
“© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.”

59
60

8

17

22

27

32

37

59

1
2
3
4
5
6
7 Annie Gilda Roselin1,2, Priyadarsi Nanda1, Surya Nepal2,
9 Xiangjian He1, Jarod Wright3,2.
10 1. University of Technology Sydney (UTS), Australia.
11 2. CSIRO/Data61, Marsfield, NSW, Australia.
12 3. University of Wollongong, NSW, Australia.
13
14
15
16 Abstract—The Constrained Application Protocol (CoAP) is a

specially designed web transfer protocol for use with constrained
nodes and low-power networks. The widely available CoAP

18 implementations have failed to validate the remote CoAP clients.
19 Each CoAP client generates a random source port number when
20 communicating with the CoAP server. However, we observe that
21 in such implementations it is difficult to distinguish the regular

packet and the malicious packet, opening a door for a potential
off-path attack. The off-path attack is considered a weak attack

23 on a constrained network and has received less attention from
24 the research community. However, the consequences resulting
25 from such an attack cannot be ignored in practice. In this
26 paper, we exploit the combination of IP spoofing vulnerability

and the remote server access support of CoAP to launch an
off-path attack. The attacker injects a fake request message to

28 change the credentials of the 6LoWPAN smart door keypad lock
29 system. This creates a request spoofing vulnerability in CoAP,
30 and the attacker exploits this vulnerability to gain full access
31 to the system. Through our implementation, we demonstrated

the feasibility of the attack scenario on the 6LoWPAN-CoAP
network using smart door keypad lock. We proposed a machine

33 learning based approach to mitigate such attacks. To the best
34 of our knowledge, we believe that this is the first article to
35 analyze the remote CoAP server access support and request
36 spoofing vulnerability of CoAP to launch an off-path attack and

demonstrate how a machine learning based approach can be

38
deployed to prevent such attacks.

39
Index Terms—IoT security, CoAP, 6LoWPAN, Machine Learn-

40
ing model, off-path attack.

41
42 I. INTRODUCTION
43 A playbook consisting of rules and actions is created to
44 protect the network communication against various attacks
45 such as Man In The Middle (MITM) attack, Denial Of Service
46 (DoS) attack and off-path attacks. Preventing and mitigating
47 attacks in a constrained network is more challenging than
48 in the well-established Internet world. Emerging applications
49 such as smart home, smart city, healthcare monitoring systems,
50 transportation, industrial automation, and agriculture [1] [2]
51 use the communication of constrained devices with the In-
52 ternet. Such communication becomes possible because of the
53 vital roles of the protocols in each layer of the communication
54 stack.
55 Like HTTP (Hyper Text Transport Protocol), CoAP (Con-
56 strained Application Protocol) is an application layer protocol
57 specifically designed for constrained network devices [3] [4]
58 [5] [6]. It facilitates communication between the Internet and

constrained devices. CoAP follows the REST (Representa-
tional State Transfer) architecture and supports GET, PUT,
POST methods on the resources.

CoAP reinforces a request-response model of communica-
tion between the endpoints. It involves four types of mes-
sages: CON (Confirmable), NON (non-confirmable), ACK
(Acknowledgment) and RST (Reset). Whenever a CoAP client
sends a request to the CoAP server, a connection is opened
with the server. When the client receives a response, the
connection with the server is closed. CoAP is built on top of
the UDP (User Datagram Protocol) transport protocol. UDP is
not as reliable as TCP (Transmission Control Protocol) since
it does not offer a proper handshake between the client and
server. To increase the reliable communication, CoAP supports
a simple stop and wait mechanism for re-transmission with
an exponential back-off mechanism for CON messages and
duplicate detection for both CON and NON messages.

The off-path attack does not need to interfere with the IoT
traffic irrespective of whether it is cryptographically secured.
The off-path attack does not insert or modify the payload
of a message like a MITM attack. Instead, it sends a fake
packet between the communicating entities by spoofing the IP
address. Fig. 1 shows an off-path attack model on the CoAP
protocol. The off-path attacker gets into the victim machine
by installing malicious software. The attacker extracts the IP
address of the CoAP server through the browser extension [7].
It then performs an off-path attack by directly communicating
with the server via another path bypassing the credential
checks.

We further explain the off-path attack using a case study
of the smart door keypad lock. Using the current CoAP
implementation whenever the CoAP server receives a PUT
request from a CoAP client to update the doorlock re-
sources, it accesses the database which contains the authen-
tication/authorization credentials. The CoAP server does not
validate the requests coming from the remote CoAP clients.
Hence these implementations open the door for the off-path
attack. Even if the smart door keypad lock application is
protected with the standard IoT authentication protocol such as
DTLS, the injection of a fake pin code by the off-path attack
is possible in such implementations.

Furthermore, we demonstrate the attack in the presence of a
firewall and a two-factor authentication method for the remote
CoAP client. The consequences of fake information injection

CoAP protocol
Exploiting the remote server access support of

59
60

2

1
2
3
4
5
6
7
8
9
10
11
12 on smart door keypad lock are high compared to smart light
13 or smart metering. Therefore, we choose smart door keypad
14 lock as our usecase to explore the vulnerability of the CoAP
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 II. BACKGROUND
56 A. 6LoWPAN protocol stack with CoAP
57 6LoWPAN communication protocol used in Low Power
58 Area Networks (LoWPAN) has the ability of adopting IPv6

Internet protocol [3] [9] [10] [11]. Since IPv6 has large address
space, it can subsume many constrained devices into the
Internet. Fig. 2 shows the presence of CoAP and associated
protocols in different layers of 6LoWPAN and explains the
application layer in detail. 6LoWPAN supports CoAP protocol
in its application layer and UDP in transport layer [12] [13].
6LoWPAN adaptation layer does the job of header compres-
sion that grants the communication of IPv6 packets over the
IEEE802.15.4 network.

6LoWPAN adopts the bottom-most two layers (Physical and
MAC layers) from IEEE 802.15.4 standard and supports 127
bytes of data. Although link-layer security inside a LoWPAN
(employing the 128-bit AES encryption in IEEE 802.15.4)
provides some protection, communication beyond LoWPAN
Routers is still vulnerable which increases the need for end-
to-end security at the application layer [3].

B. CoAP message format and its functionality

A CoAP client, which needs a reliable transmission, sends
a request CON message to the CoAP server and gets an ACK
message back.

NON messages from the client do not get an acknowledg-
ment back from the server, but still, have MessageID to avoid
duplication of the same message. If the server is not able to
process the CON message, then it replies with RST message
instead of ACK.

Fig. 3 shows the CoAP packet format. CoAP packet consists
of four bytes header information followed by optional token
values and payload. The version field (two bits) indicates the
CoAP version number. The CoAP server automatically ignores
the CoAP messages that are having an unknown version
number. The type field indicates the type of CoAP messages
such as CON, NON, ACK, and RST. TKL field specifies the

Fig. 3: CoAP packet

Fig. 2: 6LoWPAN protocol stack with abstract layering of

 CoAP

Fig. 1: Off-path attack model on CoAP protocol

protocol. Our contributions are summarized as follows:

We identify the “Request Spoofing” vulnerability of
CoAP by exploiting the remote server access support of
CoAP implementation along with the IP spoofing vulner-
ability of CoAP using an off-path attack. We observe that
most available CoAP implementations are not performing
the validation of remote CoAP clients. Even the widely
used Python implementation of CoAP (CoAPthon [8])
has this vulnerability. It is thus a critical vulnerability in
CoAP implementations which has not been reported thus

far.

We analyze and demonstrate the limitations of DTLS and
firewall respectively to defend against the identified off-
path attack. Also, we experiment the attack in a two-way
authenticated environment and present a detailed analysis
of our results to show that such authentication method

alone cannot defend against such attack.

We provide a detailed description of why an off-path
attack is possible so that it can be repeated by researchers
in their lab environment for different applications. More
specifically, the difficulty of distinguishing the packets
from an actual CoAP client and the attacker is discussed
in detail. Also, the possible solutions to prevent the
attack are discussed in detail. Without adding much
overhead to IoT devices, we propose a simple machine
learning approach to detect the abnormal behavior of the
compromised CoAP client for preventing the identified

off-path attack.
 The rest of the paper is organized as follows. Section II
provides a background information on how the CoAP protocol
and WebSocket works. Section III describes the works related
to the off-path attack. Our testbed architecture is described
in Section IV. Section V outlines how the identified off-
path attack works. The limitations of existing IoT security
protocol such as DTLS, firewall, and two-factor authentication
is explained in Section VI. Section VII outlines the potential
defense mechanisms including a machine learning approach to
mitigate the off-path attack. Finally, we conclude our analysis
with a discussion in Section VIII.

59
60

3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 TABLE I: Potential attacks on CoAP
20
21 length of the variable token field which is followed by the 22 CoAP header information. The usual length of TKL field is 23 0-8 bytes. Code field represents the unique code for request 24 and response messages. The Message ID is a 16-bit indicator 25 used to detect duplicate messages and to match ACK/RST 26 messages to CON/NON messages. The token value will be 0- 27 8 bytes used to correlate request and response messages. In the 28 presence of payload, payload field is prefixed with one-byte 29 payload marker (0xFF) which denotes the end of options and 30 the start of payload. Since CoAP relies on UDP in its transport 31 layer, it uses stop and wait scheme for re-transmission of CON 32 messages and duplicate detection for both CON and NON 33 messages to increase reliability between CoAP endpoints. 34 The endpoint (node) is determined by its IP address and 35 UDP port number in the case of “NoSec” mode. CoAP-to- 36 CoAP proxy maps a CoAP request to a CoAP request which 37 means both the client and server uses the CoAP protocol to 38 communicate. A CoAP-to-CoAP forward proxy is acting on 39 behalf of the CoAP client to make requests to the CoAP server. 40 CoAP-to-CoAP reverse proxy acting on behalf of the CoAP 41 server to give the resources to the CoAP clients. Reverse proxy 42 builds a namespace so that the client will get more control over 43 where the request goes by embedding information such as host 44 IP address and port number of the URI (Unified Resource 45 Identifier) to direct the request to its intended resources. 46 CoAP URI consists of URI-Host (Host IP address), URI-Port 47 (transport layer port number), URI-Path (Absolute path of 48 the resource) and URI-Query (Argument parameterizing the 49 request). UDP port is the port where the CoAP server locates.
50
51 C. Potential attacks on CoAP
52 Potential attacks on CoAP [4] are stated in Table I. Our
53 work focuses on IP spoofing, more specifically on “Request
54 Spoofing” vulnerability, which is not even described/captured
55 in RFC7252, of CoAP by exploiting the remote server access
56 support of CoAP implementation. According to RFC7252,
57 spoofing attacks on CoAP “response messages” can be per-
58 formed as follows.

The malicious programmer prevents the CoAP client from
re-transmitting the CON message by spoofing the ACK mes-
sage and stops the actual response of the CoAP server. Another
method is making the CoAP server disabled so that it is unable
to receive any CON messages. This can be done by spoofing
the RST messages.

The attacker spoofs the NON messages by making the
CoAP server unable to receive any CON messages by spoofing
RST messages. Spoofing the entire response is done by chang-
ing the entire payload of CoAP message with fake information.
Spoofing a multicast request can lead to congestion in the
network, DoS (Denial of Service) attack, and intentionally
wake up the constrained device from sleeping (energy deple-
tion attack).

However, we spoof a CoAP request CON messages to cause
significant damage to the smart door keypad lock system, even
before the actual user realizes the presence of an attack. This
attack is different from the potential attacks identified above.

III. RELATED WORK

Security issues caused by off-path attacks on TCP and DNS
are very well researched and how they compromise challenge-
response defense are analysed in [14] [15] [16] [17] [18].
Gilad et al. [19] showed that TCP injection is possible by
the following method. Off-path attackers learn the connection
sequence numbers of both the client and server in a TCP
connection by exploiting a globally increasing IP-ID counter
of Windows machine. Moreover, they suggested the use of
security protocols such as SSL/TLS or IPsec to defend against
such off-path attacks.

In [20], Gilad et al. experimented a practical off-path TCP-
injection attack which allows web-cache poisoning. They
suggested to modify the client port selection algorithm at
NAT (Network Address Translation) level and deploy cryp-
tographic methods such as SSL/TLS at the server side as
a defensive mechanism against such off-path TCP injection
attack. However, we analyze and present in Section VI that
SSL/TLS (i.e., DTLS) based defensive mechanisms do not

Potential attacks on CoAP Description of Attack Possible Countermeasures

Attack on Complex protocol
parsers

Crash a node remotely and execute
arbitrary code remotely on parsers

Reducing parser complexity; moving much of the URI
processing to CoAP clients; Care must be given to CoAP
access control implementations

Man In The Middle attack
on proxies

Breaks the confidentiality and integrity
of the CoAP message by breaking any
IPSec or DTLS protection on a direct
CoAP message exchange through
caching of proxies

Access control of resources must be considered. Do not
perform caching on requests that have lesser transport-security
properties

Amplification

The attacker attempts to overload a victim
packet by turning a small packet into a
large packet leading to a denial of service
attack

Make the constrained network to generate a small amount of traffics.
CoAP server can use Slicing/Blocking modes of CoAP. Limiting
the support of multicast requests to
specific resources.

IP address spoofing
Attacks the endpoint and even a whole
network by spoofing the response and
multicast request messages.

Response spoofing: by choosing the randomized token in the
request. Use the security mode of communication.
Request Spoofing: the focus of this paper.

Cross Protocol Attacks Attackers send and receive a message
to the CoAP endpoint

Strictly check the syntax of the
received packets. Authorization of endpoints needed

Timing attacks

As constrained nodes are low in
processing power, the attack can happen on
cryptographic key generation and
recovery of keying materials.

Care must be taken on the implementation of cryptographic
primitives.

59
60

4

1
2 work in our identified attack. Hence, we use a machine
3 learning based approach to monitor the malicious activities
4 of the compromised client and defense against our attack.
5 Source Port Randomization (SPR) is the mitigation tech-
6 nique for an off-path attack on TCP [21]. Fernandes et al.
7 [22] used the vulnerability of the mobile app to launch the
8 pin code injection attack on the smart door lock. However, our
9 off-path attack uses the remote server access support of CoAP
10 implementation to launch the off-path attack thereby injecting
11 the fake password into the Smart Door Keypad lock system.
12 Hence, the following defensive approaches do not work for
13 our attack. As a mitigation technique of an off-path attack
14 on TCP, DNS resolvers send a challenge - 16-bit TXID field
15 with the request and expecting the same TXID in the response.
16 Unpredictable port randomization of the client and dropping
17 the connection with too many empty ACKs at the server side
18 are the defensive mechanisms supported by a majority of the
19 resolvers against the off-path attack. References [15] [23] used
20 side channels for port prediction in order to execute the off-
21 path attack.
22 In summary, existing works on the off-path attack for TCP
23 focus on how such response spoofing is executed along with
24 their countermeasures. However, our off-path attack on CoAP
25 analyses how a “request spoofing” causes the damage to the
26 constrained devices. In the case of CoAP; SPR technique
27 is built in with the protocol, making it more vulnerable to
28 “request spoofing”. Since the off-path attacker injects the fake
29 password value with the request CON message; the server
30 cannot distinguish the spoofed packet from the original packet.
31 Our article is the first and novel approach to explore the vulner-
32 ability of CoAP through the off-path attack. And, we identified
33 the request spoofing vulnerability of CoAP by exploiting the
34 remote server access support of CoAP implementations. Also,
35 we have tested a machine learning model on our private
36 network to predict the abnormal behavior of the infected CoAP
37 client.
38 IV. OUR TESTBED ARCHITECTURE
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

A. Construction of Testbed

The testbed consists of a constrained 6LoWPAN IoT net-
work and the Internet. We explore the vulnerability of CoAP
protocol and investigate how a smart door lock application
may be exploited by the adversary injecting malicious infor-
mation. Our overall implementation is based on Raspberry
Pi. A similar implementation is possible using ARDUINO
platform. Fig. 4 shows the architecture components and the
communication between them.

We use the following hardware components to establish the
6LoWPAN IoT network. Raspberry Pi 3 Model B+ is used
for a door lock and a border router. Raspberry Pi 802.15.4
radio from openlabs [34] is used to enable 6LoWPAN com-
munication over 802.15.4 to the door lock. GrovePi is placed
on top of the Raspberry Pi and connects the Grove LCD.
GroveLCD is used to display the smart door lock status to the
user. The keypad allows the user to enter the password and
the LEDs reflect the user action on the door lock. 6LoWPAN
IoT network establishment has the following two modules.
Module 1: Building a CoAP enabled 6LoWPAN smart door
keypad lock to perform the off-path attack.

There are two ways to have the CoAP enabled smart
door keypad lock system which follows the 6LoWPAN/CoAP
communication stack protocol. One is to use a commercially
available product such as IKILOCK [35]. Moreover, the other
way is to build the prototype of the smart door keypad lock.
At the time of establishing a test-bed, commercial 6LoWPAN
smart door keypad lock was not available in our region as
per our specifications. So we developed a prototype of 6LoW-
PAN smart door keypad lock using hardware components as
mentioned earlier. Fig. 5 shows our smart door keypad lock
prototype and explains the process flow of the prototype.

We opted Python programming language to develop the
software of our smart door keypad lock prototype. The proto-
type software has three separate components. Firstly, a Python
program for handling the hardware components. Secondly, a
CoAP server which deals with how to access the resources of
the prototype and communicating with a database. Thirdly a
password management database which stores a password of
the smart door keypad lock as shown in Fig. 6.

The Smart door keypad lock prototype displays two options
such as “Enter Password,” and “Change Password” on its

LCD. The user will choose option A and enter the four-digit
password if he wants to enter the home. The prototype accepts

the four-digit password and validates it with the Password
Management Database. The door will open once the validation
of password returns success and the LCD displays the “Access
Granted” message. Otherwise, the main options start to display
on the LCD followed by the error message “Try again Later”.

On the other hand, option B is for changing the password
of the smart door keypad lock. To change the password,

the user provides the old password for a credibility check
with the database and then sets the new password which

will be updated in the password management database by
the CoAP server. The connection between the CoAP server
and a password management database is established by giving
the access control list credentials such as username, password

Our testbed architecture has two major parts. The first
part focuses on the construction of testbed and the second
part provides Two Factor Authentication (2FA) to the CoAP
user. The Communication flow of our testbed starts with the
user entering his/her credentials to authenticate themselves
using 2FA mechanism as discussed in Section IV-B. Then the
authenticated user can open the door, close the door, or even
change the passcode of the door remotely. We enabled port-
forwarding mechanism in Internet Protocol Router (IPR) to
achieve CoAP communication with the 6LoWPAN network.
6LoWPAN border router acts as a bridge between Internet
packets and 6LoWPAN packets by compressing Ethernet pack-
ets into IEEE 802.15.4 packets. Section II-A describes the
6LoWPAN protocol stack and the border router. We strongly
assume that the off-path attacker enters the private network of
the smart home to inject the fake passcode into the 6LoWPAN
door lock, as discussed in Section V-A. Network traffic capture
tool captures the network traffic of the CoAP remote clients
and attacker to train the Machine Learning (ML) models in
order to analyze and predict the behavior of the user agents.

59
60

5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53 and the name of the database. Since MySQLdb implements
54 the Python database API v2.0, we have used MySQLdb as 55 an interface for the connection between a MySQL password 56 management database and the CoAP server.
57 There are many open source CoAP protocol implementa-
58 tions available. Among them, we preferred CoAPthon imple-

mentation [8] of CoAP server and FireFox ESR with copper
add-on as a CoAP client. The Firefox Copper has been dis-
abled by Firefox after Firefox Quantum has been announced.
We can use “Copper for Chrome (Cu4Cr) CoAP user-agent
[36]” as a CoAP web interface to interact with the 6LoWPAN
smart door lock. However, if still want to use Firefox browser,
downgrade the Firefox Quantum to Firefox ESR 52.7.2. Since
CoAPthon has the implementations of more CoAP features
(CoAP server, client, forward proxy, reverse proxy, observe,
multicast server discovery, CoRE Link Format parsing and
block-wise transfer) as described in RFC7252 compared to
other available CoAP implementations. We modified their code
found in [37] according to our resources available in the
6LoWPAN smart door keypad lock prototype.

We execute our CoAP server on 6LoWPAN smart door
keypad lock prototype and the CoAP client on the laptop.
Also, we use Aneska and IoT-CoAP Android mobile apps
which are available in the play store and app store as CoAP
clients to access the CoAP resources of the 6LoWPAN
prototype. The CoAP user gets the existence of the CoAP
resources through CoAP resource discovery. Our prototype
has three CoAP resources such as “OptionA”, “OptionB”

Fig. 6: Software components of smart door keypad lock

Fig. 5: Smart door keypad lock prototype and its process flow

Fig. 4: Our testbed architecture

59
60

6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 and “Password”. The user gets the status of the door, by
19 accessing the OptionA and OptionB CoAP resources through
20 GET command. If the door is not used by the user at that
21 moment, the corresponding resources return OptionA/OptionB
22 is in standby mode. Otherwise, GET command returns “The
23 Door is Opened” or “Access Denied” messages respective to
24 the CoAP resources accessed. The “Password” CoAP resource
25 is used to change the password of the 6LoWPAN smart door
26 lock prototype remotely through the PUT command of CoAP
27 protocol. The users of the prototype can successfully change
28 the password remotely using their Android or iOS mobile apps.
29 Module 2: Building a 6LoWPAN border router on Raspberry
30 pi. For the 6LoWPAN border router, we use the native border
31 router GitHub code found in [38]. We changed the RADVD
32 configuration file by setting the prefix of the IPv6 address of
33 the constrained 6LoWPAN network. When the RADVD server
34 starts at the border router, the 6LoWPAN prototype within the
35 constrained network is assigned with the IPv6 address using
36 Neighbor Discovery Router Advertisement (RA) messages.
37 This facilitates the CoAP client to access the CoAP resources
38 of the 6LoWPAN prototype from the internet.
39
40 B. Two Factor Authentication (2FA) for the CoAP user
41
42 Fig. 7 explains the communication flows of remote CoAP
43 user authentication process-2FA in detail. We choose the 2FA
44 method code which is available online [39] in conjunction with
45 CoAP. CoAP server starts its service only after a successful
46 2FA user authentication process. This method of IoT user au-
47 thentication includes authentications of regular user password
48 and a one-time token thereby increasing the level of security
49 in a web application. The one-time password is based on
50 the Time-based One-Time Password (TOTP) algorithm [40]
51 and changes every 30 seconds. The user passwords are not
52 stored as plaintext in the database. Instead, the hash value
53 of the password is saved for verification. Upon successful
54 password verification, the user receives a QR code to proceed
55 further. This QR code is scanned by a Free OTP app which is
56 available in android and app store. The user is authenticated
57 when providing the TOTP within its validity time, thereby
58 getting the access of CoAP resources. This TOTP is not a
59 CoAP responses payload. After successful user authentication,

CoAP server of our 6LoWAPN prototype will be enabled, and
by hitting the “Discover” button, we get to know the available
CoAP resources on the CoAP server. Communication flow-5
of Fig. 4 represents the CoAP resources accessed by CoAP
clients.

We agree that the 2FA implementation in the context of
CoAP for low power devices is computationally complex.
Also, the CoAP endpoint user has to wait until the authen-
tication process is finished and getting the response from the
CoAP server. However, we have implemented 2FA with CoAP
to provide the endpoint security to the CoAP client. We firmly
believe that the existing standard security protocol DTLS in
the context of CoAP for constrained devices provides data
integrity between the communicating endpoints as per RFC
7252 and has limitations related to IP Spoofing and cross-
protocol attacks as we discussed clearly in section IV-A.

V. OUR OFF-PATH ATTACK

We assume that the attacker gets into the user’s device
(laptop) to spoof the IP address and communicate with the
desired 6LoWPAN device. To launch the off-path attack, the
attacker needs IP address and port number of the CoAP server.
Even if the port number is not mentioned in the browser, the
attacker uses the default port number 5683, of CoAP server
to execute the attack.

A. Off-path attack scenario

Fig. 8 explains the attack scenario of off-path attack which
involves the attacker, user agent-laptop and a 6LoWPAN door
lock in detail.

Make a connection with CoAP Client: An attacker reaches
the victim’s machine (the client) by making it install a malware
thereby the attacker loads a JSON file on the browser. This
creates an extension in the client’s browser. The attacker’s code
running inside the client’s machine is making a TCP 3-way
handshake (SYN, SYN-ACK, ACK) connection with a CoAP
client whenever the malicious extension bar gets clicked by the
user. Thereby a TCP socket connection is opened for malicious
communication. We use WebSockets and asyncio libraries of
Python to establish such a malicious connection. The execution

Fig. 8: Off-path attack scenario

 Fig. 7: Two factor authentication process for CoAP user

60

7

1
2 of off-path attack follows the establishment of a WebSocket
3 connection between the malicious code and the CoAP client
4 [41] [42]. CoAP proxy at the WebSocket endpoint forwards
5 the request to the CoAP server with a CoAP UDP endpoint.
6 Such a malicious connection stays alive until the malicious
7 program terminates.
8 Launching an off-path attack: The malicious code running
9 behind the browser extracts the browser information upon suc-
10 cessful establishment of a malicious WebSocket connection.
11 The attacker receives the CoAP server’s IP (destination IP)
12 address and a destination port number with the help of the
13 victim browser’s extension bar. Then the attacker attempts to
14 inject the malicious passcode value to the CoAP server by
15 exploiting remote server access support of CoAP protocol.
16 The off-path attack happens following a sequence of message
17 transmission which uses TCP and WebSocket protocol.
18 Moreover, the attack is possible despite the usage of the
19 addresses IPv4 or IPv6 user communication with the CoAP
20 server. The attacker updates the password database of the
21 6loWPAN prototype by sending the CoAP request with his/her
22 own hard-coded password value without the knowledge of the
23 actual user. By this way, the attacker creates the “Request
24 Spoofing” vulnerability on CoAP protocol to inject the fake
25 password in the desired 6LoWPAN device’s database. Once
26 the attacker succeeds in his/her off-path attack, he gets the
27 full access of the 6LoWPAN smart door keypad lock.
28 Such an off-path attack can be performed in any commercial
29 device which follows the 6LoWPAN/CoAP protocol stack
30 if the attacker reaches the authenticated/non-authenticated
31 client’s machine. Our work will be enhanced in the future,
32 with an IoT testbed that includes a large number of constrained
33 IEEE 802.15.4 sensor nodes to check the scalability, packet
34 losses, and packet delay of constrained devices.
35
36 B. 6LoWPAN-CoAP packet analysis with off-path attack
37 We analyze 6LoWPAN-CoAP packet based on the CoAP
38 message format as discussed in Section II-B. We presented
39 the actual user CoAP request packet in Fig. 9 and the off-
40 path attacker request packet in Fig. 10 which are captured by
41 Wireshark tool.
42 CoAP over WebSocket: If the CoAP communication hap-
43 pens over WebSocket, then the message packet will have zero
44 in its length (Len=0) field thereby the version field of CoAP
45 packet is suppressed with Len field of WebSocket [42]. Also,
46 CoAP over WebSocket transmission does not distinguish CON
47 and NON messages and does not provide ACK/RST messages.
48 However, the off-path attack’s CoAP request packet does have
49 all the fields as in CoAP over UDP transmission packet, and
50 it is being sent as a CON message. Moreover, it receives
51 the ACK message from the CoAP server. Since the attacker’s
52 request packet is very similar to CoAP client request packet,
53 it is hard to distinguish the poisoned packet from the actual
54 client packet.
55 Off-path in TCP and SPR: The conventional method to
56 prevent the off-path attack in TCP and UDP is to include
57 a nonce value with the client’s request so that validation of
58 the request message is possible when receiving the response

message. Unlike the TCP injection attack, the CoAP off-path
attacker is spoofing the request message (injecting the fake
passcode), not the response message from the server. So the
countermeasure of including the nonce value with the request
message is not enough in our case. Moreover, CoAP supports
SPR technique in its clients; making the protocol more prone
to off-path attack. From Fig. 9 and Fig. 10; we can not
distinguish the CoAP packets based on its origin (either the
user or the hacker) since both of the packets are having random
source port numbers.

Server Port Number: According to RFC6335 [43] IANA
(Internet Assigned Numbers Authority) has assigned 5683 as
a default port number for CoAP server. If the UDP port is
not given in the URI or the field is empty, then the default
port 5683 will be assigned as a CoAP server port. Hence
CoAP server port is explicit to the endpoints; leads the off-path
attacker easy to guess the CoAP server port number.

Randomized token number: A randomized token number
is generated when the CoAP messages are not protected by
the transport layer security to mitigate the response spoofing
[42]. CoAP client must generate a randomized token ID for
every request it makes to the CoAP server to match the request
and response. The token ID also referred as “request ID”. This
token length would be up to eight bytes, and at least 32 bits of
token length must be used if the CoAP endpoint is connected
to the Internet. CoAP server will echo the same token value
with its response. In some situation, the token ID generation
is not mandatory. For example, when the CoAP client sends
a serial request to the CoAP server and CoAP client gets
piggybacked responses from the CoAP server. Hence it is
not possible to differentiate the malicious and original CoAP
request packets based on randomized token ID value.

Payload length field: According to the RFC7252, in the
spoofed CoAP packet format; after the one-byte payload

shark
Fig. 9: Actual user’s CoAP request packet captured by Wire-

59
60

59

8

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 marker (0xFF), the payload length must be zero. Then au-
25 tomatically the packet will be thrown out for message format
26 error. Also, the code field must be set with the reserved class
27 (1, 6, or 7). However, our captured off-path attacker’s packet
28 does have the payload length the same as the original CoAP
29 packet.
30 The CoAP server rejects the packets which are having ran-
31 dom token length beyond 8 bytes (i.e., 9-15 bytes). However,
32 CoAP allows same token length value for different client port
33 and supports SPR. This makes an off-path attack very easy to
34 implement.
35
36 VI. LIMITATIONS OF EXISTING IOT SECURITY PROTOCOL
37 AND IOT USER AUTHENTICATION
38
39
40
41
42
43
44
45
46 A. Limitations of DTLS
47 DTLS (Datagram Transport Layer Security) security pro-
48 tocol is the most common method used in conjunction with
49 CoAP to reduce the communication vulnerability of IoT [24]
50 [25]. Existing works [26] [27] [28] [29] use standard security
51 protocol DTLS to secure the payload of CoAP communication.
52 However, DTLS does not provide security against the cross-
53 protocol attack if the same DTLS security connection is
54 used to carry the data of multiple protocols [4]. All the
55 modes of DTLS are not applicable for all constrained devices.
56 Running of DTLS is impossible on class 0 devices and nearly
57 impossible to be hosted on class 1 devices (10k RAM/100k
58 ROM).

Implementation complexities of DTLS in constrained de-

vices are high. Initial handshake overhead is high. DTLS adds
13 bytes of per-datagram overhead, excluding initialization
vectors/nonce, integrity check values and padding values of
cipher suite, which increase the overhead of LoWPAN devices.
DTLS does not applicable to group keying communication
(multicast communication). Since UDP protocol will not verify
the source address of the request packet, CoAP is vulnerable to
cross-protocol attacks with the fake source address. UDP based
protocols are relatively easy targets for the cross-protocol
attacks. Also, the probability of network delay is higher for
asymmetric based handshake security protocols [30] [10].

Cross-protocol attacks are possible in UDP based commu-
nication if the security properties of the CoAP server and
client rely only on the process of checking the source IP
address. Also if we use proxies such as HTTP to CoAP or
CoAP to HTTP, the transport layer security called DTLS has
to be terminated at the proxy [31]. So we need a security
protocol with features that offer defensive mechanisms against
the combination of vulnerabilities such as IP spoofing and
cross-protocol attacks of CoAP.

B. Limitations of user authentication

The possible best practice to protect the remote server ac-
cess capability in the Internet world is protecting the network
by VPN (Virtual Private Network), tunneling the network
traffic [32] and know the user (the process of authenticating the
user). We strongly assume that the attacker somehow reached
the authenticated client’s machine and started the malicious
server program to extract the browser information. The widely
used mitigation technique on the Internet against remote server
access exploitation is by knowing the user using two-factor
authentication mechanisms [33]. None of the research papers
addressed CoAP user authentication through 2FA (Two Factor
Authentication) method. We implemented it in our testbed as
in Section IV-B.

Despite a secured 2FA CoAP user authentication, the off-
path attack is possible, and we demonstrated it since we access
the CoAP server resources by the IP address and port number
of the 6LoWPAN device. Moreover, the memory occupancy
by the 2FA authentication process is high on 6LoWPAN
constrained devices, and obviously, it is adding additional
initial computational time (user validation time) on the normal
communication of CoAP.

C. Limitations of firewall

As discussed in Section V, the off-path attacker spoofs the
IP address of an authenticated client. So filtering the packets
based on their source IP address using the firewall is not
going to prevent the off-path attack. Specifically, from the
Section V-B we observed that the user CoAP packets and the
poisoned packets are following the same protocol stack for the
communication. Thereby we cannot merely deny the incoming
UDP port transmission on the firewall. Though we installed
and configured the UFW (Uncomplicated Firewall) firewall to
reject the standard UDP port communication on our testbed,
the off-path attack by-passes the firewall and gains access

of the firewall briefly.

protocols are not giving protection against our implemented
off-path attack. They are thereby creating the loophole/ vulner-
ability in CoAP protocol. This section describes the limitations
of DTLS, limitations of user authentication, and the limitations

We analyzed and observed that the existing IoT security

Wireshark
Fig. 10: The attacker’s CoAP request packet captured by

60

Random Forest supervised

9

1
2 to the 6LoWPAN doorlock device. We believe that the SPR
3 feature of the CoAP protocol makes the 6LoWPAN network
4 unable to use the firewall to defend against the off-path attack.
5
6
7 VII. MITIGATION TECHNIQUE

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 machine learning algorithm is
31 used in [46] [47] to identify the IoT device traffic from non-IoT
32 device traffic based on the characteristics of network traffic, it
33 generates. Detecting the IoT nodes in wireless sensor network
34 also presented in [48]. However, we used a machine learning
35 algorithm to classify the traffic of the infected CoAP client
36 which is trying to access the CoAP IoT server maliciously.
37 Multiple experiments carried out on our IoT testbed network
38 dataset with different ML algorithms to find out the best ML
39 model. We have used the WEKA machine learning tool [49]
40 to create the ML models.
41
42
43 A. Dataset
44
45 The training dataset (internal traffic of the infected client)
46 which is captured by Rawcap tool, has “2676” instances. The
47 dataset is converted into Attribute-Relation File Format (.arff)
48 for processing using the WEKA tool. There is no feature
49 selection algorithm applied to our IoT network traffic dataset
50 since we are interested in all the features of the dataset except
51 the number of attributes. We add one attribute called “Threat”
52 to specify the label of each traffic instance. After labeling
53 the training dataset, “Threat” attribute weight is distributed
54 among the classes “No” and “Yes” with the weights “2449.0”
55 and “227.0” respectively. It is obvious that the real-time IoT
56 traffic dataset has the unbalanced weight distribution among
57 the classes. The attribute “Protocol” weight is shared among
58 “TCP”, “HTTP” and “Websocket” with the corresponding

weight of “2611.0”, “26.0” and “39.0” respectively.

B. Training phase: Building ML models

We applied the ML algorithms such as Naive Bayes (NB),
K*, K-NN (k-nearest neighbors), J48, Random Forest, Random
Tree and Support Vector Machine (SVM) algorithms to build
ML models and presented a graph in Fig. 11 with their perfor-
mance comparison statistics. We use 10-fold cross-validation
method to evaluate the performance of our ML models. This
approach divides the data set of samples into ten groups/fold.
For each group, keep the group as a test dataset and treat the
remaining as the training dataset to evaluate the ML model.
Hence keep the evaluation score for the corresponding ML
model [50].

Classifier accuracy, True Positive Rate (TPR: number of ex-
amples predicted positive that are positive), False Positive Rate
(FPR: number of examples predicted positive that are actually
negative) and ROC (Receiver Operating Characteristic) is the
parameters used to compare the performance of different ML
classifiers. In our dataset, the payload and the structure of the
malicious packet are very similar to the original CoAP packet
as described in Section V-B. Generally, the FPR value is high,
when the dataset is going through an intrusion detection with
anomaly-based technique. We follow the hybrid of anomaly
detection and signature-based intrusion detection so that we
could detect unknown attacks in IoT.

Ranking an instance based on the area under the ROC
curve is a widely accepted parameter to evaluate the ML
algorithms [51]. We present the values of Classifier accuracy,
FPR, TPR and ROC parameters for our dataset by applying
ML algorithms such as NB, K*, K-NN, J48, Random Forest,
Random Tree and SVM in Fig. 11. From the observation of
Fig. 11, the ML algorithms such as K-Star and random forest
have higher accuracy and ROC value as well.

Naive Bayes (NB): Naive Bayes ML classifier uses a prob-
abilistic approach based on Bayes theorem with independence
assumptions among the features of a dataset. Malicious traffic
is classified based on the prior knowledge of the condition
that might be related to the occurrence of suspicious network
traffic. NB classifies the dataset according to every attribute
into two intended classes. For our dataset, the obtained NB
classifier model accuracy is “93.42%” and “82.50%” ROC area
under the curve.

ML classifiers
Fig. 11: Training phase: performance comparison of different

model for outlier prediction.

machine learning algorithms getting popular among the re-
searchers [44], [45]. Unsupervised ML algorithms do not
require pre-labeling of the dataset and create clusters on the
network traffic data set based on their similar characteristics.
Whereas our dataset needs a binary classification in the form
of, whether the network traffic is malicious or normal traffic,
we choose supervised learning ML methods to create an ML

The technique of analyzing network traffic data using
smart home) to monitor and predict the fake network traffic.

significant differences between the authenticated client’s CoAP
packet and the attacker’s packet as discussed in Section V-B,
leads us not to stop the anomaly traffic with the rule-based
approach. Also, the existing IoT security algorithms are failed
to determine this kind of attack, as discussed in Section VI.
For these reasons, we have implemented the Machine Learning
(ML) model in CoAP client’s machine (Laptop with Intel
Core i7) to identify and predict the abnormal behavior of the
infected CoAP client’s network traffic. We can also allocate
a dedicated machine inside the private network (for example,

Since the IoT traffic captured from our testbed has no

59
60

59

10

1
2 K-Star: K* is an instance-based classifier, that is the class
3 of a test instance is based on the class of those training
4 instances similar to it, as determined by some similarity
5 function [52]. For our dataset, the obtained K* classifier model
6 accuracy is “93.95%” and “94.70%” ROC area under the
7 curve.
8 K-NN (k-nearest neighbors): Unlike Naive Bayes classi-
9 fier, K-NN is not a probability-based classifier. However, K-
10 NN classification is based on non-parametric statistics such as
11 descriptive statistics and statistical inference of the instances.
12 Our K value is 1 with Linear NearestNeighbour search which
13 uses a Euclidean distance function to find out the nearest
14 traffic. For our dataset, the obtained K-NN classifier model
15 accuracy is “94.39%” and “89.7%” ROC area under the curve.
16 J48: J48 is a tree-based statistical classifier which is the
17 implementation of the C4.5 algorithm in the Weka data mining
18 tool. It produces a decision tree developed by Ross Quinlan
19 [53]. In our training data set, the attribute “Protocol” acts
20 as a root node. All the HTTP and WebSocket packets are
21 classified as malicious traffic whereas the TCP packets are
22 further classified based on time and length feature. For our
23 dataset, the obtained J48 classifier model accuracy is “94.92%”
24 and “88%” ROC area under the curve.
25 Random Forest: Random forests are a combination of
26 tree predictors such that each tree depends on the values of
27 a random vector sampled independently and with the same
28 distribution for all trees in the forest [54]. Bagging with 100
29 iterations and base learner functions are performed on the
30 training dataset. For our dataset, the obtained random forest
31 classifier model accuracy is “93.95%” and “93%” ROC area
32 under the curve.
33 Random Tree: To construct a tree it considers K randomly
34 chosen attributes at each node. It performs no pruning. Also
35 has an option to allow estimation of class probabilities (or tar-
36 get mean in the regression case) based on a hold-out set (back-
37 fitting). KValue sets the number of randomly picked attributes.
38 We choose the value of K is 0. If 0, int (log 2(#predictors) +
39 1) is used. For our dataset, the obtained random tree classifier
40 model accuracy is “94.06%” and “78.1%” ROC area under the
41 curve.
42 Support Vector Machine (SVM): Stable machine learning
43 algorithm called SVM constructs hyper-plane to classify the
44 instances of the training dataset. The larger functional margin
45 between the hyper-plane and the training data points yields
46 higher the accuracy of the classifier. Generalization of the
47 classifier varies on the kernel function. We use Linear Kernel
48 function K(x, y) =< x, y > for the outlier detection. For
49 our dataset, the obtained SVM classifier model accuracy is
50 “93.95%” and “64.3%” of ROC area under the curve.
51
52 C. Testing phase: Threat Prediction
53 The test data set (internal traffic of the infected client
54 captured by Rawcap tool) has “1078” instances. Among the
55 1078 instances, “210” traffic instances are malicious traffic.
56 When applying this test data set to the previously constructed
57 ML model, we got the malicious traffic prediction accuracy as
58 shown in Fig. 12. Though K* and random tree classifier models

give higher classification accuracy and ROC area under the
curve results, such algorithms failed to produce high “Threat”
prediction accuracy. Comparing the prediction results, SVM
and KNN models are giving “99.05%” of threat prediction
accuracy. Hence we use SVM and KNN models for further
real-time outlier detection in our IoT testbed. In the future,
we will analyze the ML models in detail and train them with
more datasets to predict the abnormal behavior of the IoT
CoAP client.

VIII. DISCUSSION AND CONCLUSION

6LoWPAN and CoAP protocols are IETF standardized
protocols. Sine 6LoWPAN supports IPv6; there is enough
room for connecting more IoT devices in the WSN network,
thereby supports scalability. Moreover, CoAP follows request-
response architecture to maintain secure communication. This
architecture will reduce the risk of having potential threats
such as a drone controlling the entire light of the building
found in [22] [55] which follows the publish-subscribe method
of communication.

Our work in this paper is a concrete contribution to the IoT
Cyber Security community to strengthen the security of the
application layer protocol. Also, this work endorses the IoT
device manufacturers to have machine learning model as an
IoT network monitor to protect the IoT network against the off-
path attack and the IoT devices’ communication as well. With
our observations and findings, it is recommended that the IoT
industry can have more IoT products with 6LoWPAN-CoAP
secure communication stack and ML model as a network
monitoring tool in the IoT network.

Exploring the vulnerability of CoAP protocol and a mit-
igation technique is done through a case study of a smart
door keypad lock system. While analyzing the CoAP packets,
we observed that the spoofed CoAP request message packets
have the randomized token number. This is the only difference
between the spoofed CoAP request message and the normal
CoAP request message of the CoAP server. However, in
some situation, the token ID generation is not mandatory
as discussed in Section V-B. Even with the presence of

different ML models

 Fig. 12: Testing phase: Prediction accuracy comparison of

59
60

38

47

50

56

11

1
2 authentication security protocols, we realize the attack after
3 it has done the damage already.
4 The reason behind fake pincode injection in the 6LoW-
5 PAN/CoAP stack is, the implementations of CoAP protocol
6 are not validating the remote CoAP clients. Hence creates
7 “Request Spoofing” vulnerability, and if it is not treated prop-
8 erly, the damage for the 6LoWPAN device on the constrained
9 network would be high. We experimented the off-path attack
10 by constructing the prototype and launched the attack in an
11 authenticated environment. Also, we presented the results of
12 the countermeasure technique to mitigate the off-path attack
13 using supervised machine learning model. In the future, we
14 will automate the machine learning model to find out the
15 abnormal behavior of live IoT traffic which help to detect and
16 prevent the off-path attack. We believe that paying attention to
17 “Request Spoofing” vulnerability and implementation method
18 will help to improve the security against off-path attacks on
19 CoAP.
20
21 ACKNOWLEDGMENT
22
23 This research is supported and funded by Data61, CSIRO,
24 Marsfield, Australia.
25
26 REFERENCES
27

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,

29 protocols, and applications,” IEEE Communications Surveys & Tutorials,
30 vol. 17, no. 4, pp. 2347–2376, 2015.

[2] D. Bandyopadhyay and J. Sen, “Internet of things: Applications and
challenges in technology and standardization,” Wireless Personal Com-

32 munications, vol. 58, no. 1, pp. 49–69, 2011.
33 [3] Z. Shelby and C. Bormann, 6LoWPAN: The wireless embedded Internet.
34 John Wiley & Sons, 2011, vol. 43.

[4] Z. Shelby, K. Hartke, and C. Bormann, “IETF RFC 7252,” The Con-
strained Application Protocol (CoAP), 2014.

36 [5] C. Bormann, A. P. Castellani, and Z. Shelby, “Coap: An application
37 protocol for billions of tiny internet nodes,” IEEE Internet Computing,

no. 2, pp. 62–67, 2012.
[6] K. Hartke, “Observing resources in the constrained application protocol

39 (CoAP),” Tech. Rep., 2015.
40 [7] A. Barth, “The web origin concept,” 2011.

[8] G. Tanganelli, C. Vallati, and E. Mingozzi, “CoAPthon: Easy devel-
opment of CoAP-based IoT applications with Python,” in Internet of

42 Things (WF-IoT), 2015 IEEE 2nd World Forum on. IEEE, 2015, pp.
43 63–68.

[9] P. Pongle and G. Chavan, “A survey: Attacks on RPL and 6LoWPAN
in IoT,” in Pervasive Computing (ICPC), 2015 International Conference

45 on. IEEE, 2015, pp. 1–6.
46 [10] A. G. Roselin, P. Nanda, and S. Nepal, “Lightweight Authentication

Protocol (LAUP) for 6LoWPAN Wireless Sensor Networks,” in Trust-
com/BigDataSE/ICESS, 2017 IEEE. IEEE, 2017, pp. 371–378.

48 [11] A. G. R. Arockia Baskaran, P. Nanda, S. Nepal, and S. He, “Testbed eval-
49 uation of Lightweight Authentication Protocol (LAUP) for 6LoWPAN

wireless sensor networks,” Concurrency and Computation: Practice and
Experience, p. e4868.

51 [12] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
52 Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[13] M. Bouaziz and A. Rachedi, “A survey on mobility management
protocols in Wireless Sensor Networks based on 6LoWPAN technology,”

54 Computer Communications, vol. 74, pp. 3–15, 2016.
55 [14] Y. Gilad, A. Herzberg, and H. Shulman, “Off-path hacking: The illusion

of challenge-response authentication,” IEEE Security & Privacy, vol. 12,
no. 5, pp. 68–77, 2014.

57 [15] A. Herzberg and H. Shulman, “Security of patched DNS,” in European
58 Symposium on Research in Computer Security. Springer, 2012, pp.
59 271–288.

[16] H. Herzberg, Amir and Shulman, “Socket overloading for fun and
cache-poisoning,” in Proceedings of the 29th Annual Computer Security
Applications Conference. ACM, 2013, pp. 189–198.

[17] A. Klein, “OpenBSD DNS cache poisoning and multiple O/S predictable
IP ID vulnerability,” 2007.

[18] Z. Qian and Z. M. Mao, “Off-path TCP sequence number inference
attack-how firewall middleboxes reduce security,” in Security and Pri-
vacy (SP), 2012 IEEE Symposium on. IEEE, 2012, pp. 347–361.

[19] Y. Gilad and A. Herzberg, “Off-Path Attacking the Web.” in WOOT,
2012, pp. 41–52.

[20] A. Gilad, Yossi and Herzberg, “Off-path TCP injection attacks,” ACM
Transactions on Information and System Security (TISSEC), vol. 16,
no. 4, p. 13, 2014.

[21] A. Hubert and R. van Mook, “RFC 5452: Measures for making DNS
more resilient against forged answers,” 2009.

[22] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” in Security and Privacy (SP), 2016 IEEE
Symposium on. IEEE, 2016, pp. 636–654.

[23] A. Hubert and R. van Mook, “RFC 5452: Measures for Making DNS
More Resilient against Forged Answers, 2009,” URL https://www. ietf.
org/rfc/rfc5452. txt.

[24] T. Fossati and H. Tschofenig, “Transport layer security (TLS)/datagram
transport layer security (DTLS) profiles for the internet of things,”
Transport, 2016.

[25] E. Rescorla and N. Modadugu, “RFC 6347: Datagram transport layer
security version 1.2,” Internet Engineering Task Force, vol. 13, p. 101,
2012.

[26] S. Raza, D. Trabalza, and T. Voigt, “6LoWPAN compressed DTLS
for CoAP,” in 2012 8th IEEE International Conference on Distributed
Computing in Sensor Systems. IEEE, 2012, pp. 287–289.

[27] A. Capossele, V. Cervo, G. De Cicco, and C. Petrioli, “Security as a
CoAP resource: an optimized DTLS implementation for the IoT,” in
Communications (ICC), 2015 IEEE International Conference on. IEEE,
2015, pp. 549–554.

[28] P. Urien, “Innovative DTLS/TLS security modules embedded in SIM
cards for IoT trusted and secure services,” in Consumer Communications
& Networking Conference (CCNC), 2016 13th IEEE Annual. IEEE,
2016, pp. 276–277.

[29] S. Raza, T. Helgason, P. Papadimitratos, and T. Voigt, “SecureSense:
End-to-end secure communication architecture for the cloud-connected
Internet of Things,” Future Generation Computer Systems, vol. 77, pp.
40–51, 2017.

[30] H. Kwon, J. Park, and N. Kang, “Challenges in deploying CoAP over
DTLS in resource constrained environments,” in International Workshop
on Information Security Applications. Springer, 2015, pp. 269–280.

[31] “Authentication and Authorization for Constrained Environments (ACE)
using the OAuth 2.0 Framework (ACE-OAuth) draft-ietf-ace-oauth-
authz-12,” https://tools.ietf.org/html/draft-ietf-ace-oauth-authz-12, ac-
cessed: 2018-06-22.

[32] Y. Gilad and A. Herzberg, “LOT: a defense against IP spoofing and
flooding attacks,” ACM Transactions on Information and System Security
(TISSEC), vol. 15, no. 2, p. 6, 2012.

[33] Q. Xie, D. S. Wong, G. Wang, X. Tan, K. Chen, and L. Fang, “Prov-
ably Secure Dynamic ID-Based Anonymous Two-Factor Authenticated
Key Exchange Protocol With Extended Security Model.” IEEE Trans.
Information Forensics and Security, vol. 12, no. 6, pp. 1382–1392, 2017.

[34] “OpenLabs Raspberry-Pi-802.15.4-radio,” http://openlabs.co/store/
Raspberry-Pi-802.15.4-radio, accessed: 2017-12-07.

[35] “IKILOCK smart lock design for Smart Home,” https://www.ikilock.
com/, [Online;].

[36] “Copper4Cr Copper for Chrome (Cu4Cr) CoAP user-agent,” https:
//github.com/mkovatsc/Copper4Cr, [Online;].

[37] “CoAPthon CoAP implementation,” https://github.com/Tanganelli/
CoAPthon.

[38] “Native 6LoWPAN Router Using Raspbian and RADVD,”
https://github.com/RIOT-Makers/wpan-raspbian/wiki/
Setup-native-6LoWPAN-router-using-Raspbian-and-RADVD,
accessed: 2017-11-07.

[39] M. Grinberg, “Two Factor Authentication with Flask,” https://blog.
miguelgrinberg.com/post/two-factor-authentication-with-flask, [Online;
accessed 14-Sep-2018].

[40] D. M’Raihi, S. Machani, M. Pei, and J. Rydell, “Totp: Time-based one-
time password algorithm,” Tech. Rep., 2011.

[41] T. Savolainen, K. Hartke, and B. Silverajan, “CoAP over WebSockets,”
2015.

28

31

35

41

44

53

http://www/
http://openlabs.co/store/

60

6

9

15

18

21

24

12

1
2 [42] C. Bormann, S. Lemay, H. Tschofenig, K. Hartke, B. Silverajan, and

B. Raymor, “CoAP (Constrained Application Protocol) over TCP, TLS,
and WebSockets,” Tech. Rep., 2018.

4 [43] Cotton, M and Eggert, L and Touch, J and Westerlund, M, “S. Cheshire,”
5 Internet Assigned Numbers Authority (IANA) Procedures for the Man-

agement of the Service Name and Transport Protocol Port Number
Registry,” BCP 165, RFC 6335, August, Tech. Rep., 2011.

7 [44] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust network
8 traffic classification,” IEEE/ACM Transactions on Networking (TON),

vol. 23, no. 4, pp. 1257–1270, 2015.
[45] O. M. Alhawi, J. Baldwin, and A. Dehghantanha, “Leveraging machine

10 learning techniques for windows ransomware network traffic detection,”
11 Cyber Threat Intelligence, pp. 93–106, 2018.

[46] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa, N. O.
Tippenhauer, and Y. Elovici, “ProfilIoT: a machine learning approach

13 for IoT device identification based on network traffic analysis,” in
14 Proceedings of the Symposium on Applied Computing. ACM, 2017,

pp. 506–509.
[47] Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O. Tippenhauer,

16 J. D. Guarnizo, and Y. Elovici, “Detection of Unauthorized IoT Devices
17 Using Machine Learning Techniques,” arXiv preprint arXiv:1709.04647,

2017.
[48] S. Althunibat, A. Antonopoulos, E. Kartsakli, F. Granelli, and C. Verik-

19 oukis, “Countering intelligent-dependent malicious nodes in target de-
20 tection wireless sensor networks,” IEEE Sensors Journal, vol. 16, no. 23,

pp. 8627–8639, 2016.
[49] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical

22 machine learning tools and techniques. Morgan Kaufmann, 2016.
23 [50] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to

statistical learning. Springer, 2013, vol. 112.
[51] H. A. Güvenir and M. Kurtcephe, “Ranking instances by maximizing

25 the area under ROC curve,” IEEE Transactions on Knowledge and Data
26 Engineering, vol. 25, no. 10, pp. 2356–2366, 2013.

[52] J. G. Cleary and L. E. Trigg, “K*: An instance-based learner using
an entropic distance measure,” in Machine Learning Proceedings 1995.

28 Elsevier, 1995, pp. 108–114.
29 [53] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.

[54] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

31 [55] E. Ronen, A. Shamir, A.-O. Weingarten, and C. OFlynn, “IoT goes
32 nuclear: Creating a ZigBee chain reaction,” in Security and Privacy
33 (SP), 2017 IEEE Symposium on. IEEE, 2017, pp. 195–212.

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

3

12

27

30

59
60

3

5
6

8

17

22

27

32

37

59

1

1
2 Exploiting the remote server access support of
4 CoAP protocol
7 Annie Gilda Roselin1,2, Priyadarsi Nanda1, Surya Nepal2,
9 Xiangjian He1, Jarod Wright3,2.
10 1. University of Technology Sydney (UTS), Australia.
11 2. CSIRO/Data61, Marsfield, NSW, Australia.
12 3. University of Wollongong, NSW, Australia.
13
14
15
16 Abstract—The Constrained Application Protocol (CoAP) is a

specially designed web transfer protocol for use with constrained
nodes and low-power networks. The widely available CoAP

18 implementations have failed to validate the remote CoAP clients.
19 Each CoAP client generates a random source port number when
20 communicating with the CoAP server. However, we observe that
21 in such implementations it is difficult to distinguish the regular

packet and the malicious packet, opening a door for a potential
off-path attack. The off-path attack is considered a weak attack

23 on a constrained network and has received less attention from
24 the research community. However, the consequences resulting
25 from such an attack cannot be ignored in practice. In this
26 paper, we exploit the combination of IP spoofing vulnerability

and the remote server access support of CoAP to launch an
off-path attack. The attacker injects a fake request message to

28 change the credentials of the 6LoWPAN smart door keypad lock
29 system. This creates a request spoofing vulnerability in CoAP,
30 and the attacker exploits this vulnerability to gain full access
31 to the system. Through our implementation, we demonstrated

the feasibility of the attack scenario on the 6LoWPAN-CoAP
network using smart door keypad lock. We proposed a machine

33 learning based approach to mitigate such attacks. To the best
34 of our knowledge, we believe that this is the first article to
35 analyze the remote CoAP server access support and request
36 spoofing vulnerability of CoAP to launch an off-path attack and

demonstrate how a machine learning based approach can be

38
deployed to prevent such attacks.

39
Index Terms—IoT security, CoAP, 6LoWPAN, Machine Learn-

40
ing model, off-path attack.

41
42 I. INTRODUCTION
43 A playbook consisting of rules and actions is created to
44 protect the network communication against various attacks
45 such as Man In The Middle (MITM) attack, Denial Of Service
46 (DoS) attack and off-path attacks. Preventing and mitigating
47 attacks in a constrained network is more challenging than
48 in the well-established Internet world. Emerging applications
49 such as smart home, smart city, healthcare monitoring systems,
50 transportation, industrial automation, and agriculture [1] [2]
51 use the communication of constrained devices with the In-
52 ternet. Such communication becomes possible because of the
53 vital roles of the protocols in each layer of the communication
54 stack.
55 Like HTTP (Hyper Text Transport Protocol), CoAP (Con-
56 strained Application Protocol) is an application layer protocol
57 specifically designed for constrained network devices [3] [4]
58 [5] [6]. It facilitates communication between the Internet and

constrained devices. CoAP follows the REST (Representa-
tional State Transfer) architecture and supports GET, PUT,
POST methods on the resources.

CoAP reinforces a request-response model of communica-
tion between the endpoints. It involves four types of mes-
sages: CON (Confirmable), NON (non-confirmable), ACK
(Acknowledgment) and RST (Reset). Whenever a CoAP client
sends a request to the CoAP server, a connection is opened
with the server. When the client receives a response, the
connection with the server is closed. CoAP is built on top of
the UDP (User Datagram Protocol) transport protocol. UDP is
not as reliable as TCP (Transmission Control Protocol) since
it does not offer a proper handshake between the client and
server. To increase the reliable communication, CoAP supports
a simple stop and wait mechanism for re-transmission with
an exponential back-off mechanism for CON messages and
duplicate detection for both CON and NON messages.

The off-path attack does not need to interfere with the IoT
traffic irrespective of whether it is cryptographically secured.
The off-path attack does not insert or modify the payload
of a message like a MITM attack. Instead, it sends a fake
packet between the communicating entities by spoofing the IP
address. Fig. 1 shows an off-path attack model on the CoAP
protocol. The off-path attacker gets into the victim machine
by installing malicious software. The attacker extracts the IP
address of the CoAP server through the browser extension [7].
It then performs an off-path attack by directly communicating
with the server via another path bypassing the credential
checks.

We further explain the off-path attack using a case study
of the smart door keypad lock. Using the current CoAP
implementation whenever the CoAP server receives a PUT
request from a CoAP client to update the doorlock re-
sources, it accesses the database which contains the authen-
tication/authorization credentials. The CoAP server does not
validate the requests coming from the remote CoAP clients.
Hence these implementations open the door for the off-path
attack. Even if the smart door keypad lock application is
protected with the standard IoT authentication protocol such as
DTLS, the injection of a fake pin code by the off-path attack
is possible in such implementations.

Furthermore, we demonstrate the attack in the presence of a
firewall and a two-factor authentication method for the remote
CoAP client. The consequences of fake information injection

59
60

10

2

1
2
3
4
5
6
7
8
9 Fig. 1: Off-path attack model on CoAP protocol

11
12 on smart door keypad lock are high compared to smart light
13 or smart metering. Therefore, we choose smart door keypad
14 lock as our usecase to explore the vulnerability of the CoAP
15 protocol. Our contributions are summarized as follows:
16 • We identify the “Request Spoofing” vulnerability of
17 CoAP by exploiting the remote server access support of
18 CoAP implementation along with the IP spoofing vulner-
19 ability of CoAP using an off-path attack. We observe that
20 most available CoAP implementations are not performing
21 the validation of remote CoAP clients. Even the widely
22 used Python implementation of CoAP (CoAPthon [8])
23 has this vulnerability. It is thus a critical vulnerability in
24 CoAP implementations which has not been reported thus
25 far.
26 • We analyze and demonstrate the limitations of DTLS and
27 firewall respectively to defend against the identified off-
28 path attack. Also, we experiment the attack in a two-way
29 authenticated environment and present a detailed analysis
30 of our results to show that such authentication method
31 alone cannot defend against such attack.
32 • We provide a detailed description of why an off-path
33 attack is possible so that it can be repeated by researchers
34 in their lab environment for different applications. More
35 specifically, the difficulty of distinguishing the packets
36 from an actual CoAP client and the attacker is discussed
37 in detail. Also, the possible solutions to prevent the
38 attack are discussed in detail. Without adding much
39 overhead to IoT devices, we propose a simple machine
40 learning approach to detect the abnormal behavior of the
41 compromised CoAP client for preventing the identified
42 off-path attack.
43 The rest of the paper is organized as follows. Section II
44 provides a background information on how the CoAP protocol
45 and WebSocket works. Section III describes the works related
46 to the off-path attack. Our testbed architecture is described
47 in Section IV. Section V outlines how the identified off-
48 path attack works. The limitations of existing IoT security
49 protocol such as DTLS, firewall, and two-factor authentication
50 is explained in Section VI. Section VII outlines the potential
51 defense mechanisms including a machine learning approach to
52 mitigate the off-path attack. Finally, we conclude our analysis
53 with a discussion in Section VIII.
54
55 II. BACKGROUND
56 A. 6LoWPAN protocol stack with CoAP
57 6LoWPAN communication protocol used in Low Power
58 Area Networks (LoWPAN) has the ability of adopting IPv6

Fig. 2: 6LoWPAN protocol stack with abstract layering of
CoAP

Fig. 3: CoAP packet

Internet protocol [3] [9] [10] [11]. Since IPv6 has large address
space, it can subsume many constrained devices into the
Internet. Fig. 2 shows the presence of CoAP and associated
protocols in different layers of 6LoWPAN and explains the
application layer in detail. 6LoWPAN supports CoAP protocol
in its application layer and UDP in transport layer [12] [13].
6LoWPAN adaptation layer does the job of header compres-
sion that grants the communication of IPv6 packets over the
IEEE802.15.4 network.

6LoWPAN adopts the bottom-most two layers (Physical and
MAC layers) from IEEE 802.15.4 standard and supports 127
bytes of data. Although link-layer security inside a LoWPAN
(employing the 128-bit AES encryption in IEEE 802.15.4)
provides some protection, communication beyond LoWPAN
Routers is still vulnerable which increases the need for end-
to-end security at the application layer [3].

B. CoAP message format and its functionality

A CoAP client, which needs a reliable transmission, sends
a request CON message to the CoAP server and gets an ACK
message back.

NON messages from the client do not get an acknowledg-
ment back from the server, but still, have MessageID to avoid
duplication of the same message. If the server is not able to
process the CON message, then it replies with RST message
instead of ACK.

Fig. 3 shows the CoAP packet format. CoAP packet consists
of four bytes header information followed by optional token
values and payload. The version field (two bits) indicates the
CoAP version number. The CoAP server automatically ignores
the CoAP messages that are having an unknown version
number. The type field indicates the type of CoAP messages
such as CON, NON, ACK, and RST. TKL field specifies the

59
60

3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 TABLE I: Potential attacks on CoAP
20
21 length of the variable token field which is followed by the 22 CoAP header information. The usual length of TKL field is 23 0-8 bytes. Code field represents the unique code for request 24 and response messages. The Message ID is a 16-bit indicator 25 used to detect duplicate messages and to match ACK/RST 26 messages to CON/NON messages. The token value will be 0- 27 8 bytes used to correlate request and response messages. In the 28 presence of payload, payload field is prefixed with one-byte 29 payload marker (0xFF) which denotes the end of options and 30 the start of payload. Since CoAP relies on UDP in its transport 31 layer, it uses stop and wait scheme for re-transmission of CON 32 messages and duplicate detection for both CON and NON 33 messages to increase reliability between CoAP endpoints. 34 The endpoint (node) is determined by its IP address and 35 UDP port number in the case of “NoSec” mode. CoAP-to- 36 CoAP proxy maps a CoAP request to a CoAP request which 37 means both the client and server uses the CoAP protocol to 38 communicate. A CoAP-to-CoAP forward proxy is acting on 39 behalf of the CoAP client to make requests to the CoAP server. 40 CoAP-to-CoAP reverse proxy acting on behalf of the CoAP 41 server to give the resources to the CoAP clients. Reverse proxy 42 builds a namespace so that the client will get more control over 43 where the request goes by embedding information such as host 44 IP address and port number of the URI (Unified Resource 45 Identifier) to direct the request to its intended resources. 46 CoAP URI consists of URI-Host (Host IP address), URI-Port 47 (transport layer port number), URI-Path (Absolute path of 48 the resource) and URI-Query (Argument parameterizing the 49 request). UDP port is the port where the CoAP server locates.
50
51 C. Potential attacks on CoAP
52 Potential attacks on CoAP [4] are stated in Table I. Our
53 work focuses on IP spoofing, more specifically on “Request
54 Spoofing” vulnerability, which is not even described/captured
55 in RFC7252, of CoAP by exploiting the remote server access
56 support of CoAP implementation. According to RFC7252,
57 spoofing attacks on CoAP “response messages” can be per-
58 formed as follows.

The malicious programmer prevents the CoAP client from
re-transmitting the CON message by spoofing the ACK mes-
sage and stops the actual response of the CoAP server. Another
method is making the CoAP server disabled so that it is unable
to receive any CON messages. This can be done by spoofing
the RST messages.

The attacker spoofs the NON messages by making the
CoAP server unable to receive any CON messages by spoofing
RST messages. Spoofing the entire response is done by chang-
ing the entire payload of CoAP message with fake information.
Spoofing a multicast request can lead to congestion in the
network, DoS (Denial of Service) attack, and intentionally
wake up the constrained device from sleeping (energy deple-
tion attack).

However, we spoof a CoAP request CON messages to cause
significant damage to the smart door keypad lock system, even
before the actual user realizes the presence of an attack. This
attack is different from the potential attacks identified above.

III. RELATED WORK

Security issues caused by off-path attacks on TCP and DNS
are very well researched and how they compromise challenge-
response defense are analysed in [14] [15] [16] [17] [18].
Gilad et al. [19] showed that TCP injection is possible by
the following method. Off-path attackers learn the connection
sequence numbers of both the client and server in a TCP
connection by exploiting a globally increasing IP-ID counter
of Windows machine. Moreover, they suggested the use of
security protocols such as SSL/TLS or IPsec to defend against
such off-path attacks.

In [20], Gilad et al. experimented a practical off-path TCP-
injection attack which allows web-cache poisoning. They
suggested to modify the client port selection algorithm at
NAT (Network Address Translation) level and deploy cryp-
tographic methods such as SSL/TLS at the server side as
a defensive mechanism against such off-path TCP injection
attack. However, we analyze and present in Section VI that
SSL/TLS (i.e., DTLS) based defensive mechanisms do not

Potential attacks on CoAP Description of Attack Possible Countermeasures

Attack on Complex protocol
parsers

Crash a node remotely and execute
arbitrary code remotely on parsers

Reducing parser complexity; moving much of the URI
processing to CoAP clients; Care must be given to CoAP
access control implementations

Man In The Middle attack
on proxies

Breaks the confidentiality and integrity
of the CoAP message by breaking any
IPSec or DTLS protection on a direct
CoAP message exchange through
caching of proxies

Access control of resources must be considered. Do not
perform caching on requests that have lesser transport-security
properties

Amplification

The attacker attempts to overload a victim
packet by turning a small packet into a
large packet leading to a denial of service
attack

Make the constrained network to generate a small amount of traffics.
CoAP server can use Slicing/Blocking modes of CoAP. Limiting
the support of multicast requests to
specific resources.

IP address spoofing
Attacks the endpoint and even a whole
network by spoofing the response and
multicast request messages.

Response spoofing: by choosing the randomized token in the
request. Use the security mode of communication.
Request Spoofing: the focus of this paper.

Cross Protocol Attacks Attackers send and receive a message
to the CoAP endpoint

Strictly check the syntax of the
received packets. Authorization of endpoints needed

Timing attacks

As constrained nodes are low in
processing power, the attack can happen on
cryptographic key generation and
recovery of keying materials.

Care must be taken on the implementation of cryptographic
primitives.

59
60

4

1
2 work in our identified attack. Hence, we use a machine
3 learning based approach to monitor the malicious activities
4 of the compromised client and defense against our attack.
5 Source Port Randomization (SPR) is the mitigation tech-
6 nique for an off-path attack on TCP [21]. Fernandes et al.
7 [22] used the vulnerability of the mobile app to launch the
8 pin code injection attack on the smart door lock. However, our
9 off-path attack uses the remote server access support of CoAP
10 implementation to launch the off-path attack thereby injecting
11 the fake password into the Smart Door Keypad lock system.
12 Hence, the following defensive approaches do not work for
13 our attack. As a mitigation technique of an off-path attack
14 on TCP, DNS resolvers send a challenge - 16-bit TXID field
15 with the request and expecting the same TXID in the response.
16 Unpredictable port randomization of the client and dropping
17 the connection with too many empty ACKs at the server side
18 are the defensive mechanisms supported by a majority of the
19 resolvers against the off-path attack. References [15] [23] used
20 side channels for port prediction in order to execute the off-
21 path attack.
22 In summary, existing works on the off-path attack for TCP
23 focus on how such response spoofing is executed along with
24 their countermeasures. However, our off-path attack on CoAP
25 analyses how a “request spoofing” causes the damage to the
26 constrained devices. In the case of CoAP; SPR technique
27 is built in with the protocol, making it more vulnerable to
28 “request spoofing”. Since the off-path attacker injects the fake
29 password value with the request CON message; the server
30 cannot distinguish the spoofed packet from the original packet.
31 Our article is the first and novel approach to explore the vulner-
32 ability of CoAP through the off-path attack. And, we identified
33 the request spoofing vulnerability of CoAP by exploiting the
34 remote server access support of CoAP implementations. Also,
35 we have tested a machine learning model on our private
36 network to predict the abnormal behavior of the infected CoAP
37 client.
38 IV. OUR TESTBED ARCHITECTURE
39
40 Our testbed architecture has two major parts. The first
41 part focuses on the construction of testbed and the second
42 part provides Two Factor Authentication (2FA) to the CoAP
43 user. The Communication flow of our testbed starts with the
44 user entering his/her credentials to authenticate themselves
45 using 2FA mechanism as discussed in Section IV-B. Then the
46 authenticated user can open the door, close the door, or even
47 change the passcode of the door remotely. We enabled port-
48 forwarding mechanism in Internet Protocol Router (IPR) to
49 achieve CoAP communication with the 6LoWPAN network.
50 6LoWPAN border router acts as a bridge between Internet
51 packets and 6LoWPAN packets by compressing Ethernet pack-
52 ets into IEEE 802.15.4 packets. Section II-A describes the
53 6LoWPAN protocol stack and the border router. We strongly
54 assume that the off-path attacker enters the private network of
55 the smart home to inject the fake passcode into the 6LoWPAN
56 door lock, as discussed in Section V-A. Network traffic capture
57 tool captures the network traffic of the CoAP remote clients
58 and attacker to train the Machine Learning (ML) models in

order to analyze and predict the behavior of the user agents.

A. Construction of Testbed

The testbed consists of a constrained 6LoWPAN IoT net-
work and the Internet. We explore the vulnerability of CoAP
protocol and investigate how a smart door lock application
may be exploited by the adversary injecting malicious infor-
mation. Our overall implementation is based on Raspberry
Pi. A similar implementation is possible using ARDUINO
platform. Fig. 4 shows the architecture components and the
communication between them.

We use the following hardware components to establish the
6LoWPAN IoT network. Raspberry Pi 3 Model B+ is used
for a door lock and a border router. Raspberry Pi 802.15.4
radio from openlabs [34] is used to enable 6LoWPAN com-
munication over 802.15.4 to the door lock. GrovePi is placed
on top of the Raspberry Pi and connects the Grove LCD.
GroveLCD is used to display the smart door lock status to the
user. The keypad allows the user to enter the password and
the LEDs reflect the user action on the door lock. 6LoWPAN
IoT network establishment has the following two modules.
Module 1: Building a CoAP enabled 6LoWPAN smart door
keypad lock to perform the off-path attack.

There are two ways to have the CoAP enabled smart
door keypad lock system which follows the 6LoWPAN/CoAP
communication stack protocol. One is to use a commercially
available product such as IKILOCK [35]. Moreover, the other
way is to build the prototype of the smart door keypad lock.
At the time of establishing a test-bed, commercial 6LoWPAN
smart door keypad lock was not available in our region as
per our specifications. So we developed a prototype of 6LoW-
PAN smart door keypad lock using hardware components as
mentioned earlier. Fig. 5 shows our smart door keypad lock
prototype and explains the process flow of the prototype.

We opted Python programming language to develop the
software of our smart door keypad lock prototype. The proto-
type software has three separate components. Firstly, a Python
program for handling the hardware components. Secondly, a
CoAP server which deals with how to access the resources of
the prototype and communicating with a database. Thirdly a
password management database which stores a password of
the smart door keypad lock as shown in Fig. 6.

The Smart door keypad lock prototype displays two options
such as “Enter Password,” and “Change Password” on its

LCD. The user will choose option A and enter the four-digit
password if he wants to enter the home. The prototype accepts

the four-digit password and validates it with the Password
Management Database. The door will open once the validation
of password returns success and the LCD displays the “Access
Granted” message. Otherwise, the main options start to display
on the LCD followed by the error message “Try again Later”.

On the other hand, option B is for changing the password
of the smart door keypad lock. To change the password,

the user provides the old password for a credibility check
with the database and then sets the new password which

will be updated in the password management database by
the CoAP server. The connection between the CoAP server
and a password management database is established by giving
the access control list credentials such as username, password

59
60

5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 Fig. 4: Our testbed architecture
25
26
27
28
29
30
31
32
33
34 Fig. 6: Software components of smart door keypad lock
35
36
37 mentation [8] of CoAP server and FireFox ESR with copper
38 add-on as a CoAP client. The Firefox Copper has been dis- 39 abled by Firefox after Firefox Quantum has been announced. 40 We can use “Copper for Chrome (Cu4Cr) CoAP user-agent 41 [36]” as a CoAP web interface to interact with the 6LoWPAN 42 smart door lock. However, if still want to use Firefox browser, 43 downgrade the Firefox Quantum to Firefox ESR 52.7.2. Since 44 CoAPthon has the implementations of more CoAP features 45 (CoAP server, client, forward proxy, reverse proxy, observe, 46 multicast server discovery, CoRE Link Format parsing and 47 block-wise transfer) as described in RFC7252 compared to 48 other available CoAP implementations. We modified their code 49 found in [37] according to our resources available in the
50 Fig. 5: Smart door keypad lock prototype and its process flow
51
52
53 and the name of the database. Since MySQLdb implements
54 the Python database API v2.0, we have used MySQLdb as 55 an interface for the connection between a MySQL password 56 management database and the CoAP server.
57 There are many open source CoAP protocol implementa-
58 tions available. Among them, we preferred CoAPthon imple-

6LoWPAN smart door keypad lock prototype.
We execute our CoAP server on 6LoWPAN smart door

keypad lock prototype and the CoAP client on the laptop.
Also, we use Aneska and IoT-CoAP Android mobile apps
which are available in the play store and app store as CoAP
clients to access the CoAP resources of the 6LoWPAN
prototype. The CoAP user gets the existence of the CoAP
resources through CoAP resource discovery. Our prototype
has three CoAP resources such as “OptionA”, “OptionB”

59
60

6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 Fig. 7: Two factor authentication process for CoAP user
16
17
18 and “Password”. The user gets the status of the door, by
19 accessing the OptionA and OptionB CoAP resources through
20 GET command. If the door is not used by the user at that
21 moment, the corresponding resources return OptionA/OptionB
22 is in standby mode. Otherwise, GET command returns “The
23 Door is Opened” or “Access Denied” messages respective to
24 the CoAP resources accessed. The “Password” CoAP resource
25 is used to change the password of the 6LoWPAN smart door
26 lock prototype remotely through the PUT command of CoAP
27 protocol. The users of the prototype can successfully change
28 the password remotely using their Android or iOS mobile apps.
29 Module 2: Building a 6LoWPAN border router on Raspberry
30 pi. For the 6LoWPAN border router, we use the native border
31 router GitHub code found in [38]. We changed the RADVD
32 configuration file by setting the prefix of the IPv6 address of
33 the constrained 6LoWPAN network. When the RADVD server
34 starts at the border router, the 6LoWPAN prototype within the
35 constrained network is assigned with the IPv6 address using
36 Neighbor Discovery Router Advertisement (RA) messages.
37 This facilitates the CoAP client to access the CoAP resources
38 of the 6LoWPAN prototype from the internet.
39
40 B. Two Factor Authentication (2FA) for the CoAP user
41
42 Fig. 7 explains the communication flows of remote CoAP
43 user authentication process-2FA in detail. We choose the 2FA
44 method code which is available online [39] in conjunction with
45 CoAP. CoAP server starts its service only after a successful
46 2FA user authentication process. This method of IoT user au-
47 thentication includes authentications of regular user password
48 and a one-time token thereby increasing the level of security
49 in a web application. The one-time password is based on
50 the Time-based One-Time Password (TOTP) algorithm [40]
51 and changes every 30 seconds. The user passwords are not
52 stored as plaintext in the database. Instead, the hash value
53 of the password is saved for verification. Upon successful
54 password verification, the user receives a QR code to proceed
55 further. This QR code is scanned by a Free OTP app which is
56 available in android and app store. The user is authenticated
57 when providing the TOTP within its validity time, thereby
58 getting the access of CoAP resources. This TOTP is not a
59 CoAP responses payload. After successful user authentication,

Fig. 8: Off-path attack scenario

CoAP server of our 6LoWAPN prototype will be enabled, and
by hitting the “Discover” button, we get to know the available
CoAP resources on the CoAP server. Communication flow-5
of Fig. 4 represents the CoAP resources accessed by CoAP
clients.

We agree that the 2FA implementation in the context of
CoAP for low power devices is computationally complex.
Also, the CoAP endpoint user has to wait until the authen-
tication process is finished and getting the response from the
CoAP server. However, we have implemented 2FA with CoAP
to provide the endpoint security to the CoAP client. We firmly
believe that the existing standard security protocol DTLS in
the context of CoAP for constrained devices provides data
integrity between the communicating endpoints as per RFC
7252 and has limitations related to IP Spoofing and cross-
protocol attacks as we discussed clearly in section IV-A.

V. OUR OFF-PATH ATTACK

We assume that the attacker gets into the user’s device
(laptop) to spoof the IP address and communicate with the
desired 6LoWPAN device. To launch the off-path attack, the
attacker needs IP address and port number of the CoAP server.
Even if the port number is not mentioned in the browser, the
attacker uses the default port number 5683, of CoAP server
to execute the attack.

A. Off-path attack scenario

Fig. 8 explains the attack scenario of off-path attack which
involves the attacker, user agent-laptop and a 6LoWPAN door
lock in detail.

Make a connection with CoAP Client: An attacker reaches
the victim’s machine (the client) by making it install a malware
thereby the attacker loads a JSON file on the browser. This
creates an extension in the client’s browser. The attacker’s code
running inside the client’s machine is making a TCP 3-way
handshake (SYN, SYN-ACK, ACK) connection with a CoAP
client whenever the malicious extension bar gets clicked by the
user. Thereby a TCP socket connection is opened for malicious
communication. We use WebSockets and asyncio libraries of
Python to establish such a malicious connection. The execution

60

7

1
2 of off-path attack follows the establishment of a WebSocket
3 connection between the malicious code and the CoAP client
4 [41] [42]. CoAP proxy at the WebSocket endpoint forwards
5 the request to the CoAP server with a CoAP UDP endpoint.
6 Such a malicious connection stays alive until the malicious
7 program terminates.
8 Launching an off-path attack: The malicious code running
9 behind the browser extracts the browser information upon suc-
10 cessful establishment of a malicious WebSocket connection.
11 The attacker receives the CoAP server’s IP (destination IP)
12 address and a destination port number with the help of the
13 victim browser’s extension bar. Then the attacker attempts to
14 inject the malicious passcode value to the CoAP server by
15 exploiting remote server access support of CoAP protocol.
16 The off-path attack happens following a sequence of message
17 transmission which uses TCP and WebSocket protocol.
18 Moreover, the attack is possible despite the usage of the
19 addresses IPv4 or IPv6 user communication with the CoAP
20 server. The attacker updates the password database of the
21 6loWPAN prototype by sending the CoAP request with his/her
22 own hard-coded password value without the knowledge of the
23 actual user. By this way, the attacker creates the “Request
24 Spoofing” vulnerability on CoAP protocol to inject the fake
25 password in the desired 6LoWPAN device’s database. Once
26 the attacker succeeds in his/her off-path attack, he gets the
27 full access of the 6LoWPAN smart door keypad lock.
28 Such an off-path attack can be performed in any commercial
29 device which follows the 6LoWPAN/CoAP protocol stack
30 if the attacker reaches the authenticated/non-authenticated
31 client’s machine. Our work will be enhanced in the future,
32 with an IoT testbed that includes a large number of constrained
33 IEEE 802.15.4 sensor nodes to check the scalability, packet
34 losses, and packet delay of constrained devices.
35
36 B. 6LoWPAN-CoAP packet analysis with off-path attack
37 We analyze 6LoWPAN-CoAP packet based on the CoAP
38 message format as discussed in Section II-B. We presented
39 the actual user CoAP request packet in Fig. 9 and the off-
40 path attacker request packet in Fig. 10 which are captured by
41 Wireshark tool.
42 CoAP over WebSocket: If the CoAP communication hap-
43 pens over WebSocket, then the message packet will have zero
44 in its length (Len=0) field thereby the version field of CoAP
45 packet is suppressed with Len field of WebSocket [42]. Also,
46 CoAP over WebSocket transmission does not distinguish CON
47 and NON messages and does not provide ACK/RST messages.
48 However, the off-path attack’s CoAP request packet does have
49 all the fields as in CoAP over UDP transmission packet, and
50 it is being sent as a CON message. Moreover, it receives
51 the ACK message from the CoAP server. Since the attacker’s
52 request packet is very similar to CoAP client request packet,
53 it is hard to distinguish the poisoned packet from the actual
54 client packet.
55 Off-path in TCP and SPR: The conventional method to
56 prevent the off-path attack in TCP and UDP is to include
57 a nonce value with the client’s request so that validation of
58 the request message is possible when receiving the response

Fig. 9: Actual user’s CoAP request packet captured by Wire-
shark

message. Unlike the TCP injection attack, the CoAP off-path
attacker is spoofing the request message (injecting the fake
passcode), not the response message from the server. So the
countermeasure of including the nonce value with the request
message is not enough in our case. Moreover, CoAP supports
SPR technique in its clients; making the protocol more prone
to off-path attack. From Fig. 9 and Fig. 10; we can not
distinguish the CoAP packets based on its origin (either the
user or the hacker) since both of the packets are having random
source port numbers.

Server Port Number: According to RFC6335 [43] IANA
(Internet Assigned Numbers Authority) has assigned 5683 as
a default port number for CoAP server. If the UDP port is
not given in the URI or the field is empty, then the default
port 5683 will be assigned as a CoAP server port. Hence
CoAP server port is explicit to the endpoints; leads the off-path
attacker easy to guess the CoAP server port number.

Randomized token number: A randomized token number
is generated when the CoAP messages are not protected by
the transport layer security to mitigate the response spoofing
[42]. CoAP client must generate a randomized token ID for
every request it makes to the CoAP server to match the request
and response. The token ID also referred as “request ID”. This
token length would be up to eight bytes, and at least 32 bits of
token length must be used if the CoAP endpoint is connected
to the Internet. CoAP server will echo the same token value
with its response. In some situation, the token ID generation
is not mandatory. For example, when the CoAP client sends
a serial request to the CoAP server and CoAP client gets
piggybacked responses from the CoAP server. Hence it is
not possible to differentiate the malicious and original CoAP
request packets based on randomized token ID value.

Payload length field: According to the RFC7252, in the
spoofed CoAP packet format; after the one-byte payload

59
60

59

8

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 Fig. 10: The attacker’s CoAP request packet captured by
21 Wireshark
22
23
24 marker (0xFF), the payload length must be zero. Then au-
25 tomatically the packet will be thrown out for message format
26 error. Also, the code field must be set with the reserved class
27 (1, 6, or 7). However, our captured off-path attacker’s packet
28 does have the payload length the same as the original CoAP
29 packet.
30 The CoAP server rejects the packets which are having ran-
31 dom token length beyond 8 bytes (i.e., 9-15 bytes). However,
32 CoAP allows same token length value for different client port
33 and supports SPR. This makes an off-path attack very easy to
34 implement.
35
36 VI. LIMITATIONS OF EXISTING IOT SECURITY PROTOCOL
37 AND IOT USER AUTHENTICATION
38
39 We analyzed and observed that the existing IoT security
40 protocols are not giving protection against our implemented
41 off-path attack. They are thereby creating the loophole/ vulner-
42 ability in CoAP protocol. This section describes the limitations
43 of DTLS, limitations of user authentication, and the limitations
44 of the firewall briefly.
45
46 A. Limitations of DTLS
47 DTLS (Datagram Transport Layer Security) security pro-
48 tocol is the most common method used in conjunction with
49 CoAP to reduce the communication vulnerability of IoT [24]
50 [25]. Existing works [26] [27] [28] [29] use standard security
51 protocol DTLS to secure the payload of CoAP communication.
52 However, DTLS does not provide security against the cross-
53 protocol attack if the same DTLS security connection is
54 used to carry the data of multiple protocols [4]. All the
55 modes of DTLS are not applicable for all constrained devices.
56 Running of DTLS is impossible on class 0 devices and nearly
57 impossible to be hosted on class 1 devices (10k RAM/100k
58 ROM).

Implementation complexities of DTLS in constrained de-

vices are high. Initial handshake overhead is high. DTLS adds
13 bytes of per-datagram overhead, excluding initialization
vectors/nonce, integrity check values and padding values of
cipher suite, which increase the overhead of LoWPAN devices.
DTLS does not applicable to group keying communication
(multicast communication). Since UDP protocol will not verify
the source address of the request packet, CoAP is vulnerable to
cross-protocol attacks with the fake source address. UDP based
protocols are relatively easy targets for the cross-protocol
attacks. Also, the probability of network delay is higher for
asymmetric based handshake security protocols [30] [10].

Cross-protocol attacks are possible in UDP based commu-
nication if the security properties of the CoAP server and
client rely only on the process of checking the source IP
address. Also if we use proxies such as HTTP to CoAP or
CoAP to HTTP, the transport layer security called DTLS has
to be terminated at the proxy [31]. So we need a security
protocol with features that offer defensive mechanisms against
the combination of vulnerabilities such as IP spoofing and
cross-protocol attacks of CoAP.

B. Limitations of user authentication

The possible best practice to protect the remote server ac-
cess capability in the Internet world is protecting the network
by VPN (Virtual Private Network), tunneling the network
traffic [32] and know the user (the process of authenticating the
user). We strongly assume that the attacker somehow reached
the authenticated client’s machine and started the malicious
server program to extract the browser information. The widely
used mitigation technique on the Internet against remote server
access exploitation is by knowing the user using two-factor
authentication mechanisms [33]. None of the research papers
addressed CoAP user authentication through 2FA (Two Factor
Authentication) method. We implemented it in our testbed as
in Section IV-B.

Despite a secured 2FA CoAP user authentication, the off-
path attack is possible, and we demonstrated it since we access
the CoAP server resources by the IP address and port number
of the 6LoWPAN device. Moreover, the memory occupancy
by the 2FA authentication process is high on 6LoWPAN
constrained devices, and obviously, it is adding additional
initial computational time (user validation time) on the normal
communication of CoAP.

C. Limitations of firewall

As discussed in Section V, the off-path attacker spoofs the
IP address of an authenticated client. So filtering the packets
based on their source IP address using the firewall is not
going to prevent the off-path attack. Specifically, from the
Section V-B we observed that the user CoAP packets and the
poisoned packets are following the same protocol stack for the
communication. Thereby we cannot merely deny the incoming
UDP port transmission on the firewall. Though we installed
and configured the UFW (Uncomplicated Firewall) firewall to
reject the standard UDP port communication on our testbed,
the off-path attack by-passes the firewall and gains access

60

9

1
2 to the 6LoWPAN doorlock device. We believe that the SPR
3 feature of the CoAP protocol makes the 6LoWPAN network
4 unable to use the firewall to defend against the off-path attack.
5
6
7 VII. MITIGATION TECHNIQUE
8
9 Since the IoT traffic captured from our testbed has no
10 significant differences between the authenticated client’s CoAP
11 packet and the attacker’s packet as discussed in Section V-B,
12 leads us not to stop the anomaly traffic with the rule-based
13 approach. Also, the existing IoT security algorithms are failed
14 to determine this kind of attack, as discussed in Section VI.
15 For these reasons, we have implemented the Machine Learning
16 (ML) model in CoAP client’s machine (Laptop with Intel
17 Core i7) to identify and predict the abnormal behavior of the
18 infected CoAP client’s network traffic. We can also allocate
19 a dedicated machine inside the private network (for example,
20 smart home) to monitor and predict the fake network traffic.
21 The technique of analyzing network traffic data using
22 machine learning algorithms getting popular among the re-
23 searchers [44], [45]. Unsupervised ML algorithms do not
24 require pre-labeling of the dataset and create clusters on the
25 network traffic data set based on their similar characteristics.
26 Whereas our dataset needs a binary classification in the form
27 of, whether the network traffic is malicious or normal traffic,
28 we choose supervised learning ML methods to create an ML
29 model for outlier prediction.
30 Random Forest supervised machine learning algorithm is
31 used in [46] [47] to identify the IoT device traffic from non-IoT
32 device traffic based on the characteristics of network traffic, it
33 generates. Detecting the IoT nodes in wireless sensor network
34 also presented in [48]. However, we used a machine learning
35 algorithm to classify the traffic of the infected CoAP client
36 which is trying to access the CoAP IoT server maliciously.
37 Multiple experiments carried out on our IoT testbed network
38 dataset with different ML algorithms to find out the best ML
39 model. We have used the WEKA machine learning tool [49]
40 to create the ML models.
41
42
43 A. Dataset
44
45 The training dataset (internal traffic of the infected client)
46 which is captured by Rawcap tool, has “2676” instances. The
47 dataset is converted into Attribute-Relation File Format (.arff)
48 for processing using the WEKA tool. There is no feature
49 selection algorithm applied to our IoT network traffic dataset
50 since we are interested in all the features of the dataset except
51 the number of attributes. We add one attribute called “Threat”
52 to specify the label of each traffic instance. After labeling
53 the training dataset, “Threat” attribute weight is distributed
54 among the classes “No” and “Yes” with the weights “2449.0”
55 and “227.0” respectively. It is obvious that the real-time IoT
56 traffic dataset has the unbalanced weight distribution among
57 the classes. The attribute “Protocol” weight is shared among
58 “TCP”, “HTTP” and “Websocket” with the corresponding

weight of “2611.0”, “26.0” and “39.0” respectively.

Fig. 11: Training phase: performance comparison of different
ML classifiers

B. Training phase: Building ML models

We applied the ML algorithms such as Naive Bayes (NB),
K*, K-NN (k-nearest neighbors), J48, Random Forest, Random
Tree and Support Vector Machine (SVM) algorithms to build
ML models and presented a graph in Fig. 11 with their perfor-
mance comparison statistics. We use 10-fold cross-validation
method to evaluate the performance of our ML models. This
approach divides the data set of samples into ten groups/fold.
For each group, keep the group as a test dataset and treat the
remaining as the training dataset to evaluate the ML model.
Hence keep the evaluation score for the corresponding ML
model [50].

Classifier accuracy, True Positive Rate (TPR: number of ex-
amples predicted positive that are positive), False Positive Rate
(FPR: number of examples predicted positive that are actually
negative) and ROC (Receiver Operating Characteristic) is the
parameters used to compare the performance of different ML
classifiers. In our dataset, the payload and the structure of the
malicious packet are very similar to the original CoAP packet
as described in Section V-B. Generally, the FPR value is high,
when the dataset is going through an intrusion detection with
anomaly-based technique. We follow the hybrid of anomaly
detection and signature-based intrusion detection so that we
could detect unknown attacks in IoT.

Ranking an instance based on the area under the ROC
curve is a widely accepted parameter to evaluate the ML
algorithms [51]. We present the values of Classifier accuracy,
FPR, TPR and ROC parameters for our dataset by applying
ML algorithms such as NB, K*, K-NN, J48, Random Forest,
Random Tree and SVM in Fig. 11. From the observation of
Fig. 11, the ML algorithms such as K-Star and random forest
have higher accuracy and ROC value as well.

Naive Bayes (NB): Naive Bayes ML classifier uses a prob-
abilistic approach based on Bayes theorem with independence
assumptions among the features of a dataset. Malicious traffic
is classified based on the prior knowledge of the condition
that might be related to the occurrence of suspicious network
traffic. NB classifies the dataset according to every attribute
into two intended classes. For our dataset, the obtained NB
classifier model accuracy is “93.42%” and “82.50%” ROC area
under the curve.

59
60

59

10

1
2 K-Star: K* is an instance-based classifier, that is the class
3 of a test instance is based on the class of those training
4 instances similar to it, as determined by some similarity
5 function [52]. For our dataset, the obtained K* classifier model
6 accuracy is “93.95%” and “94.70%” ROC area under the
7 curve.
8 K-NN (k-nearest neighbors): Unlike Naive Bayes classi-
9 fier, K-NN is not a probability-based classifier. However, K-
10 NN classification is based on non-parametric statistics such as
11 descriptive statistics and statistical inference of the instances.
12 Our K value is 1 with Linear NearestNeighbour search which
13 uses a Euclidean distance function to find out the nearest
14 traffic. For our dataset, the obtained K-NN classifier model
15 accuracy is “94.39%” and “89.7%” ROC area under the curve.
16 J48: J48 is a tree-based statistical classifier which is the
17 implementation of the C4.5 algorithm in the Weka data mining
18 tool. It produces a decision tree developed by Ross Quinlan
19 [53]. In our training data set, the attribute “Protocol” acts
20 as a root node. All the HTTP and WebSocket packets are
21 classified as malicious traffic whereas the TCP packets are
22 further classified based on time and length feature. For our
23 dataset, the obtained J48 classifier model accuracy is “94.92%”
24 and “88%” ROC area under the curve.
25 Random Forest: Random forests are a combination of
26 tree predictors such that each tree depends on the values of
27 a random vector sampled independently and with the same
28 distribution for all trees in the forest [54]. Bagging with 100
29 iterations and base learner functions are performed on the
30 training dataset. For our dataset, the obtained random forest
31 classifier model accuracy is “93.95%” and “93%” ROC area
32 under the curve.
33 Random Tree: To construct a tree it considers K randomly
34 chosen attributes at each node. It performs no pruning. Also
35 has an option to allow estimation of class probabilities (or tar-
36 get mean in the regression case) based on a hold-out set (back-
37 fitting). KValue sets the number of randomly picked attributes.
38 We choose the value of K is 0. If 0, int (log 2(#predictors) +
39 1) is used. For our dataset, the obtained random tree classifier
40 model accuracy is “94.06%” and “78.1%” ROC area under the
41 curve.
42 Support Vector Machine (SVM): Stable machine learning
43 algorithm called SVM constructs hyper-plane to classify the
44 instances of the training dataset. The larger functional margin
45 between the hyper-plane and the training data points yields
46 higher the accuracy of the classifier. Generalization of the
47 classifier varies on the kernel function. We use Linear Kernel
48 function K(x, y) =< x, y > for the outlier detection. For
49 our dataset, the obtained SVM classifier model accuracy is
50 “93.95%” and “64.3%” of ROC area under the curve.
51
52 C. Testing phase: Threat Prediction
53 The test data set (internal traffic of the infected client
54 captured by Rawcap tool) has “1078” instances. Among the
55 1078 instances, “210” traffic instances are malicious traffic.
56 When applying this test data set to the previously constructed
57 ML model, we got the malicious traffic prediction accuracy as
58 shown in Fig. 12. Though K* and random tree classifier models

Fig. 12: Testing phase: Prediction accuracy comparison of
different ML models

give higher classification accuracy and ROC area under the
curve results, such algorithms failed to produce high “Threat”
prediction accuracy. Comparing the prediction results, SVM
and KNN models are giving “99.05%” of threat prediction
accuracy. Hence we use SVM and KNN models for further
real-time outlier detection in our IoT testbed. In the future,
we will analyze the ML models in detail and train them with
more datasets to predict the abnormal behavior of the IoT
CoAP client.

VIII. DISCUSSION AND CONCLUSION

6LoWPAN and CoAP protocols are IETF standardized
protocols. Sine 6LoWPAN supports IPv6; there is enough
room for connecting more IoT devices in the WSN network,
thereby supports scalability. Moreover, CoAP follows request-
response architecture to maintain secure communication. This
architecture will reduce the risk of having potential threats
such as a drone controlling the entire light of the building
found in [22] [55] which follows the publish-subscribe method
of communication.

Our work in this paper is a concrete contribution to the IoT
Cyber Security community to strengthen the security of the
application layer protocol. Also, this work endorses the IoT
device manufacturers to have machine learning model as an
IoT network monitor to protect the IoT network against the off-
path attack and the IoT devices’ communication as well. With
our observations and findings, it is recommended that the IoT
industry can have more IoT products with 6LoWPAN-CoAP
secure communication stack and ML model as a network
monitoring tool in the IoT network.

Exploring the vulnerability of CoAP protocol and a mit-
igation technique is done through a case study of a smart
door keypad lock system. While analyzing the CoAP packets,
we observed that the spoofed CoAP request message packets
have the randomized token number. This is the only difference
between the spoofed CoAP request message and the normal
CoAP request message of the CoAP server. However, in
some situation, the token ID generation is not mandatory
as discussed in Section V-B. Even with the presence of

60

38

47

50

56

11

1
2 authentication security protocols, we realize the attack after
3 it has done the damage already.
4 The reason behind fake pincode injection in the 6LoW-
5 PAN/CoAP stack is, the implementations of CoAP protocol
6 are not validating the remote CoAP clients. Hence creates
7 “Request Spoofing” vulnerability, and if it is not treated prop-
8 erly, the damage for the 6LoWPAN device on the constrained
9 network would be high. We experimented the off-path attack
10 by constructing the prototype and launched the attack in an
11 authenticated environment. Also, we presented the results of
12 the countermeasure technique to mitigate the off-path attack
13 using supervised machine learning model. In the future, we
14 will automate the machine learning model to find out the
15 abnormal behavior of live IoT traffic which help to detect and
16 prevent the off-path attack. We believe that paying attention to
17 “Request Spoofing” vulnerability and implementation method
18 will help to improve the security against off-path attacks on
19 CoAP.
20
21 ACKNOWLEDGMENT
22
23 This research is supported and funded by Data61, CSIRO,
24 Marsfield, Australia.
25
26 REFERENCES
27

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,

29 protocols, and applications,” IEEE Communications Surveys & Tutorials,
30 vol. 17, no. 4, pp. 2347–2376, 2015.

[2] D. Bandyopadhyay and J. Sen, “Internet of things: Applications and
challenges in technology and standardization,” Wireless Personal Com-

32 munications, vol. 58, no. 1, pp. 49–69, 2011.
33 [3] Z. Shelby and C. Bormann, 6LoWPAN: The wireless embedded Internet.
34 John Wiley & Sons, 2011, vol. 43.

[4] Z. Shelby, K. Hartke, and C. Bormann, “IETF RFC 7252,” The Con-
strained Application Protocol (CoAP), 2014.

36 [5] C. Bormann, A. P. Castellani, and Z. Shelby, “Coap: An application
37 protocol for billions of tiny internet nodes,” IEEE Internet Computing,

no. 2, pp. 62–67, 2012.
[6] K. Hartke, “Observing resources in the constrained application protocol

39 (CoAP),” Tech. Rep., 2015.
40 [7] A. Barth, “The web origin concept,” 2011.

[8] G. Tanganelli, C. Vallati, and E. Mingozzi, “CoAPthon: Easy devel-
opment of CoAP-based IoT applications with Python,” in Internet of

42 Things (WF-IoT), 2015 IEEE 2nd World Forum on. IEEE, 2015, pp.
43 63–68.

[9] P. Pongle and G. Chavan, “A survey: Attacks on RPL and 6LoWPAN
in IoT,” in Pervasive Computing (ICPC), 2015 International Conference

45 on. IEEE, 2015, pp. 1–6.
46 [10] A. G. Roselin, P. Nanda, and S. Nepal, “Lightweight Authentication

Protocol (LAUP) for 6LoWPAN Wireless Sensor Networks,” in Trust-
com/BigDataSE/ICESS, 2017 IEEE. IEEE, 2017, pp. 371–378.

48 [11] A. G. R. Arockia Baskaran, P. Nanda, S. Nepal, and S. He, “Testbed eval-
49 uation of Lightweight Authentication Protocol (LAUP) for 6LoWPAN

wireless sensor networks,” Concurrency and Computation: Practice and
Experience, p. e4868.

51 [12] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
52 Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[13] M. Bouaziz and A. Rachedi, “A survey on mobility management
protocols in Wireless Sensor Networks based on 6LoWPAN technology,”

54 Computer Communications, vol. 74, pp. 3–15, 2016.
55 [14] Y. Gilad, A. Herzberg, and H. Shulman, “Off-path hacking: The illusion

of challenge-response authentication,” IEEE Security & Privacy, vol. 12,
no. 5, pp. 68–77, 2014.

57 [15] A. Herzberg and H. Shulman, “Security of patched DNS,” in European
58 Symposium on Research in Computer Security. Springer, 2012, pp.
59 271–288.

[16] H. Herzberg, Amir and Shulman, “Socket overloading for fun and
cache-poisoning,” in Proceedings of the 29th Annual Computer Security
Applications Conference. ACM, 2013, pp. 189–198.

[17] A. Klein, “OpenBSD DNS cache poisoning and multiple O/S predictable
IP ID vulnerability,” 2007.

[18] Z. Qian and Z. M. Mao, “Off-path TCP sequence number inference
attack-how firewall middleboxes reduce security,” in Security and Pri-
vacy (SP), 2012 IEEE Symposium on. IEEE, 2012, pp. 347–361.

[19] Y. Gilad and A. Herzberg, “Off-Path Attacking the Web.” in WOOT,
2012, pp. 41–52.

[20] A. Gilad, Yossi and Herzberg, “Off-path TCP injection attacks,” ACM
Transactions on Information and System Security (TISSEC), vol. 16,
no. 4, p. 13, 2014.

[21] A. Hubert and R. van Mook, “RFC 5452: Measures for making DNS
more resilient against forged answers,” 2009.

[22] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” in Security and Privacy (SP), 2016 IEEE
Symposium on. IEEE, 2016, pp. 636–654.

[23] A. Hubert and R. van Mook, “RFC 5452: Measures for Making DNS
More Resilient against Forged Answers, 2009,” URL https://www. ietf.
org/rfc/rfc5452. txt.

[24] T. Fossati and H. Tschofenig, “Transport layer security (TLS)/datagram
transport layer security (DTLS) profiles for the internet of things,”
Transport, 2016.

[25] E. Rescorla and N. Modadugu, “RFC 6347: Datagram transport layer
security version 1.2,” Internet Engineering Task Force, vol. 13, p. 101,
2012.

[26] S. Raza, D. Trabalza, and T. Voigt, “6LoWPAN compressed DTLS
for CoAP,” in 2012 8th IEEE International Conference on Distributed
Computing in Sensor Systems. IEEE, 2012, pp. 287–289.

[27] A. Capossele, V. Cervo, G. De Cicco, and C. Petrioli, “Security as a
CoAP resource: an optimized DTLS implementation for the IoT,” in
Communications (ICC), 2015 IEEE International Conference on. IEEE,
2015, pp. 549–554.

[28] P. Urien, “Innovative DTLS/TLS security modules embedded in SIM
cards for IoT trusted and secure services,” in Consumer Communications
& Networking Conference (CCNC), 2016 13th IEEE Annual. IEEE,
2016, pp. 276–277.

[29] S. Raza, T. Helgason, P. Papadimitratos, and T. Voigt, “SecureSense:
End-to-end secure communication architecture for the cloud-connected
Internet of Things,” Future Generation Computer Systems, vol. 77, pp.
40–51, 2017.

[30] H. Kwon, J. Park, and N. Kang, “Challenges in deploying CoAP over
DTLS in resource constrained environments,” in International Workshop
on Information Security Applications. Springer, 2015, pp. 269–280.

[31] “Authentication and Authorization for Constrained Environments (ACE)
using the OAuth 2.0 Framework (ACE-OAuth) draft-ietf-ace-oauth-
authz-12,” https://tools.ietf.org/html/draft-ietf-ace-oauth-authz-12, ac-
cessed: 2018-06-22.

[32] Y. Gilad and A. Herzberg, “LOT: a defense against IP spoofing and
flooding attacks,” ACM Transactions on Information and System Security
(TISSEC), vol. 15, no. 2, p. 6, 2012.

[33] Q. Xie, D. S. Wong, G. Wang, X. Tan, K. Chen, and L. Fang, “Prov-
ably Secure Dynamic ID-Based Anonymous Two-Factor Authenticated
Key Exchange Protocol With Extended Security Model.” IEEE Trans.
Information Forensics and Security, vol. 12, no. 6, pp. 1382–1392, 2017.

[34] “OpenLabs Raspberry-Pi-802.15.4-radio,” http://openlabs.co/store/
Raspberry-Pi-802.15.4-radio, accessed: 2017-12-07.

[35] “IKILOCK smart lock design for Smart Home,” https://www.ikilock.
com/, [Online;].

[36] “Copper4Cr Copper for Chrome (Cu4Cr) CoAP user-agent,” https:
//github.com/mkovatsc/Copper4Cr, [Online;].

[37] “CoAPthon CoAP implementation,” https://github.com/Tanganelli/
CoAPthon.

[38] “Native 6LoWPAN Router Using Raspbian and RADVD,”
https://github.com/RIOT-Makers/wpan-raspbian/wiki/
Setup-native-6LoWPAN-router-using-Raspbian-and-RADVD,
accessed: 2017-11-07.

[39] M. Grinberg, “Two Factor Authentication with Flask,” https://blog.
miguelgrinberg.com/post/two-factor-authentication-with-flask, [Online;
accessed 14-Sep-2018].

[40] D. M’Raihi, S. Machani, M. Pei, and J. Rydell, “Totp: Time-based one-
time password algorithm,” Tech. Rep., 2011.

[41] T. Savolainen, K. Hartke, and B. Silverajan, “CoAP over WebSockets,”
2015.

28

31

35

41

44

53

http://www/
http://openlabs.co/store/

60

6

9

15

18

21

24

12

1
2 [42] C. Bormann, S. Lemay, H. Tschofenig, K. Hartke, B. Silverajan, and

B. Raymor, “CoAP (Constrained Application Protocol) over TCP, TLS,
and WebSockets,” Tech. Rep., 2018.

4 [43] Cotton, M and Eggert, L and Touch, J and Westerlund, M, “S. Cheshire,”
5 Internet Assigned Numbers Authority (IANA) Procedures for the Man-

agement of the Service Name and Transport Protocol Port Number
Registry,” BCP 165, RFC 6335, August, Tech. Rep., 2011.

7 [44] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust network
8 traffic classification,” IEEE/ACM Transactions on Networking (TON),

vol. 23, no. 4, pp. 1257–1270, 2015.
[45] O. M. Alhawi, J. Baldwin, and A. Dehghantanha, “Leveraging machine

10 learning techniques for windows ransomware network traffic detection,”
11 Cyber Threat Intelligence, pp. 93–106, 2018.

[46] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa, N. O.
Tippenhauer, and Y. Elovici, “ProfilIoT: a machine learning approach

13 for IoT device identification based on network traffic analysis,” in
14 Proceedings of the Symposium on Applied Computing. ACM, 2017,

pp. 506–509.
[47] Y. Meidan, M. Bohadana, A. Shabtai, M. Ochoa, N. O. Tippenhauer,

16 J. D. Guarnizo, and Y. Elovici, “Detection of Unauthorized IoT Devices
17 Using Machine Learning Techniques,” arXiv preprint arXiv:1709.04647,

2017.
[48] S. Althunibat, A. Antonopoulos, E. Kartsakli, F. Granelli, and C. Verik-

19 oukis, “Countering intelligent-dependent malicious nodes in target de-
20 tection wireless sensor networks,” IEEE Sensors Journal, vol. 16, no. 23,

pp. 8627–8639, 2016.
[49] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical

22 machine learning tools and techniques. Morgan Kaufmann, 2016.
23 [50] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to

statistical learning. Springer, 2013, vol. 112.
[51] H. A. Güvenir and M. Kurtcephe, “Ranking instances by maximizing

25 the area under ROC curve,” IEEE Transactions on Knowledge and Data
26 Engineering, vol. 25, no. 10, pp. 2356–2366, 2013.

[52] J. G. Cleary and L. E. Trigg, “K*: An instance-based learner using
an entropic distance measure,” in Machine Learning Proceedings 1995.

28 Elsevier, 1995, pp. 108–114.
29 [53] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.

[54] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

31 [55] E. Ronen, A. Shamir, A.-O. Weingarten, and C. OFlynn, “IoT goes
32 nuclear: Creating a ZigBee chain reaction,” in Security and Privacy
33 (SP), 2017 IEEE Symposium on. IEEE, 2017, pp. 195–212.

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

3

12

27

30

	2019 IEEE Copyright Statement
	IoT-6916-2019.R2_Proof_hi
	7 Annie Gilda Roselin1,2, Priyadarsi Nanda1, Surya Nepal2,
	56 A. 6LoWPAN protocol stack with CoAP
	B. CoAP message format and its functionality
	51 C. Potential attacks on CoAP
	A. Construction of Testbed
	40 B. Two Factor Authentication (2FA) for the CoAP user
	A. Off-path attack scenario
	36 B. 6LoWPAN-CoAP packet analysis with off-path attack
	46 A. Limitations of DTLS
	B. Limitations of user authentication
	C. Limitations of firewall

	2 Exploiting the remote server access support of
	7 Annie Gilda Roselin1,2, Priyadarsi Nanda1, Surya Nepal2,
	56 A. 6LoWPAN protocol stack with CoAP
	B. CoAP message format and its functionality
	51 C. Potential attacks on CoAP
	A. Construction of Testbed
	40 B. Two Factor Authentication (2FA) for the CoAP user
	A. Off-path attack scenario
	36 B. 6LoWPAN-CoAP packet analysis with off-path attack
	46 A. Limitations of DTLS
	B. Limitations of user authentication
	C. Limitations of firewall

