlier prediction. 

machine learning algorithms getting popular among the re- 
searchers [44], [45]. Unsupervised ML algorithms do not 
require pre-labeling of the dataset and create clusters on the 
network traffic data set based on their similar characteristics. 
Whereas our dataset needs a binary classification in the form 
of, whether the network traffic is malicious or normal traffic, 
we choose supervised learning ML methods to create an ML 

The technique of analyzing network traffic data using 
smart home) to monitor and predict the fake network traffic. 

significant differences between the authenticated client’s CoAP 
packet and the attacker’s packet as discussed in Section V-B, 
leads us not to stop the anomaly traffic with the rule-based 
approach. Also, the existing IoT security algorithms are failed 
to determine this kind of attack, as discussed in Section VI. 
For these reasons, we have implemented the Machine Learning 
(ML) model in CoAP client’s machine (Laptop with  Intel 
Core i7) to identify and predict the abnormal behavior of the 
infected CoAP client’s network traffic. We  can also allocate   
a dedicated machine inside the private network (for example, 

Since the IoT traffic captured from our testbed has no 
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1 
2 K-Star: K*  is an instance-based classifier, that is the class 
3 of a test instance is based on the class of those training 
4 instances similar to it, as determined by some similarity 
5 function [52]. For our dataset, the obtained K* classifier model 
6 accuracy is “93.95%” and “94.70%” ROC area under the 
7 curve. 
8 K-NN (k-nearest neighbors): Unlike Naive Bayes classi- 
9 fier, K-NN is not a probability-based classifier. However, K- 
10 NN classification is based on non-parametric statistics such as 
11 descriptive statistics and statistical inference of the instances. 
12 Our K value is 1 with Linear NearestNeighbour search which 
13 uses a Euclidean distance function to find out the nearest 
14 traffic. For our dataset, the obtained K-NN classifier model 
15 accuracy is “94.39%” and “89.7%” ROC area under the curve. 
16 J48: J48 is a tree-based statistical classifier which is the 
17 implementation of the C4.5 algorithm in the Weka data mining 
18 tool. It produces a decision tree developed by Ross Quinlan 
19 [53]. In our training data set, the attribute “Protocol” acts 
20 as  a  root  node.  All  the  HTTP  and  WebSocket  packets are 
21 classified as malicious traffic whereas the TCP packets are 
22 further classified based on time and length feature. For our 
23 dataset, the obtained J48 classifier model accuracy is “94.92%” 
24 and “88%” ROC area under the curve. 
25 Random Forest: Random forests are a combination of 
26 tree predictors such that each tree depends on the values of 
27 a random vector sampled independently and with the same 
28 distribution for all trees in the forest [54]. Bagging with 100 
29 iterations  and  base  learner  functions  are  performed  on  the 
30 training dataset. For our dataset, the obtained random forest 
31 classifier model accuracy is “93.95%” and “93%” ROC area 
32 under the curve. 
33 Random Tree: To construct a tree it considers K randomly 
34 chosen attributes at each node. It performs no pruning. Also 
35 has an option to allow estimation of class probabilities (or tar- 
36 get mean in the regression case) based on a hold-out set (back- 
37 fitting). KValue sets the number of randomly picked attributes. 
38 We choose the value of K is 0. If 0, int (log 2(#predictors) + 
39 1) is used. For our dataset, the obtained random tree classifier 
40 model accuracy is “94.06%” and “78.1%” ROC area under the 
41 curve. 
42 Support Vector Machine (SVM): Stable machine learning 
43 algorithm called SVM constructs hyper-plane to classify the 
44 instances of the training dataset. The larger functional margin 
45 between the hyper-plane and the training data points yields 
46 higher the accuracy of the classifier. Generalization of the 
47 classifier varies on the kernel function. We use Linear Kernel 
48 function K(x, y) =< x, y > for the outlier detection. For 
49 our dataset, the obtained SVM classifier model accuracy is 
50 “93.95%” and “64.3%” of ROC area under the curve. 
51 
52 C. Testing phase: Threat Prediction 
53 The test data set (internal traffic of the infected client 
54 captured by Rawcap tool) has “1078” instances. Among the 
55 1078 instances, “210” traffic instances are malicious traffic. 
56 When applying this test data set to the previously constructed 
57 ML model, we got the malicious traffic prediction accuracy as 
58 shown in Fig. 12. Though K* and random tree classifier models 

 
 

 

 
 

give higher classification accuracy and ROC area under the 
curve results, such algorithms failed to produce high “Threat” 
prediction accuracy. Comparing the prediction results, SVM 
and KNN models are giving “99.05%” of threat prediction 
accuracy. Hence we use SVM and KNN models for further 
real-time outlier detection in our IoT testbed. In the future,   
we will analyze the ML models in detail and train them with 
more datasets to predict the abnormal behavior of the IoT 
CoAP client. 

VIII. DISCUSSION  AND  CONCLUSION 

6LoWPAN and CoAP protocols are IETF standardized 
protocols. Sine 6LoWPAN supports IPv6; there is enough 
room for connecting more IoT devices in the WSN network, 
thereby supports scalability. Moreover, CoAP follows request- 
response architecture to maintain secure communication. This 
architecture will reduce the risk of having potential threats 
such as a drone controlling the entire light of the building 
found in [22] [55] which follows the publish-subscribe method 
of communication. 

Our work in this paper is a concrete contribution to the IoT 
Cyber Security community to strengthen the security of the 
application layer protocol. Also, this work endorses the IoT 
device manufacturers to have machine learning model as an 
IoT network monitor to protect the IoT network against the off- 
path attack and the IoT devices’ communication as well. With 
our observations and findings, it is recommended that the IoT 
industry can have more IoT products with 6LoWPAN-CoAP 
secure communication stack and ML model as a network 
monitoring tool in the IoT network. 

Exploring the vulnerability of CoAP protocol and a mit- 
igation technique is done through a case study  of  a smart 
door keypad lock system. While analyzing the CoAP packets, 
we observed that the spoofed CoAP request message packets 
have the randomized token number. This is the only difference 
between the spoofed CoAP request message and the normal 
CoAP request message of the CoAP server. However,  in  
some situation, the token  ID  generation  is  not  mandatory  
as discussed in Section V-B. Even with the presence of 

different ML models 

 
 Fig. 12: Testing phase: Prediction accuracy comparison of 
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1 
2 authentication security protocols, we realize the attack after 
3 it has done the damage already. 
4 The reason behind fake pincode injection in the 6LoW- 
5 PAN/CoAP stack is, the implementations of CoAP protocol 
6 are not validating the remote CoAP clients. Hence creates 
7 “Request Spoofing” vulnerability, and if it is not treated prop- 
8 erly, the damage for the 6LoWPAN device on the constrained 
9 network would be high. We experimented the off-path attack 
10 by constructing the prototype and launched the attack in an 
11 authenticated environment. Also, we presented the results of 
12 the countermeasure technique to mitigate the off-path attack 
13 using supervised machine learning model. In the future, we 
14 will automate the machine learning model to find out the 
15 abnormal behavior of live IoT traffic which help to detect and 
16 prevent the off-path attack. We believe that paying attention to 
17 “Request Spoofing” vulnerability and implementation method 
18 will help to improve the security against off-path attacks on 
19 CoAP. 
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14 
15 
16  Abstract—The Constrained Application Protocol (CoAP) is a 

specially designed web transfer protocol for use with constrained 
nodes  and  low-power  networks.  The  widely  available  CoAP 

18 implementations have failed to validate the remote CoAP  clients. 
19 Each CoAP client generates a random source port number when 
20 communicating with the CoAP server. However, we observe that 
21 in such implementations it is difficult to distinguish the regular 

packet and the malicious packet, opening a door for a potential 
off-path attack. The off-path attack is considered a weak attack 

23 on a constrained network and has received less attention from 
24 the research community. However, the consequences resulting 
25 from such an attack cannot be ignored in practice. In this 
26 paper, we exploit the combination of IP spoofing vulnerability 

and the remote server access support of CoAP to launch an 
off-path attack. The attacker injects a fake request message to 

28 change the credentials of the 6LoWPAN smart door keypad lock 
29 system. This creates a request spoofing vulnerability in CoAP, 
30 and the attacker exploits this vulnerability to gain full access 
31 to the system. Through our implementation, we demonstrated 

the feasibility of the attack scenario on the 6LoWPAN-CoAP 
network using smart door keypad lock. We proposed a machine 

33 learning based approach to mitigate such attacks. To the best 
34 of our knowledge, we believe that this is the first article to 
35 analyze the remote CoAP server access support and request 
36 spoofing vulnerability of CoAP to launch an off-path attack and 

demonstrate how a machine learning based approach can be 

38 
deployed to prevent such attacks. 

39 
Index Terms—IoT security, CoAP, 6LoWPAN, Machine Learn- 

40 
ing model, off-path attack. 

41 
42 I. INTRODUCTION 
43 A  playbook  consisting  of  rules  and  actions  is  created to 
44 protect  the  network  communication  against  various  attacks 
45 such as Man In The Middle (MITM) attack, Denial Of Service 
46 (DoS) attack and off-path attacks. Preventing and mitigating 
47 attacks in a constrained network is more challenging than 
48 in the well-established Internet world. Emerging applications 
49 such as smart home, smart city, healthcare monitoring systems, 
50 transportation, industrial automation, and agriculture [1] [2] 
51 use the communication of constrained devices with the In- 
52 ternet. Such communication becomes possible because of the 
53 vital roles of the protocols in each layer of the communication 
54 stack. 
55 Like HTTP (Hyper Text Transport Protocol), CoAP (Con- 
56 strained Application Protocol) is an application layer protocol 
57 specifically designed for constrained network devices [3] [4] 
58 [5] [6]. It facilitates communication between the Internet and 

constrained devices. CoAP follows the REST (Representa- 
tional State Transfer) architecture and supports GET, PUT, 
POST methods on the resources. 

CoAP reinforces a request-response model of communica- 
tion between the endpoints. It involves four types of mes- 
sages: CON (Confirmable), NON (non-confirmable), ACK 
(Acknowledgment) and RST (Reset). Whenever a CoAP client 
sends a request to the CoAP server, a connection is opened  
with the server. When the client receives a response, the 
connection with the server is closed. CoAP is built on top of 
the UDP (User Datagram Protocol) transport protocol. UDP is 
not as reliable as TCP (Transmission Control Protocol) since  
it does not offer a proper handshake between the client and 
server. To increase the reliable communication, CoAP supports 
a simple stop and wait mechanism for re-transmission with  
an exponential back-off mechanism for CON messages and 
duplicate detection for both CON and NON messages. 

The off-path attack does not need to interfere with the IoT 
traffic irrespective of whether it is cryptographically secured. 
The off-path attack does  not  insert  or  modify  the  payload 
of a message like a MITM attack. Instead, it sends a fake 
packet between the communicating entities by spoofing the IP 
address. Fig. 1 shows an off-path attack model on the CoAP 
protocol. The off-path attacker gets into the victim machine  
by installing malicious software. The attacker extracts the IP 
address of the CoAP server through the browser extension [7]. 
It then performs an off-path attack by directly communicating 
with the server via another path bypassing the credential 
checks. 

We  further explain the off-path attack using a case study  
of the smart door keypad lock. Using the current CoAP 
implementation whenever the CoAP server receives a PUT 
request from a CoAP client to update the doorlock  re-  
sources, it accesses the database which contains the authen- 
tication/authorization credentials. The CoAP server does not 
validate the requests coming from the remote CoAP clients. 
Hence these implementations open the door for the off-path 
attack. Even if the smart door keypad lock application is 
protected with the standard IoT authentication protocol such as 
DTLS, the injection of a fake pin code by the off-path attack  
is possible in such implementations. 

Furthermore, we demonstrate the attack in the presence of a 
firewall and a two-factor authentication method for the remote 
CoAP client. The consequences of fake information injection 
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9 Fig. 1: Off-path attack model on CoAP protocol 

11 
12 on smart door keypad lock are high compared to smart light 
13 or smart metering. Therefore, we choose smart door keypad 
14 lock as our usecase to explore the vulnerability of the CoAP 
15 protocol. Our contributions are summarized as follows: 
16 • We identify the “Request Spoofing” vulnerability of 
17 CoAP by exploiting the remote server access support of 
18 CoAP implementation along with the IP spoofing vulner- 
19 ability of CoAP using an off-path attack. We observe that 
20 most available CoAP implementations are not performing 
21 the validation of remote CoAP clients. Even the widely 
22 used Python implementation of CoAP (CoAPthon [8]) 
23 has this vulnerability. It is thus a critical vulnerability in 
24 CoAP implementations which has not been reported thus 
25 far. 
26 • We analyze and demonstrate the limitations of DTLS and 
27 firewall respectively to defend against the identified off- 
28 path attack. Also, we experiment the attack in a two-way 
29 authenticated environment and present a detailed analysis 
30 of our results to show that such authentication method 
31 alone cannot defend against such attack. 
32 • We provide a detailed description of why an off-path 
33 attack is possible so that it can be repeated by researchers 
34 in their lab environment for different applications. More 
35 specifically, the difficulty of distinguishing the packets 
36 from an actual CoAP client and the attacker is discussed 
37 in detail. Also, the possible solutions to prevent the 
38 attack are discussed in detail. Without adding much 
39 overhead to IoT devices, we propose a simple machine 
40 learning approach to detect the abnormal behavior of the 
41 compromised CoAP client for preventing the identified 
42 off-path attack. 
43 The rest of the paper is organized as follows. Section II 
44 provides a background information on how the CoAP protocol 
45 and WebSocket works. Section III describes the works related 
46 to the off-path attack. Our testbed architecture is described 
47 in Section IV. Section V outlines how the identified off- 
48 path attack works. The limitations of existing IoT security 
49 protocol such as DTLS, firewall, and two-factor authentication 
50 is explained in Section VI. Section VII outlines the potential 
51 defense mechanisms including a machine learning approach to 
52 mitigate the off-path attack. Finally, we conclude our  analysis 
53 with a discussion in Section VIII. 
54 
55 II. BACKGROUND 
56 A. 6LoWPAN protocol stack with CoAP 
57 6LoWPAN  communication  protocol  used  in  Low  Power 
58 Area Networks (LoWPAN) has the ability of adopting IPv6 

 

 
Fig. 2: 6LoWPAN protocol stack with abstract layering of 
CoAP 

 

Fig. 3: CoAP packet 
 

Internet protocol [3] [9] [10] [11]. Since IPv6 has large address 
space, it can subsume many constrained devices into the 
Internet. Fig. 2 shows the presence of CoAP and associated 
protocols in different layers of 6LoWPAN and explains the 
application layer in detail. 6LoWPAN supports CoAP protocol 
in its application layer and UDP in transport layer [12] [13]. 
6LoWPAN adaptation layer does the job of header compres- 
sion that grants the communication of IPv6 packets over the 
IEEE802.15.4 network. 

6LoWPAN adopts the bottom-most two layers (Physical and 
MAC layers) from IEEE 802.15.4 standard and supports 127 
bytes of data. Although link-layer security inside a LoWPAN 
(employing the 128-bit AES encryption in IEEE 802.15.4) 
provides some protection, communication beyond LoWPAN 
Routers is still vulnerable which increases the need for end- 
to-end security at the application layer [3]. 

 
B. CoAP message format and its functionality 

A CoAP client, which needs a reliable transmission, sends  
a request CON message to the CoAP server and gets an ACK 
message back. 

NON messages from the client do not get an acknowledg- 
ment back from the server, but still, have MessageID to avoid 
duplication of the same message. If the server is not able to 
process the CON message, then it replies with RST message 
instead of ACK. 

Fig. 3 shows the CoAP packet format. CoAP packet consists 
of four bytes header information followed by optional token 
values and payload. The version field (two bits) indicates the 
CoAP version number. The CoAP server automatically ignores 
the CoAP messages that are having an unknown version 
number. The type field indicates the type of CoAP messages 
such as CON, NON, ACK, and RST. TKL field specifies the 
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19 TABLE I: Potential attacks on CoAP 
20 
21 length of the variable token field which is followed by the 22 CoAP header information. The usual length of TKL field is 23 0-8 bytes. Code field represents the unique code for request 24 and response messages. The Message ID is a 16-bit indicator 25 used to detect duplicate messages and to match ACK/RST 26 messages to CON/NON messages. The token value will be 0- 27 8 bytes used to correlate request and response messages. In the 28 presence of payload, payload field is prefixed with one-byte 29 payload marker (0xFF) which denotes the end of options and 30 the start of payload. Since CoAP relies on UDP in its transport 31 layer, it uses stop and wait scheme for re-transmission of CON 32 messages  and  duplicate  detection  for  both  CON  and NON 33 messages to increase reliability between CoAP endpoints. 34 The endpoint (node) is determined by its IP address and 35 UDP port number in the case of “NoSec” mode. CoAP-to- 36 CoAP proxy maps a CoAP request to a CoAP request which 37 means both the client and server uses the CoAP protocol to 38 communicate. A CoAP-to-CoAP forward proxy is acting on 39 behalf of the CoAP client to make requests to the CoAP server. 40 CoAP-to-CoAP reverse proxy acting on behalf of the CoAP 41 server to give the resources to the CoAP clients. Reverse proxy 42 builds a namespace so that the client will get more control over 43 where the request goes by embedding information such as host 44 IP address and port number of the URI (Unified Resource 45 Identifier) to direct the request to its intended resources. 46 CoAP URI consists of URI-Host (Host IP address), URI-Port 47 (transport  layer  port  number),  URI-Path  (Absolute  path  of 48 the resource) and URI-Query (Argument parameterizing the 49 request). UDP port is the port where the CoAP server locates. 
50 
51 C. Potential attacks on CoAP 
52 Potential attacks on CoAP [4] are stated in Table I. Our 
53 work focuses on IP spoofing, more specifically on “Request 
54 Spoofing” vulnerability, which is not even described/captured 
55 in RFC7252, of CoAP by exploiting the remote server access 
56 support of CoAP implementation. According to RFC7252, 
57 spoofing attacks on CoAP “response messages” can be per- 
58 formed as follows. 

The malicious programmer prevents the CoAP client from 
re-transmitting the CON message by spoofing the ACK mes- 
sage and stops the actual response of the CoAP server. Another 
method is making the CoAP server disabled so that it is unable 
to receive any CON messages. This can be done by spoofing 
the RST messages. 

The attacker spoofs the NON messages by making the 
CoAP server unable to receive any CON messages by spoofing 
RST messages. Spoofing the entire response is done by chang- 
ing the entire payload of CoAP message with fake information. 
Spoofing a multicast request can lead to congestion in the 
network, DoS (Denial of Service) attack, and intentionally 
wake up the constrained device from sleeping (energy deple- 
tion attack). 

However, we spoof a CoAP request CON messages to cause 
significant damage to the smart door keypad lock system, even 
before the actual user realizes the presence of an attack. This 
attack is different from the potential attacks identified above. 

 
III. RELATED WORK 

Security issues caused by off-path attacks on TCP and DNS 
are very well researched and how they compromise challenge- 
response defense are analysed in [14] [15] [16] [17] [18]. 
Gilad et al. [19] showed that TCP injection is possible by    
the following method. Off-path attackers learn the connection 
sequence numbers of both the client and server in a TCP 
connection by exploiting a globally increasing IP-ID counter 
of Windows machine. Moreover, they suggested the use of 
security protocols such as SSL/TLS or IPsec to defend against 
such off-path attacks. 

In [20], Gilad et al. experimented a practical off-path TCP- 
injection attack which allows web-cache poisoning. They 
suggested to modify the client port selection algorithm  at  
NAT (Network Address Translation) level and deploy cryp- 
tographic methods  such  as  SSL/TLS  at  the  server  side  as 
a defensive mechanism against such off-path TCP injection 
attack. However, we analyze and present in Section VI that 
SSL/TLS (i.e., DTLS) based defensive mechanisms do not 

Potential attacks on CoAP Description of Attack Possible Countermeasures 

Attack on Complex protocol 
parsers 

Crash a node remotely and execute 
arbitrary code remotely on parsers 

Reducing parser complexity; moving much of the URI 
processing to CoAP clients; Care must be given to CoAP 
access control implementations 

 
Man In The Middle attack 
on proxies 

Breaks the confidentiality and integrity 
of the CoAP message by breaking any 
IPSec or DTLS protection on a direct 
CoAP message exchange through 
caching of proxies 

Access control of resources must be considered. Do not 
perform caching on requests that have lesser transport-security 
properties 

 
Amplification 

The attacker attempts to overload a victim 
packet by turning a small packet into a 
large packet leading to a denial of service 
attack 

Make the constrained network to generate a small amount of traffics. 
CoAP server can use Slicing/Blocking modes of CoAP. Limiting 
the support of multicast requests to 
specific resources. 

IP address spoofing 
Attacks the endpoint and even a whole 
network by spoofing the response and 
multicast request messages. 

Response spoofing: by choosing the randomized token in the 
request. Use the security mode of communication. 
Request Spoofing: the focus of this paper. 

Cross Protocol Attacks Attackers send and receive a message 
to the CoAP endpoint 

Strictly check the syntax of the 
received packets. Authorization of endpoints needed 

 
Timing attacks 

As constrained nodes are low in 
processing power, the attack can happen on 
cryptographic key generation and 
recovery of keying materials. 

Care must be taken on the implementation of cryptographic 
primitives. 
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1 
2 work in our identified attack. Hence, we use a machine 
3 learning based approach to monitor the malicious activities 
4 of the compromised client and defense against our attack. 
5 Source Port Randomization (SPR) is the mitigation tech- 
6 nique for an off-path attack on TCP [21]. Fernandes et al. 
7 [22] used the vulnerability of the mobile app to launch the 
8 pin code injection attack on the smart door lock. However, our 
9 off-path attack uses the remote server access support of CoAP 
10 implementation to launch the off-path attack thereby  injecting 
11 the fake password into the Smart Door Keypad lock system. 
12 Hence, the following defensive approaches do not work for 
13 our attack. As a mitigation technique of an off-path attack 
14 on TCP, DNS resolvers send a challenge - 16-bit TXID field 
15 with the request and expecting the same TXID in the response. 
16 Unpredictable port randomization of the client and dropping 
17 the connection with too many empty ACKs at the server side 
18 are the defensive mechanisms supported by a majority of the 
19 resolvers against the off-path attack. References [15] [23] used 
20 side channels for port prediction in order to execute the off- 
21 path attack. 
22 In summary, existing works on the off-path attack for TCP 
23 focus on how such response spoofing is executed along with 
24 their countermeasures. However, our off-path attack on CoAP 
25 analyses how a “request spoofing” causes the damage to the 
26 constrained devices. In the case of CoAP; SPR technique 
27 is built in with the protocol, making it more vulnerable to 
28 “request spoofing”. Since the off-path attacker injects the fake 
29 password value with the request CON message; the server 
30 cannot distinguish the spoofed packet from the original packet. 
31 Our article is the first and novel approach to explore the vulner- 
32 ability of CoAP through the off-path attack. And, we identified 
33 the request spoofing vulnerability of CoAP by exploiting the 
34 remote server access support of CoAP implementations. Also, 
35 we have tested a machine learning model on our private 
36 network to predict the abnormal behavior of the infected CoAP 
37 client. 
38 IV. OUR TESTBED ARCHITECTURE 
39 
40 Our testbed architecture has two major parts. The first 
41 part focuses on the construction of testbed and the second 
42 part provides Two Factor Authentication (2FA) to the CoAP 
43 user. The Communication flow of our testbed starts with the 
44 user entering his/her credentials to authenticate themselves 
45 using 2FA mechanism as discussed in Section IV-B. Then the 
46 authenticated user can open the door, close the door, or even 
47 change the passcode of the door remotely. We enabled port- 
48 forwarding mechanism in Internet Protocol Router (IPR) to 
49 achieve CoAP communication with the 6LoWPAN network. 
50 6LoWPAN border router acts as a bridge between Internet 
51 packets and 6LoWPAN packets by compressing Ethernet pack- 
52 ets into IEEE 802.15.4 packets. Section II-A describes the 
53 6LoWPAN protocol stack and the border router. We strongly 
54 assume that the off-path attacker enters the private network  of 
55 the smart home to inject the fake passcode into the 6LoWPAN 
56 door lock, as discussed in Section V-A. Network traffic capture 
57 tool captures the network traffic of the CoAP remote clients 
58 and attacker to train the Machine Learning (ML) models in 

order to analyze and predict the behavior of the user agents. 

 
A. Construction of Testbed 

The testbed consists of a constrained 6LoWPAN IoT net- 
work and the Internet. We explore the vulnerability of CoAP 
protocol and investigate how a smart door lock application 
may be exploited by the adversary injecting malicious infor- 
mation. Our overall implementation is based on Raspberry   
Pi. A similar implementation is possible using ARDUINO 
platform. Fig. 4 shows the architecture components and the 
communication between them. 

We use the following hardware components to establish the 
6LoWPAN  IoT network. Raspberry Pi 3 Model B+ is used 
for a door lock and a border router. Raspberry Pi 802.15.4 
radio from openlabs [34] is used to enable 6LoWPAN com- 
munication over 802.15.4 to the door lock. GrovePi is placed 
on top of the Raspberry Pi and connects the Grove LCD. 
GroveLCD is used to display the smart door lock status to the 
user.  The keypad allows the user to enter the password and  
the LEDs reflect the user action on the door lock. 6LoWPAN 
IoT network establishment has the following two modules. 
Module 1: Building a CoAP enabled 6LoWPAN smart door 
keypad lock to perform the off-path attack. 

There are two ways to have  the  CoAP  enabled  smart  
door keypad lock system which follows the 6LoWPAN/CoAP 
communication stack protocol. One is to use a commercially 
available product such as IKILOCK [35]. Moreover, the other 
way is to build the prototype of the smart door keypad lock.  
At the time of establishing a test-bed, commercial 6LoWPAN 
smart door keypad lock was not available in our region as    
per our specifications. So we developed a prototype of 6LoW- 
PAN smart door keypad lock using hardware components as 
mentioned earlier. Fig. 5 shows our smart door keypad lock 
prototype and explains the process flow of the prototype. 

We opted Python programming language to develop the 
software of our smart door keypad lock prototype. The proto- 
type software has three separate components. Firstly, a Python 
program for handling the hardware components. Secondly, a 
CoAP server which deals with how to access the resources of 
the prototype and communicating with a database. Thirdly a 
password management database which stores a password of 
the smart door keypad lock as shown in Fig. 6. 

The Smart door keypad lock prototype displays two options 
such as “Enter Password,” and “Change Password” on its 

LCD. The user will choose option A and enter the four-digit 
password if he wants to enter the home. The prototype accepts 

the four-digit password and validates it with the Password 
Management Database. The door will open once the validation 
of password returns success and the LCD displays the “Access 
Granted” message. Otherwise, the main options start to display 
on the LCD followed by the error message “Try again Later”. 

On the other hand, option B is for changing the password  
of the smart door keypad  lock.  To  change  the  password, 

the user provides the old password for a credibility check 
with the database and then sets the  new  password  which 

will be updated in the  password  management  database  by 
the CoAP server. The connection between the CoAP server 
and a password management database is established by giving 
the access control list credentials such as username, password 
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34 Fig. 6: Software components of smart door keypad lock 
35 
36 
37 mentation [8] of CoAP server and FireFox ESR with copper 
38 add-on as  a  CoAP client. The  Firefox  Copper has  been dis- 39 abled by Firefox after Firefox Quantum has been announced. 40 We can use “Copper for Chrome (Cu4Cr) CoAP user-agent 41 [36]” as a CoAP web interface to interact with the 6LoWPAN 42 smart door lock. However, if still want to use Firefox browser, 43 downgrade the Firefox Quantum to Firefox ESR 52.7.2. Since 44 CoAPthon  has  the  implementations  of  more  CoAP features 45 (CoAP server, client, forward proxy, reverse proxy, observe, 46 multicast  server  discovery,  CoRE  Link  Format  parsing and 47 block-wise  transfer)  as  described  in  RFC7252  compared to 48 other available CoAP implementations. We modified their code 49 found  in  [37]  according  to  our  resources  available  in  the 
50 Fig. 5: Smart door keypad lock prototype and its process flow 
51 
52 
53 and the name of the database. Since MySQLdb implements 
54 the Python database API v2.0, we have used MySQLdb as 55 an interface for the connection between a MySQL password 56 management database and the CoAP server. 
57 There are many open source CoAP protocol implementa- 
58 tions available. Among them, we preferred CoAPthon imple- 

6LoWPAN smart door keypad lock prototype. 
We execute our CoAP server on 6LoWPAN smart door 

keypad lock prototype and the CoAP client on the laptop. 
Also, we use Aneska and IoT-CoAP Android mobile apps 
which are available in the play store and app store as CoAP 
clients to access the CoAP resources of the 6LoWPAN 
prototype. The CoAP user gets the existence of the CoAP 
resources through CoAP resource discovery. Our prototype 
has three CoAP resources such as “OptionA”, “OptionB” 
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15 Fig. 7: Two factor authentication process for CoAP user 
16 
17 
18 and “Password”. The user gets the status of the door, by 
19 accessing the OptionA and OptionB CoAP resources through 
20 GET command. If the door is not used by the user at that 
21 moment, the corresponding resources return OptionA/OptionB 
22 is in standby mode. Otherwise, GET command returns “The 
23 Door is Opened” or “Access Denied” messages respective to 
24 the CoAP resources accessed. The “Password” CoAP resource 
25 is used to change the password of the 6LoWPAN smart door 
26 lock prototype remotely through the PUT command of CoAP 
27 protocol. The users of the prototype can successfully change 
28 the password remotely using their Android or iOS mobile apps. 
29 Module 2: Building a 6LoWPAN border router on Raspberry 
30 pi. For the 6LoWPAN border router, we use the native border 
31 router GitHub code found in [38]. We changed the RADVD 
32 configuration file by setting the prefix of the IPv6 address of 
33 the constrained 6LoWPAN network. When the RADVD server 
34 starts at the border router, the 6LoWPAN prototype within the 
35 constrained network is assigned with the IPv6 address using 
36 Neighbor Discovery Router Advertisement (RA) messages. 
37 This facilitates the CoAP client to access the CoAP resources 
38 of the 6LoWPAN prototype from the internet. 
39 
40 B. Two Factor Authentication (2FA) for the CoAP user 
41 
42 Fig. 7 explains the communication flows of remote CoAP 
43 user authentication process-2FA in detail. We choose the 2FA 
44 method code which is available online [39] in conjunction with 
45 CoAP. CoAP server starts its service only after a successful 
46 2FA user authentication process. This method of IoT user au- 
47 thentication includes authentications of regular user password 
48 and a one-time token thereby increasing the level of security 
49 in a web application. The one-time password is based on 
50 the Time-based One-Time Password (TOTP) algorithm [40] 
51 and changes every 30 seconds. The user passwords are not 
52 stored as plaintext in the database. Instead, the hash value 
53 of  the  password  is  saved  for  verification.  Upon successful 
54 password verification, the user receives a QR code to proceed 
55 further. This QR code is scanned by a Free OTP app which is 
56 available in android and app store. The user is authenticated 
57 when  providing  the  TOTP  within  its  validity  time, thereby 
58 getting the access of CoAP resources. This TOTP is not a 
59 CoAP responses payload. After successful user authentication, 

 

 
Fig. 8: Off-path attack scenario 

 

CoAP server of our 6LoWAPN prototype will be enabled, and 
by hitting the “Discover” button, we get to know the available 
CoAP resources on the CoAP server. Communication flow-5 
of Fig. 4 represents the CoAP resources accessed by CoAP 
clients. 

We agree that the 2FA implementation in the context of 
CoAP for low power devices is computationally complex. 
Also, the CoAP endpoint user has to wait until the authen- 
tication process is finished and getting the response from the 
CoAP server. However, we have implemented 2FA with CoAP 
to provide the endpoint security to the CoAP client. We firmly 
believe that the existing standard security protocol DTLS in 
the context of CoAP for constrained devices provides data 
integrity between the communicating endpoints as per RFC 
7252 and has limitations related to IP Spoofing and cross- 
protocol attacks as we discussed clearly in section IV-A. 

 
V. OUR OFF-PATH ATTACK 

We assume that the attacker gets into the user’s device 
(laptop) to spoof the IP address and communicate with the 
desired 6LoWPAN device. To launch the off-path attack, the 
attacker needs IP address and port number of the CoAP server. 
Even if the port number is not mentioned in the browser, the 
attacker uses the default port number 5683, of CoAP server    
to execute the attack. 

 
A. Off-path attack scenario 

Fig. 8 explains the attack scenario of off-path attack which 
involves the attacker, user agent-laptop and a 6LoWPAN door 
lock in detail. 

Make a connection with CoAP Client: An attacker reaches 
the victim’s machine (the client) by making it install a malware 
thereby the attacker loads a JSON file on the browser. This 
creates an extension in the client’s browser. The attacker’s code 
running inside the client’s machine is making a TCP 3-way 
handshake (SYN, SYN-ACK, ACK) connection with a CoAP 
client whenever the malicious extension bar gets clicked by the 
user. Thereby a TCP socket connection is opened for malicious 
communication. We use WebSockets and asyncio libraries of 
Python to establish such a malicious connection. The execution 
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1 
2 of off-path attack follows the establishment of a WebSocket 
3 connection between the malicious code and the CoAP client 
4 [41] [42]. CoAP proxy at the WebSocket endpoint forwards 
5 the request to the CoAP server with a CoAP UDP endpoint. 
6 Such a malicious connection stays alive until the malicious 
7 program terminates. 
8 Launching an off-path attack: The malicious code running 
9 behind the browser extracts the browser information upon suc- 
10 cessful establishment of a malicious WebSocket connection. 
11 The attacker receives the CoAP server’s IP (destination IP) 
12 address and a destination port number with the help of the 
13 victim browser’s extension bar. Then the attacker attempts to 
14 inject the malicious passcode value to the CoAP server by 
15 exploiting remote server access support of CoAP protocol. 
16 The off-path attack happens following a sequence of message 
17 transmission which uses TCP and WebSocket protocol. 
18 Moreover, the attack is possible despite the usage of the 
19 addresses IPv4 or IPv6 user communication with the CoAP 
20 server. The attacker updates the password database of the 
21 6loWPAN prototype by sending the CoAP request with his/her 
22 own hard-coded password value without the knowledge of the 
23 actual user. By this way, the attacker creates the “Request 
24 Spoofing” vulnerability on CoAP protocol to inject the fake 
25 password in the desired 6LoWPAN device’s database. Once 
26 the attacker succeeds in his/her off-path attack, he gets the 
27 full access of the 6LoWPAN smart door keypad lock. 
28 Such an off-path attack can be performed in any commercial 
29 device which follows the 6LoWPAN/CoAP protocol stack 
30 if the attacker reaches the authenticated/non-authenticated 
31 client’s machine. Our work will be enhanced in the future, 
32 with an IoT testbed that includes a large number of constrained 
33 IEEE 802.15.4 sensor nodes to check the scalability, packet 
34 losses, and packet delay of constrained devices. 
35 
36 B. 6LoWPAN-CoAP packet analysis with off-path attack 
37 We analyze 6LoWPAN-CoAP packet based on the CoAP 
38 message format as discussed in Section II-B. We presented 
39 the actual user CoAP request packet in Fig. 9 and the off- 
40 path attacker request packet in Fig. 10 which are captured by 
41 Wireshark tool. 
42 CoAP over WebSocket: If the CoAP communication hap- 
43 pens over WebSocket, then the message packet will have zero 
44 in its length (Len=0) field thereby the version field of CoAP 
45 packet is suppressed with Len field of WebSocket [42]. Also, 
46 CoAP over WebSocket transmission does not distinguish CON 
47 and NON messages and does not provide ACK/RST messages. 
48 However, the off-path attack’s CoAP request packet does have 
49 all the fields as in CoAP over UDP transmission packet, and 
50 it is being sent as a CON message. Moreover, it receives 
51 the ACK message from the CoAP server. Since the attacker’s 
52 request packet is very similar to CoAP client request packet, 
53 it is hard to distinguish the poisoned packet from the actual 
54 client packet. 
55 Off-path in TCP and SPR: The conventional method to 
56 prevent the off-path attack in TCP and UDP is to include 
57 a nonce value with the client’s request so that validation of 
58 the request message is possible when receiving the response 

 

 
Fig. 9: Actual user’s CoAP request packet captured by Wire- 
shark 

 
 

message. Unlike the TCP injection attack, the CoAP off-path 
attacker is spoofing the request message (injecting the fake 
passcode), not the response message from the server. So the 
countermeasure of including the nonce value with the request 
message is not enough in our case. Moreover, CoAP supports 
SPR technique in its clients; making the protocol more prone 
to off-path attack. From Fig. 9 and Fig. 10; we can not 
distinguish the CoAP packets based on its origin (either the 
user or the hacker) since both of the packets are having random 
source port numbers. 

Server Port Number: According to RFC6335 [43] IANA 
(Internet Assigned Numbers Authority) has assigned 5683 as  
a default port number for CoAP server. If the UDP port is   
not given in the URI or the field is empty,  then the default 
port 5683 will be assigned as a CoAP server port. Hence 
CoAP server port is explicit to the endpoints; leads the off-path 
attacker easy to guess the CoAP server port number. 

Randomized token number: A randomized token number 
is generated when the CoAP messages are not protected by 
the transport layer security to mitigate the response spoofing 
[42]. CoAP client must generate a randomized token ID for 
every request it makes to the CoAP server to match the request 
and response. The token ID also referred as “request ID”. This 
token length would be up to eight bytes, and at least 32 bits of 
token length must be used if the CoAP endpoint is connected 
to the Internet. CoAP server will echo the same token value 
with its response. In some situation, the token ID generation  
is not mandatory. For example, when the CoAP client sends   
a serial request to the CoAP server and CoAP client gets 
piggybacked responses from the CoAP server.  Hence  it  is 
not possible to differentiate the malicious and original CoAP 
request packets based on randomized token ID value. 

Payload length field: According to the RFC7252, in the 
spoofed CoAP packet format; after the one-byte payload 
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20 Fig. 10: The attacker’s CoAP request packet captured by 
21 Wireshark 
22 
23 
24 marker  (0xFF),  the  payload  length  must  be  zero.  Then au- 
25 tomatically the  packet will be  thrown out for  message format 
26 error. Also, the code field must be set with the reserved class 
27 (1, 6, or 7). However, our captured off-path attacker’s packet 
28 does have the payload length the same as the original CoAP 
29 packet. 
30 The CoAP server rejects the packets which are having ran- 
31 dom token length beyond 8 bytes (i.e., 9-15 bytes). However, 
32 CoAP allows same token length value for different client port 
33 and supports SPR. This makes an off-path attack very easy to 
34 implement. 
35 
36 VI. LIMITATIONS OF EXISTING IOT SECURITY PROTOCOL 
37 AND IOT USER AUTHENTICATION 
38 
39 We analyzed and observed that the existing IoT security 
40 protocols are not giving protection against our implemented 
41 off-path attack. They are thereby creating the loophole/ vulner- 
42 ability in CoAP protocol. This section describes the limitations 
43 of DTLS, limitations of user authentication, and the limitations 
44 of the firewall briefly. 
45 
46 A. Limitations of DTLS 
47 DTLS (Datagram Transport Layer Security) security pro- 
48 tocol is the most common method used in conjunction with 
49 CoAP to reduce the communication vulnerability of IoT [24] 
50 [25]. Existing works [26] [27] [28] [29] use standard security 
51 protocol DTLS to secure the payload of CoAP communication. 
52 However, DTLS does not provide security against the cross- 
53 protocol attack if the same DTLS security connection is 
54 used to carry the data of multiple protocols [4]. All the 
55 modes of DTLS are not applicable for all constrained devices. 
56 Running of DTLS is impossible on class 0 devices and nearly 
57 impossible to be hosted on class 1 devices (10k RAM/100k 
58 ROM). 

 
Implementation complexities of DTLS in constrained de- 

vices are high. Initial handshake overhead is high. DTLS adds 
13 bytes of per-datagram overhead, excluding initialization 
vectors/nonce, integrity check values and padding values of 
cipher suite, which increase the overhead of LoWPAN devices. 
DTLS does not applicable to group keying communication 
(multicast communication). Since UDP protocol will not verify 
the source address of the request packet, CoAP is vulnerable to 
cross-protocol attacks with the fake source address. UDP based 
protocols are relatively easy targets for the cross-protocol 
attacks. Also, the probability of network delay is higher for 
asymmetric based handshake security protocols [30] [10]. 

Cross-protocol attacks are possible in UDP based commu- 
nication if the security properties of the CoAP server and 
client rely only on the process of checking the source IP 
address. Also if we use proxies such as HTTP to CoAP or 
CoAP to HTTP, the transport layer security called DTLS has 
to be terminated at the proxy [31]. So we need a security 
protocol with features that offer defensive mechanisms against 
the combination of vulnerabilities such as IP spoofing and 
cross-protocol attacks of CoAP. 

 
B. Limitations of user authentication 

The possible best practice to protect the remote server ac- 
cess capability in the Internet world is protecting the network 
by VPN (Virtual Private Network), tunneling the network 
traffic [32] and know the user (the process of authenticating the 
user). We strongly assume that the attacker somehow reached 
the authenticated client’s machine and started the malicious 
server program to extract the browser information. The widely 
used mitigation technique on the Internet against remote server 
access exploitation is by knowing the user using two-factor  
authentication mechanisms [33]. None of the research papers 
addressed CoAP user authentication through 2FA (Two Factor 
Authentication) method. We implemented it in our testbed as 
in Section IV-B. 

Despite a secured 2FA CoAP user authentication, the off- 
path attack is possible, and we demonstrated it since we access 
the CoAP server resources by the IP address and port number 
of the 6LoWPAN device. Moreover, the memory occupancy 
by the 2FA authentication process is high on 6LoWPAN 
constrained devices, and obviously, it is adding additional 
initial computational time (user validation time) on the normal 
communication of CoAP. 

 
C. Limitations of firewall 

As discussed in Section V, the off-path attacker spoofs the 
IP address of an authenticated client. So filtering the packets 
based on their source IP address using the firewall is  not 
going to prevent the off-path attack. Specifically, from the 
Section V-B we observed that the user CoAP packets and the 
poisoned packets are following the same protocol stack for the 
communication. Thereby we cannot merely deny the incoming 
UDP port transmission on the firewall. Though we installed 
and configured the UFW (Uncomplicated Firewall) firewall to 
reject the standard UDP port communication on our testbed, 
the off-path attack by-passes the firewall and gains access 
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1 
2 to the 6LoWPAN doorlock device. We believe that the SPR 
3 feature of the CoAP protocol makes the 6LoWPAN network 
4 unable to use the firewall to defend against the off-path attack. 
5 
6 
7 VII. MITIGATION TECHNIQUE 
8 
9 Since the IoT traffic captured from our testbed has no 
10 significant differences between the authenticated client’s CoAP 
11 packet and the attacker’s packet as discussed in Section V-B, 
12 leads us not to stop the anomaly traffic with the rule-based 
13 approach. Also, the existing IoT security algorithms are failed 
14 to determine this kind of attack, as discussed in Section VI. 
15 For these reasons, we have implemented the Machine Learning 
16 (ML) model in CoAP client’s machine (Laptop with Intel 
17 Core i7) to identify and predict the abnormal behavior of the 
18 infected CoAP client’s network traffic. We can also allocate 
19 a dedicated machine inside the private network (for example, 
20 smart home) to monitor and predict the fake network traffic. 
21 The technique of analyzing network traffic data using 
22 machine learning algorithms getting popular among the re- 
23 searchers [44], [45]. Unsupervised ML algorithms do not 
24 require pre-labeling of the dataset and create clusters on the 
25 network traffic data set based on their similar characteristics. 
26 Whereas our dataset needs a binary classification in the form 
27 of, whether the network traffic is malicious or normal traffic, 
28 we choose supervised learning ML methods to create an ML 
29 model for outlier prediction. 
30 Random Forest supervised machine learning algorithm is 
31 used in [46] [47] to identify the IoT device traffic from non-IoT 
32 device traffic based on the characteristics of network traffic, it 
33 generates. Detecting the IoT nodes in wireless sensor network 
34 also presented in [48]. However, we used a machine learning 
35 algorithm to classify the traffic of the infected CoAP client 
36 which is trying to access the CoAP IoT server maliciously. 
37 Multiple experiments carried out on our IoT testbed network 
38 dataset with different ML algorithms to find out the best ML 
39 model. We have used the WEKA machine learning tool [49] 
40 to create the ML models. 
41 
42 
43 A. Dataset 
44 
45 The training dataset (internal traffic of the infected client) 
46 which is captured by Rawcap tool, has “2676” instances. The 
47 dataset is converted into Attribute-Relation File Format (.arff) 
48 for processing using the WEKA tool. There is no feature 
49 selection algorithm applied to our IoT network traffic dataset 
50 since we are interested in all the features of the dataset except 
51 the number of attributes. We add one attribute called “Threat” 
52 to specify the label of each traffic instance. After labeling 
53 the training dataset, “Threat” attribute weight is distributed 
54 among the classes “No” and “Yes” with the weights “2449.0” 
55 and “227.0” respectively. It is obvious that the real-time IoT 
56 traffic dataset has the unbalanced weight distribution among 
57 the classes. The attribute “Protocol” weight is shared among 
58 “TCP”,  “HTTP”  and  “Websocket”  with  the  corresponding 

weight of “2611.0”, “26.0” and “39.0” respectively. 

 

 

Fig. 11: Training phase: performance comparison of different 
ML classifiers 

 

B. Training phase: Building ML models 

We applied the ML algorithms such as Naive Bayes (NB), 
K*, K-NN (k-nearest neighbors), J48, Random Forest, Random 
Tree and Support Vector Machine (SVM) algorithms to build 
ML models and presented a graph in Fig. 11 with their perfor- 
mance comparison statistics. We use 10-fold cross-validation 
method to evaluate the performance of our ML models. This 
approach divides the data set of samples into ten groups/fold. 
For each group, keep the group as a test dataset and treat the 
remaining as the training dataset to evaluate the ML model. 
Hence keep the evaluation score for the corresponding ML 
model [50]. 

Classifier accuracy, True Positive Rate (TPR: number of ex- 
amples predicted positive that are positive), False Positive Rate 
(FPR: number of examples predicted positive that are actually 
negative) and ROC (Receiver Operating Characteristic) is the 
parameters used to compare the performance of different ML 
classifiers. In our dataset, the payload and the structure of the 
malicious packet are very similar to the original CoAP packet 
as described in Section V-B. Generally, the FPR value is high, 
when the dataset is going through an intrusion detection with 
anomaly-based technique. We follow the hybrid of anomaly 
detection and signature-based intrusion detection so that we 
could detect unknown attacks in IoT. 

Ranking an instance based on the area under the  ROC  
curve is a widely accepted parameter to evaluate the ML 
algorithms [51]. We present the values of Classifier accuracy, 
FPR, TPR and ROC parameters for our dataset by applying 
ML algorithms such as NB, K*, K-NN, J48, Random Forest, 
Random Tree and SVM in Fig. 11. From the observation of 
Fig. 11, the ML algorithms such as K-Star and random forest 
have higher accuracy and ROC value as well. 

Naive Bayes (NB): Naive Bayes ML classifier uses a prob- 
abilistic approach based on Bayes theorem with independence 
assumptions among the features of a dataset. Malicious traffic 
is classified based on the prior knowledge of the condition  
that might be related to the occurrence of suspicious network 
traffic. NB classifies the dataset according to every attribute 
into two intended classes. For our dataset, the obtained NB 
classifier model accuracy is “93.42%” and “82.50%” ROC area 
under the curve. 
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1 
2 K-Star: K*  is an instance-based classifier, that is the class 
3 of a test instance is based on the class of those training 
4 instances similar to it, as determined by some similarity 
5 function [52]. For our dataset, the obtained K* classifier model 
6 accuracy is “93.95%” and “94.70%” ROC area under the 
7 curve. 
8 K-NN (k-nearest neighbors): Unlike Naive Bayes classi- 
9 fier, K-NN is not a probability-based classifier. However, K- 
10 NN classification is based on non-parametric statistics such as 
11 descriptive statistics and statistical inference of the instances. 
12 Our K value is 1 with Linear NearestNeighbour search which 
13 uses a Euclidean distance function to find out the nearest 
14 traffic. For our dataset, the obtained K-NN classifier model 
15 accuracy is “94.39%” and “89.7%” ROC area under the curve. 
16 J48: J48 is a tree-based statistical classifier which is the 
17 implementation of the C4.5 algorithm in the Weka data mining 
18 tool. It produces a decision tree developed by Ross Quinlan 
19 [53]. In our training data set, the attribute “Protocol” acts 
20 as  a  root  node.  All  the  HTTP  and  WebSocket  packets are 
21 classified as malicious traffic whereas the TCP packets are 
22 further classified based on time and length feature. For our 
23 dataset, the obtained J48 classifier model accuracy is “94.92%” 
24 and “88%” ROC area under the curve. 
25 Random Forest: Random forests are a combination of 
26 tree predictors such that each tree depends on the values of 
27 a random vector sampled independently and with the same 
28 distribution for all trees in the forest [54]. Bagging with 100 
29 iterations  and  base  learner  functions  are  performed  on  the 
30 training dataset. For our dataset, the obtained random forest 
31 classifier model accuracy is “93.95%” and “93%” ROC area 
32 under the curve. 
33 Random Tree: To construct a tree it considers K randomly 
34 chosen attributes at each node. It performs no pruning. Also 
35 has an option to allow estimation of class probabilities (or tar- 
36 get mean in the regression case) based on a hold-out set (back- 
37 fitting). KValue sets the number of randomly picked attributes. 
38 We choose the value of K is 0. If 0, int (log 2(#predictors) + 
39 1) is used. For our dataset, the obtained random tree classifier 
40 model accuracy is “94.06%” and “78.1%” ROC area under the 
41 curve. 
42 Support Vector Machine (SVM): Stable machine learning 
43 algorithm called SVM constructs hyper-plane to classify the 
44 instances of the training dataset. The larger functional margin 
45 between the hyper-plane and the training data points yields 
46 higher the accuracy of the classifier. Generalization of the 
47 classifier varies on the kernel function. We use Linear Kernel 
48 function K(x, y) =< x, y > for the outlier detection. For 
49 our dataset, the obtained SVM classifier model accuracy is 
50 “93.95%” and “64.3%” of ROC area under the curve. 
51 
52 C. Testing phase: Threat Prediction 
53 The test data set (internal traffic of the infected client 
54 captured by Rawcap tool) has “1078” instances. Among the 
55 1078 instances, “210” traffic instances are malicious traffic. 
56 When applying this test data set to the previously constructed 
57 ML model, we got the malicious traffic prediction accuracy as 
58 shown in Fig. 12. Though K* and random tree classifier models 

 
 

Fig. 12: Testing phase: Prediction accuracy comparison of 
different ML models 

 
give higher classification accuracy and ROC area under the 
curve results, such algorithms failed to produce high “Threat” 
prediction accuracy. Comparing the prediction results, SVM 
and KNN models are giving “99.05%” of threat prediction 
accuracy. Hence we use SVM and KNN models for further 
real-time outlier detection in our IoT testbed. In the future,   
we will analyze the ML models in detail and train them with 
more datasets to predict the abnormal behavior of the IoT 
CoAP client. 

VIII. DISCUSSION  AND  CONCLUSION 

6LoWPAN and CoAP protocols are IETF standardized 
protocols. Sine 6LoWPAN supports IPv6; there is enough 
room for connecting more IoT devices in the WSN network, 
thereby supports scalability. Moreover, CoAP follows request- 
response architecture to maintain secure communication. This 
architecture will reduce the risk of having potential threats 
such as a drone controlling the entire light of the building 
found in [22] [55] which follows the publish-subscribe method 
of communication. 

Our work in this paper is a concrete contribution to the IoT 
Cyber Security community to strengthen the security of the 
application layer protocol. Also, this work endorses the IoT 
device manufacturers to have machine learning model as an 
IoT network monitor to protect the IoT network against the off- 
path attack and the IoT devices’ communication as well. With 
our observations and findings, it is recommended that the IoT 
industry can have more IoT products with 6LoWPAN-CoAP 
secure communication stack and ML model as a network 
monitoring tool in the IoT network. 

Exploring the vulnerability of CoAP protocol and a mit- 
igation technique is done through a case study  of  a smart 
door keypad lock system. While analyzing the CoAP packets, 
we observed that the spoofed CoAP request message packets 
have the randomized token number. This is the only difference 
between the spoofed CoAP request message and the normal 
CoAP request message of the CoAP server. However,  in  
some situation, the token  ID  generation  is  not  mandatory  
as discussed in Section V-B. Even with the presence of 
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1 
2 authentication security protocols, we realize the attack after 
3 it has done the damage already. 
4 The reason behind fake pincode injection in the 6LoW- 
5 PAN/CoAP stack is, the implementations of CoAP protocol 
6 are not validating the remote CoAP clients. Hence creates 
7 “Request Spoofing” vulnerability, and if it is not treated prop- 
8 erly, the damage for the 6LoWPAN device on the constrained 
9 network would be high. We experimented the off-path attack 
10 by constructing the prototype and launched the attack in an 
11 authenticated environment. Also, we presented the results of 
12 the countermeasure technique to mitigate the off-path attack 
13 using supervised machine learning model. In the future, we 
14 will automate the machine learning model to find out the 
15 abnormal behavior of live IoT traffic which help to detect and 
16 prevent the off-path attack. We believe that paying attention to 
17 “Request Spoofing” vulnerability and implementation method 
18 will help to improve the security against off-path attacks on 
19 CoAP. 
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