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Abstract

Background

The conduction and report of network meta-analysis (NMA), including the presentation of

the network-plot, should be transparent. We aimed to propose metrics adapted from graph

theory and social network-analysis literature to numerically describe NMA geometry.

Methods

A previous systematic review of NMAs of pharmacological interventions was performed.

Data on the graph’s presentation were collected. Network-plots were reproduced using

Gephi 0.9.1. Eleven geometric metrics were tested. The Spearman test for non-parametric

correlation analyses and the Bland-Altman and Lin’s Concordance tests were performed

(IBM SPSS Statistics 24.0).

Results

From the 477 identified NMAs only 167 graphs could be reproduced because they provided

enough information on the plot characteristics. The median nodes and edges were 8 (IQR

6–11) and 10 (IQR 6–16), respectively, with 22 included studies (IQR 13–35). Metrics such

as density (median 0.39, ranged 0.07–1.00), median thickness (2.0, IQR 1.0–3.0), percent-

ages of common comparators (median 68%), and strong edges (median 53%) were found

to contribute to the description of NMA geometry. Mean thickness, average weighted degree

and average path length produced similar results than other metrics, but they can lead to

misleading conclusions.

Conclusions

We suggest the incorporation of seven simple metrics to report NMA geometry. Editors and

peer-reviews should ensure that guidelines for NMA report are strictly followed before

publication.
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Introduction

Network meta-analysis (NMA) is an increasingly attractive statistical method used to compare

all treatments of interest in a given condition [1, 2], by simultaneously synthesizing data from

direct and indirect evidence [3, 4]. Like all statistical modeling, NMA has a number of assump-

tions that should be satisfied to avoid erroneous results and misleading conclusions [5, 6]. The

first assumption is that all direct evidence is connected in a network of comparisons, which

can be checked by building a plot [7, 8].

Graph drawing, as part of the mathematical concept of graph theory, has extensively been

used in many research disciplines, such as social network analysis, electrical networks, biology

experimental designs, and chemistry [9–12]. This technique allows for the modeling of pairwise

relations among a set of objects, and is useful to ground judgmental and analytical decisions

from a macro view of results [13–15]. In the field of NMA, a conventional network graph con-

sists of ‘‘nodes” representing the interventions of interest and “edges” representing available

direct comparisons between pairs of interventions [16, 17]. The amount of evidence can also be

presented by ‘‘weighting” the nodes and edges with different node sizes and line thicknesses

[18, 19]. This graphical display allows a wider visualization of NMA’s available evidence, which

may help to guide the initial interpretation of the results for rational clinical decisions [20–22].

However, considering that similar NMA structures may present different numbers of

nodes, edges and included studies, it is challenging to judge only by a graphical display where

one provides more valuable evidence. Thus, the use of special measures for benchmarking and

proper interpretation of data is paramount in a detailed graph analysis. These measures, called

metrics, are defined as a set of graph properties converted into a rational number. Several met-

rics with distinct properties are available [23–26] and could be used to describe the geometry

of NMAs and highlight their strengths and weaknesses, regardless of the size or structure simi-

larity of the networks, or even been used when the absence of the network plot itself.

The PRISMA extension statement for reporting of systematic reviews incorporating net-

work meta-analyses of health care interventions (PRISMA-NMA) was designed to improve

the completeness of reporting NMA data [16, 17]. This checklist includes three items on NMA

geometry. In the methods section, item S1 File proposes the description of the methods used

to explore the geometry of the network, including information on graphical summary. In the

results section, items S3 and S4 recommend, respectively, the presentation of the network

structure and a brief overview of the characteristics of the network geometry that may include

the number of trials and patients involved, and evidence gaps [16]. Despite these recommen-

dations and the recent development of software statistics for NMA conduct [27, 28] with dif-

ferent tools for building network-plots [29–32], limited guidance exists on how best to present

NMAs in an accessible format, especially for non-technical end-users, such as policymakers

and clinicians [33, 34]. Conversely, for pairwise meta-analysis presentations, where standards

for displaying forest-plots are commonly used [35, 36], no established or standardized metrics

for reporting NMA geometry exist [37]. Thus, we aimed to propose simple adapted parameters

and metrics from the social network analysis literature and test their usability to describe the

geometry of NMA plots.

Methods

Literature search and eligibility

A systematic review was performed according to the PRISMA statement and Cochrane Collab-

oration recommendations [38, 39]. Further information on the systematic review were previ-

ously published [40].
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Two reviewers performed all of the steps of the systematic review process (i.e. title and

abstract reading (screening), full-text appraisal and data extraction) individually, and discrep-

ancies were resolved by a third author (PRISMA checklist–S4 File).

Searches were conducted in two scientific literature database platforms (PubMed and Sco-

pus), without limits for time-frame or language (update April 25th, 2017). A manual search in

the reference lists of included studies and grey literature searches (Google) were also per-

formed. The full search strategies are in supplementary material (S1 File). We included studies

reporting NMAs (e.g. multiple or mixed treatment comparisons/meta-analysis, indirect meta-

analysis) comparing any drug therapy intervention head-to-head or against placebo. We con-

sidered any type of network (open or closed-loops) of experimental, quasi-experimental, or

observational trials. Non-NMAs, study protocols, studies reporting data only on non-pharma-

cological interventions, and articles written in non-Roman characters were excluded.

Data extraction, metrics proposal and testing

We used a standardized data collection form to extract data on: (i) the study general character-

istics (authors names, countries of affiliation, publication year) and (ii) network key-aspects:

presence of network-plot (graphical representation of comparisons) and description of the

geometry, including number of nodes (i.e. interventions), number of edges (i.e. direct compar-

isons evidence), and number of included studies (thickness of the edges).

The network-plots of all included NMA studies were replicated using Gephi 0.9.1 (https://

gephi.org/). The network-plot is defined as a graph (G), an ordered pair of nodes (N) or verti-

ces, together with a set of edges (E) or lines. After the replication of NMA plots, we applied

eleven adapted descriptive parameters and geometry metrics from previous concepts of social

network analyses and graph theory to describe all NMA structures [23–26]. The definition of

the adapted parameters and metrics are shown in Table 1 (see S2 File for metrics to describe

NMAs).

Metrics’ statistical analyses and sensitivity

Descriptive analyses were conducted with all parameters and metrics. Variable normality was

assessed with the Kolmogorov-Smirnov Test and re-evaluated through Q-Q normal plots that

revealed that all variables that were non-normally distributed. The variables were then

expressed as absolute and relative frequencies.

To test the usability of the eleven proposed parameters and metrics to describe the NMA

geometry, we compared the results obtained for each parameter and metric among all the eval-

uated networks and performed sensitivity analyses including:

(i) Comparison of the results obtained for each parameter and metric among networks with

different structures, i.e. visual display (geometry), but with the same number of nodes and

edges;

(ii) Comparison of the results obtained for each parameter and metric among networks with

equal structures, i.e. visual display (geometry), but different number of included studies.

Considering the results obtained during the sensitivity analyses, and to explore the relation-

ship between all the eleven proposed parameters and metrics, the Spearman test for non-

parametric correlations was used. The Bland-Altman plot and Lin’s concordance test (concor-

dance correlation coefficient) were used to analyze the agreement between the metrics present-

ing a moderate-strong correlation. Thus, the aim of these correlation analyses was to evaluate

the level of association among metrics and to avoid reporting overlap (i.e. that is, metrics mea-

suring the same characteristic). The parameters and metrics that presented better results
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during the analyses, identified as relevant to describe NMA geometry, were selected for discus-

sion. All analyses were conducted in IBM SPSS Statistics v. 24.0 (Armonk, NY: IBM Corp.)

and probabilities below 5% were considered statistically significant [41–43].

Results

The systematic search in PubMed and Scopus yielded 2179 registers, of which 690 were fully

appraised and a total of 477 NMAs were considered for the analyses. The display of the net-

work-plot (item S3 from PRISMA-NMA statement) was provided by 79.4% of these NMAs,

but a minimum set of descriptions of the network geometry were presented, according to

PRISMA-NMA item S4, by only 249 studies (52.2%). However, during the replication of the

network-plots, just 167 NMAs (35.0%) provided enough information about the graph

Table 1. Metrics definition.

Parameter or metric Definition�

Number of nodes Total number of interventions represented as nodes (vertices) of the network

(graph)

Number of edges Total number of direct comparisons between the nodes of the network, referred to

as edges or lines

Number of studies Total number of studies included in the network for each direct comparison or

edge

Average degree The degree of a node is the number of edges incident to the node, with loops

counted twice. The total degree of a graph is the sum of the degree of all nodes.

The average degree is a network level measure. It is calculated from the value of

degree of all nodes in the graph, divided by the number of nodes.

Average weighted degree A graph is a weighted graph, if a number is assigned to each edge. In this case, the

weight is the number of studies per edge. The weight of the graph is the sum of the

weights given to all edges, divided by the total number of nodes.

Density Density is a measure of the connectedness of a graph, and is defined as the number

of connections, divided by the number of possible connections. The graph is dense

if the number of edges approaches the maximal number of edges possible (value

closer to 1.0), otherwise is sparse (value closer to 0).

Percentage of common

comparators±
Complete graphs have the feature that each pair of nodes has an edge connecting

them. In this case, all nodes are directly linked and can be considered ‘common

comparators’. The higher the percentage of common comparators, the more

strongly connected is the network. Different from what may occur with density,

this metric may better represent the visual display of a network.

Percentage of strong edges± The number of studies in an edge is proportional to the existing direct evidence

among two nodes. Edges with only one study can be considered a weak piece of

the network. Strong edges contribute more to the robustness of the evidence. This

metric accounts for the percentage of edges with more than one study (named

‘strong edges’).

Mean thickness± The thickness of an edge is the number of studies assigned to that edge. The mean

thickness of a graph is the total number of studies, divided by the total number of

edges. This can be obtained by the division of the average weighted degree by the

average degree. However, it does not consider the dispersion of the values.

Median thickness with

dispersion value±
Different from the mean thickness, the median thickness is the expression of the

median number of studies per edge in a network, along with a dispersion measure

reported as interquartile ranges (IQR 25% and 75%).

Average path length The length of a path is the number of edges that a path uses to reach node to node.

The average path length is the number of steps along with the shortest paths for all

possible pairs of nodes in the network.

�All parameters and metrics were adapted from previous studies on social network analysis and graph theory [23–

26].

±Metrics especially created to support the report of NMAs geometry.

https://doi.org/10.1371/journal.pone.0212650.t001
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geometry that allowed its reproduction (e.g. data on the number of studies for each edge). See

Fig 1 for the flowchart of this process.

The overall results of the geometry of the 167 NMAs, after applying the eleven proposed

parameters and metrics, is shown in Table 2. The full-assessment of each NMA is in the Open

Science Framework platform (doi: 10.17605/OSF.IO/SP7UM). Overall, the included networks

had a median of 8 ‘nodes’ (IQR 6–11) and 10 ‘edges’ (IQR 6–16) with 22 included ‘studies’

(IQR 13–35).

The ‘average degree’ (degree of connection) of the networks was of 2.55 connections per

node (IQR 2.00–3.00). A total of 6 networks presented the lowest value for this metric (1.50),

with all of them composed by 4 nodes and 3 edges. The highest ‘average degree’ (5.14 edges

Fig 1. Flowchart of the included NMAs for network-plot reproduction and geometry assessment.

https://doi.org/10.1371/journal.pone.0212650.g001
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per node) was obtained for a network with 7 nodes and 18 edges. The mean ‘percentage of

common comparators’ (nodes with more than one connection) was around 70%, with 38 plots

considered strongly connected (100% of nodes as common comparators). Around 35% of net-

works presented half of their nodes with only one connection (‘loose-ends’). The ‘density’

(total number of connections in the network divided per the number of possible connections)

varied from 0.07 for the most poorly connected network (32 nodes and 32 edges) to 1.0 in 12

completely connected networks (e.g. structures with 3 nodes and 3 edges; 4 nodes and 6 edges;

5 nodes and 10 edges). The ‘average path length’ of the networks (distance between nodes) was

1.69 (IQR 1.50–1.89), varying from 1.00 for small networks (e.g. 3 nodes and 3 edges; 4 nodes

and 6 edges) to 5.25 in large networks (plot with 32 nodes and 32 edges).

The overall ‘mean thickness’ of the evaluated networks was of 2.95 studies per edge. One

small network (4 nodes, 5 edges) with 119 trials reached the highest value for this metric (20.00

studies per edge), that corresponded to 13.00 studies per edge (IQR 8.00–34.00) considering

the metric ‘median thickness’. Eleven networks presented only one study per edge, while 23

networks (plots varying from 3 nodes and 3 edges to plots with 8 nodes and 14 edges) pre-

sented all edges (100%) with more than one study (‘percentage of strong edges’ metric).

The sensitivity analyses highlighted some differences in the metric’s results for networks

with equal number of nodes and edges, but with different three-dimensional structures (graph

display). We have exemplified these differences in Fig 2, using three NMAs included in the sys-

tematic review (named as A, B, C) that present identical size, with 5 nodes and 5 edges, because

they were the most frequently reported among the 167 NMAs with graphs provided. Since the

total number of included studies in all of these three networks was 5, this variable was not con-

sidered in this first sensitivity analysis. ‘Density’ and ‘average degree’ values were equal

between the three network plots (0.5 and 2.00, respectively). However, differences were noted

in the metric ‘percentage of common comparators’, where networks with more loose-ends

(nodes with only one connection) have lower rates of ‘common comparators’ (60% for net-

works A and C; 80% for network B). The ‘average path length’ also differed among these net-

works, but with a different pattern than the other metrics, with values of 1.50 for structures A

and B, and 1.60 for graph C.

Sensitivity analyses also revealed different metric results for networks with equal geome-

try structures, but with different numbers of included studies (Fig 3). We have also exem-

plified this analysis with three similar plots (A, B, C) from our systematic review. In this

case, differences were noted in the weight of evidence. ‘Average weighted degree’, ‘mean

thickness’, and ‘median thickness’ showed similar performances, presenting higher values

Table 2. Assessment of NMAs geometry.

Descriptive analyses

(n = 167 NMAs)

N. of

nodes

N. of

edges

N. of

studies

Avg.

degree

Avg. weight

degree

Density Common

comparator %

Strong

edges %

Mean

thickness

Median

Thickness

Avg. path

length

Mean 8.83 12.0 30.23 2.63 7.98 0.43 68.0 53.0 2.95 2.17 1.73

SD 5.10 8.49 29.32 0.82 7.3 0.23 26.0 30.0 2.42 1.77 0.47

Median 8.00 10.00 22.00 2.55 5.67 0.39 7.3 55.0 2.18 2.0 1.69

IQR 25 6.00 6.00 13.00 2.00 3.50 0.26 50.0 29.0 1.50 1.0 1.50

IQR 75 11.00 16.00 35.00 3.00 9.33 0.53 89.0 75.0 3.54 3.00 1.89

Minimum 3.00 3.00 3.00 1.50 1.57 0.07 9.0 0.0 1.00 1.00 1.00

Maximum 42.00 66.00 157.0 5.14 50.00 1.00 100.0 100 20.00 13.00 5.25

Asymmetry ± error 2.75±0.19 2.52±0.19 2.31±0.19 0.94±0.19 2.63±0.19 1.01±0.19 -0.52±0.19 -0.02±0.19 3.33 ±0.19 3.12±0.19 2.77±0.19

N.: number; Avg: average; SD: Standard deviation; IQR: interquartile range; %: represented as percentage

https://doi.org/10.1371/journal.pone.0212650.t002
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in networks with more studies. Network-plot B presented weaker evidence than networks

A or C, with only one study per edge (0% of ‘strong edges’; ‘mean thickness’ = 1.00). Net-

work-plot C presented an ‘average weighted degree’ of 11.20 with a median of 6.0 studies

per edge [IQR 3.00–7.00] while network A showed a median of 3.0 studies per edge [IQR

3.00–4.00].

Analyses revealed some strong positive correlations as between ‘average weighted degree’

and ‘mean thickness’ (Spearman’s ρ 0.907; p<0.001) and between ‘mean thickness’ and

‘median thickness’ (Spearman’s ρ 0.865; p<0.001). ‘Percentage of common comparators’ also

correlated with ‘density’ (Spearman’s ρ 0.626; p<0.001). Negative, but strong, correlation was

found for ‘percentage of strong edges’ with ‘average weighted degree’ (Spearman’s ρ -0.732;

p<0.001), with ‘mean thickness’ (Spearman’s ρ -0.867; p<0.001), and with ‘median thickness’

(Spearman’s ρ -0.903; p<0.001) (see Table 3). However, the concordance analyses and Bland-

Altman plots showed that ‘mean’ and ‘median thickness’ were the only metrics to present sub-

stantial agreement (concordance correlation coefficient ρc = 0.820) (see S3 File).

Fig 2. Sensitivity analyses for the assessment of geometry of NMAs with similar number of nodes and edges.

Examples of three networks-plots from the 167 analyzed NMAs. Highlighted parameters showed different values

among similar NMAs.

https://doi.org/10.1371/journal.pone.0212650.g002
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Discussion

Our evaluation of the geometry of 167 NMA plots indicates that the description of some

parameters and metrics are crucial to ensure network reproducibility and may help during evi-

dence interpretation, especially because these network plots are readers’ first contact with the

available evidence. We have adapted and tested the usability of eleven metrics for NMA geom-

etry description, grounded on social network analysis and graph theory literature.

Fig 3. Sensitivity analyses for the assessment of NMAs with equal geometry and different numbers of studies.

Examples of three networks-plots from the 167 analyzed NMAs. Highlighted parameters showed different values

among similar NMAs.

https://doi.org/10.1371/journal.pone.0212650.g003
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Until recently, NMAs were only used by researchers with a strong statistical background,

but the development of user-friendly software has popularized this method [2, 4]. However,

there is a series of conceptual challenges when conducting and reporting a NMA and these

should also be considered by clinicians who read such scientific publications [3, 6]. Firstly, the

presentation of NMA results is not as straightforward as in traditional pairwise meta-analysis

[22, 44]. The validity of NMA is based on the underlying assumption that there is no imbal-

ance in the distribution of effect modifiers across the different types of direct treatment com-

parisons, regardless of the structure of the network [8, 45].

Previous studies showed that the synthesis methods and analytical processes for NMA con-

duct and reporting, including the representation of network structure and other diagrams, still

need improvement [46, 47]. Improvement is also necessary because network structures also

seem to have influence on the final results of NMAs. Salanti and collaborators have investi-

gated 18 different NMAs [20] and showed that entirely star shaped networks (or close to this

pattern) have only one comparator, typically placebo or no active treatment. This pattern may

suggest study treatment preference bias (e.g. publication bias, missing outcome data), with

strong or ubiquitous avoidance of head-to-head comparisons of active treatments [21, 48], and

should be carefully interpreted.

In our analyses, we were able to reproduce only 35% of the NMA-plots found in the system-

atic review. Part of this issue was due to the lack of a network diagram or minimum descrip-

tion of geometry, as recommended by the PRISMA-NMA statement. Another group of

Table 3. Correlation analyses of NMA’s geometry parameters and metrics.

Correlation Spearman’s

Rho

(n = 167 NMAs)

N. of

nodes

N. of

edges

N. of

studies

Avg.

degree

Avg. weight

degree

Density Common

comparator

Strong

edges

Mean

thickness

Median

thickness

Avg. path

length

N. of nodes 0.886 0.437 0.285 -0.170 -0.827 -0.209 0.425 -0.323 -0.430 0.736

p-value <0.001 <0.001 0.022 0.028 <0.001 0.007 <0.001 0.001 <0.001 <0.001

N. of edges 0.585 0.662 0.113 -0.490 0.163 0.305 -0.165 -0.294 0.416

p-value <0.001 <0.001 0.145 <0.001 0.035 0.002 0.035 <0.001 <0.001

N. of studies 0.505 0.674 -0.130 0.220 -0.352 0.540 0.359 0.080

p-value <0.001 <0.001 0.093 0.004 0.001 <0.001 <0.001 0.300

Avg. degree 0.503 0.264 0.741 -0.012 0.129 0.033 -0.270

p-value <0.001 <0.001 <0.001 0.877 0.096 0.669 <0.001

Avg. weight. degree 0.473 0.494 -0.732 0.907 0.754 -0.482

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Density 0.626 -0.441 0.424 0.473 -0.918

p-value <0.001 <0.001 <0.001 <0.001 <0.001

Common comparator 0.157 0.233 0.186 -0.560

p-value 0.042 0.020 0.016 <0.001

Strong edges -0.867 -0.903 -0.427

p-value <0.001 <0.001 <0.001

Mean thickness 0.865 -0.423

p-value <0.001 <0.001

Median thickness -0.464

p-value <0.001

Avg. path length

p-value

N.: number; Avg: average. Bold values show moderate-very strong and statistically significant correlation between metrics.

https://doi.org/10.1371/journal.pone.0212650.t003
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network-plots, although minimally complying with the PRISMA-NMA checklist items, failed

to detail some information about the graph (e.g. amount of studies included in each edge) that

prevented their replication. This highlights the need to review the PRISMA-NMA checklist to

standardize the report of NMA, requiring authors to provide a minimum set of parameters

and metrics of geometry to allow reproducibility.

As we have shown by replicating the network-plots, the graphical presentation of the net-

work provides an accessible and understandable format for describing the evidence, how infor-

mation flows indirectly, the contribution of certain interventions, and the evidence gaps [37,

49]. Usually, the more treatments and studies included in a network, the more clinically infor-

mative the NMA is [49]. However, large networks informed by few studies often yield imprecise

evidence and may show inconsistencies, whereas a smaller network contains less evidence but

may show no clear inconsistencies [50, 51]. For this reason, the network graph itself is not

enough to provide a complete and transparent picture of the available evidence. Slight modifica-

tions in the NMA geometry may also have impact on the evidence resulting from the analysis

and subsequently influence the decision making process. Thus, in addition to network size, the

description of parameters and metrics is useful to supplement graph information [20], especially

for distinguishing similar NMAs, as we have demonstrated in our sensitivity analyses. More-

over, a proper geometry description can foster the statistical analysis of the NMA, help in pro-

curing reliable estimates and recommend further trials if necessary [37, 49].

After testing eleven metrics, we suggest that, besides reporting three obvious items (number

of ‘nodes’, ‘edges’ and ‘number of studies per edge’), four additional metrics should be incor-

porated in the future NMA report: ‘density’, ‘percentage of common comparators’, ‘median

thickness’ (median of number of studies per edge with interquartile ranges) and ‘percentages

of strong edges’. ‘Density’ is a measure of the connectedness in a graph, revealing how many

edges are needed to complete the network [13, 14]. However, in two different NMAs with the

same number of nodes and edges, density is identical. This measure is not influenced by the

network three-dimensional display and does not depend on the size of the network. In this

case, a complementary measure–the ‘percentage of common comparators’–was useful for bet-

ter defining the display of the structure. This metric provides the number of loose-ends (nodes

with only one connection) in the network, which represent poorly compared interventions in

the literature that should be better investigated in future trials.

On the other hand, the results of ‘average path length’ were found to be misleading. This

metric is commonly used in social network analyses to account for the distance between

objects in the network [14, 24]. However, for NMAs, the average distance between all of the

interventions does not correspond to the number of loose ends or missing edges in the net-

work. Networks with the same number of nodes, edges, and loose ends may have different

‘average path length’ that vary according to structure.

Among the measures evaluating the ‘weight’ of evidence, we found that ‘average weighted

degree’ may also be misleading, since its results are double of those obtained by ‘mean thick-

ness’. This occurs because the first measure describes the amount of studies per connection,

while the second shows the number of studies per edge. ‘Average degree’ and ‘average

weighted degree’ are commonly used in social analyses to report positive and negative edges

and its relationships [23, 25]. However, since NMA edges have no direction, we suggest the

report of ‘median thickness’ (because it includes a dispersion measure), together with the

report of the ‘percentage of strong edges’. These metrics seems more reasonable to calculate

and interpret, and properly account for the weight of evidence in the network edges.

Besides the report of these parameters and metric of NMA geometry, the interpretation of

the plots can also benefit from different design approaches. For instance, different colors for

the edges to represent the level of confidence of comparisons between treatments (e.g. risk of
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bias) can be used. The amount of evidence can also be weighted in the nodes of the network-

plots. Their sizes can proportionally represent the population sample included for each inter-

vention [19]. However, this representation should be carefully evaluated since it can lead to

inaccurate conclusions. The final size of a specific node should account for all of the samples of

included studies on that specific intervention. There are several graphical tools available for

drawing a network-plot and calculating geometric parameters and measures [52, 53]. More-

over, software such as R, STATA, or WinBUGS which are frequently used to perform the

NMA statistics, can also be programmed to perform the diagrams and compute network met-

rics as well improve studies reporting [18, 27, 28, 54]. Additionally, authors’ of NMA should

provide network graph for each outcome. The certainty of each treatment comparison should

be estimated by using a standard approach like the GRADE (Grading of Recommendations

Assessment, Development and Evaluation). To facilitate the visualization of the level of evi-

dence (represented by the GRADE panels of outcome-graphs) or the risk of bias (Cochrane

risk of bias assessment) different thickness or colors for individual edges should be used in

NMA graphs [18, 31, 55, 56].

The main strength of our study was to suggest geometry metrics to standardize the report

of NMA plot characteristics aiming at quantitative measure the NMA complexity, which may

not be sufficiently evident just by the plot visual analysis. These metrics are simple and usable,

both for technical and non-technical readers, and may guide further research on this topic.

Our study also has some limitations. We included only NMAs of drug interventions and,

although our results cannot not be immediately translated to other type of NMAs, there is

nothing indicating differences among NMAs of different types of interventions. Further

research on the relationships of network elements and other potential metrics of geometry

should be explored. Bland-Altman limits of agreement are usually used to assess differences in

normally distributed data; however, literature demonstrated that this test may be applied in

non-normal data without a big impact [41, 42].

Conclusions

Overall, seven simple geometry metrics were shown to be useful for describing NMA structure,

contributing to data interpretation, and reproducibility. Guidelines and recommendations on

the conduct and reporting of NMAs should strictly require the display of a network-plot and

its complete description based on these metrics. Editors and peer-reviews should also ensure

that reporting guidelines, including these items, are followed before publication.
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