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Coupled task scheduling with exact delays: Literature review and models
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Abstract

The coupled task scheduling problem concerns scheduling a set of jobs, each with at least two tasks and there is an

exact delay period between two consecutive tasks, on a set of machines to optimize a performance criterion. While

research on the problem dates back to the 1980s, interests in the computational complexity of variants of the problem

and solution methodologies have been evolving in the past few years. This motivates us to present an up-to-date

and comprehensive literature review on the topic. Aiming to provide a complete road map for future research on the

coupled task scheduling problem, we discuss all the relevant studies and potential research opportunities. In addition,

we propose several sets of benchmark instances for the problem in various settings and provide a detailed evaluation

of all the available models with a view to facilitating future research on the solution methods.
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1 Introduction

In the coupled task scheduling problem, every job consists of at least two separated tasks, whereby the succeeding task

must be processed after the completion of the first (preceding) task and there is an exact time interval between the

tasks. Shapiro (1980) introduced the coupled task scheduling problem to model a pulsed radar system, where a pulse of

electromagnetic energy is used to track an object. The pulse is transmitted and its reflection is received after a period

of time to measure the size and/or shape of the tracked object. The concept of exact delays between consecutive tasks

of a job has been applied in scheduling problems in the shop setting as well, e.g., in the flow shop (Leung et al., 2007),

job shop (Gröflin and Klinkert, 2007) and open shop (Ageev, 2018) environments.

To the best of our knowledge, Blazewicz et al. (2012) provided the only review of research on the coupled task

scheduling problem. Their review includes (1) discussing known complexity results for the problem, (2) reviewing the

state-of-the-art algorithms and (3) evaluating the performance of algorithms over a set of instances with up to 838 jobs.

We present an updated and comprehensive review of coupled task scheduling with a view to (1) reviewing both the

single-machine and shop settings, (2) generating sets of benchmark instances for the problem and (3) discussing all the

available models for the problem and evaluating their performance over the sets of generated instances.

In total, we review 43 published papers on the coupled task scheduling problem. The first study on the problem

appeared in 1980. Between 1980 and 2003, only a few papers on the problem were published, and almost 86% of the

related studies were published after 2003. This is an indication of the current research trend for the problem. Figure 1

shows the number of papers published over the years. In terms of the scheduling environment, research on the coupled

task scheduling problem can be divided into two categories, namely the single-machine and shop settings. There are 26

publications that study the problem in the single-machine setting and 14 papers that investigate the problem in the shop

scheduling setting. Three papers study the problem in both settings. Out of the 17 publications that study the problem

in the shop setting, 13 deal with the flow shop scheduling, three with the job shop environment and one paper considers

the open shop setting. Table 1 summaries the outlets that publish the available studies on the coupled task scheduling

problem (the entries are sorted in non-increasing order of the number of published papers). As the table shows, the

majority of the papers were published in conference proceedings and Journal of Scheduling.

1.1 Application

Shapiro (1980) presented the first application of the coupled task scheduling problem as follows: In a radar tracking

system, pulses are transmitted and reflections are received once every specified update period. The radar cannot transmit

a pulse at the same time when a reflected pulse is arriving; also, two reflected pulses cannot overlap. The radar devices

transmit certain pulses to calculate the sizes, shapes and speeds of the tracked objects. Therefore, one can model the

transmission and reflection of pulses as two tasks with a fixed duration of delay between them. It is important that

the idle time of the radar system is minimized. Farina and Neri (1980) studied multi-target tracking with the objective

of minimizing the total radar time. Izquierdo-Fuente and Casar-Corredera (1994) focused on maximizing the number

of targets that a multi-function radar can handle. Orman et al. (1996) studied a real-time scheduling problem for a
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Table 1: Distribution of papers by journals and conference proceedings.
Journal/Proceeding Number of papers (%)
Proceedings 7 (16.28)
Journal of Scheduling 5 (11.63)
Computers & Operations Research 3 (6.98)
Discrete Applied Mathematics 3 (6.98)
RAIRO Operations Research 3 (6.98)
Computers & Industrial Engineering 2 (4.65)
European Journal of Operational Research 2 (4.65)
International Journal of Production Research 2 (4.65)
Journal of Combinatorial Optimization 2 (4.65)
Mathematical Methods of Operations Research 2 (4.65)
Naval Research Logistics 2 (4.65)
Operations Research Letters 2 (4.65)
Annals of Operations Research 1 (2.33)
Discrete Optimization 1 (2.33)
European Journal of Industrial Engineering 1 (2.33)
International Journal of Foundations of Computer Science 1 (2.33)
International Journal of Operational Research 1 (2.33)
International Journal of Planning and Scheduling 1 (2.33)
Journal of Global Optimization 1 (2.33)
The Journal of the Operational Research Society 1 (2.33)
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Figure 1: Number of papers published in different time periods.

multi-function-phase array radar system, where a job consists of coupled tasks. A multi-function radar system involves

a number of dedicated radars that form a single system. Orman et al. (1998) also provided a model for complex radar

system management. Elshafei et al. (2004) proposed integer programming models for the multi-target tracking system.

They considered two objective functions, namely minimizing the total required time to scan all the targets (equivalent

to the makespan) and minimizing the total risk of the unscanned targets within a time limit (equivalent to scanning as

many targets with higher risks as possible in a given time limit), where there is a risk (cost) for a target that remains

unscanned. In a similar context, Simonin (2009) made use of the coupled task scheduling problem to improve the

performance of submarine torpedoes. Various environmental data must be processed by sensors located on the torpedo.

Here, the initial task is the transmission of a pulse from the torpedo to the water and the completion task consists of

receiving the echo, while there is an exact duration of idle time between the two tasks.

In the flow shop setting, Ageev and Baburin (2007) modeled a chemistry manufacturing process as the coupled task

scheduling problem. Specifically, two different operators execute the operations successively, where there is an exact

technological delay between the finishing time of the first task and the starting time of the second one. Brauner et

al. (2009) discussed the link between the coupled task and the single-machine no-wait robotic cell problem. In particular,

a workstation in a cellular manufacturing system consists of an input station, a machine and an output station. Such an

environment can be modeled as the single-machine coupled task problem.

Condotta and Shakhlevich (2014) modeled a healthcare problem in the context of scheduling patient appointments

in a chemotherapy outpatient clinic as the coupled task scheduling problem. The defining characteristic is the time lag

that must elapse between every two appointments of the same patient.

1.2 Scope and classification

This review covers all the studies on scheduling problems with the coupled task characteristic, i.e., existence of fixed

delays between consecutive tasks of a job. Specifically, each job may consist of at least two tasks, where there is a fixed

amount of delay between every two consecutive tasks. The fixed delay therefore represents a strict lag time between

the completion time of the preceding task and the starting time of the succeeding task. In the single-machine setting, a

job includes two tasks, while in the shop setting, each job consists of at least two tasks. There are a number of related
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problems in the literature that we do not cover in this review.

There is research on scheduling problems with flexible delays, in which a lower and/or an upper bound on the duration

of the delay is/are given. The lower bound implies that the delay between two consecutive tasks of a job must not be

smaller than the minimum delay and the upper bound means the delay cannot be greater than the given bound. We can

regard the coupled task scheduling problem as a special case of scheduling with flexible delays, where the minimum and

maximum delays for each job are equal (see Figure 2). We refer the interested reader to Dell’Amico (1996); Potts and

Whitehead (2007); Zhang and Van De Velde (2010) for reviews of research on scheduling problems with flexible delays.

Single-machine scheduling with flexible 
delays

Single-machine coupled 
task scheduling

Figure 2: Single-machine with flexible delays and single-machine coupled task scheduling.

The coupled task scheduling problem in the shop environment is related to the well-known “no-wait” condition in shop

scheduling. The no-wait assumption implies that the jobs are processed on all the machines without any delay between

them. Therefore, we can regard the no-wait shop scheduling problem as a special case of the coupled task scheduling

problem, where the value of the delay between every pair of tasks is equal to zero (see Figure 3). Allahverdi (2016)

discussed research on no-wait shop scheduling.

The motivation for incorporating delays and modeling the feature as the coupled task scheduling problem stems

from two reasons. First, it can be used to model a no-wait problem, where there is a transport time (or any processing

that does not require a processing machine) between two consecutive tasks of the same job. That time requirement can

indeed be represented by the delay duration in the coupled task scheduling problem. Chu and Proth (1996) presented

a class of problems in which a transport time between successive tasks of a job occurs. Fondrevelle et al. (2009)

discussed similar situations arising in the manufacturing process of thermic paper that involves chemical processing,

where temporal constraints are imposed on the process. Likewise, such constraints must be satisfied in every processing

step of a pharmaceutical plant, from raw materials and resource preparation to packaging.

Second, it can be used to model the no-wait condition involving bottleneck machines. According to Mitten (1959), the

two-machine flow shop problem with delays can present the industrial environment involving two bottleneck machines,

where the jobs must undergo a number of tasks on some intermediate machines between the two bottleneck machines.

The elapsed time on those intermediate machines can be represented by the delay durations, where the delays are exact

in the no-wait situation.

Shop coupled task scheduling

No-wait shop scheduling

Figure 3: Shop coupled task scheduling and no-wait shop scheduling.

1.3 Paper contribution

The contributions of this paper include (1) presenting a comprehensive review of available studies on scheduling problems

with coupled tasks, both in the single-machine and shop environments, (2) proposing several sets of benchmark instances

for the problem, (3) investigating available models for the coupled task scheduling problem and evaluating their perfor-

mance over the generated instances, and (4) proposing a new formulation for the coupled task problem by adapting a

state-of-the-art mathematical model for the no-wait flow shop problem and improving several existing models.

1.4 Paper organization

We organize the rest of the paper as follows: We formally define the coupled task scheduling problem in Section 2. In

Section 3 we review the studies discussing the single-machine environment and in Section 4 we review the studies in

the shop setting. In Section 5 we generate comprehensive sets of benchmark instances for the problem. We discuss
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mathematical programming models for the problem in Section 6 and evaluate their performance over the generated

instances in Section 7. We discuss potential topics for future research in Section 8.

2 Problem statement and notation

We formally formulate the single-machine coupled task scheduling problem as follows: There is a set N = {1, 2, . . . , n}
of jobs, indexed by j, where two tasks are associated with each job j ∈ N . The first (initial) task and its processing time

are denoted by aj while the second (completion) task and its processing time are denoted by bj . As a result, there is a

set H = {1, 2 . . . , 2n} of tasks, indexed by h. Both tasks have known durations and the second task of a job must be

started with a delay after the completion of the first task. We denote the delay duration between the tasks of job j as

Lj , as illustrated in Figure 4. In the context of coupled task scheduling, it is typical to present the parameters for job j

via a triple (aj , Lj , bj).

Figure 4: A coupled task job.

In the shop setting, the set N of jobs need to be processed on a set M = {1, . . . ,m} of different machines, indexed

by k. The coupled task assumption in the shop setting represents the situation where exact delays are considered

between each two consecutive tasks of the same job. The processing time of job j’s task on machine k is denoted by

pkj ,∀k ∈ M,∀j ∈ N , and the delay duration of job j after being processed on machine k is represented by Lkj . For

simplicity, in the two-machine setting, we replace p1j and p2j by aj and bj , respectively. Likewise, we replace Lkj by

Lj because there is only one delay associated with every job. In both single-machine and shop settings we assume all

processing times and delay durations take positive integers.

Throughout this paper we use the standard three-field notation α|β|γ for describing scheduling problems proposed

by Graham et al. (1979), where α, β and γ represent the scheduling environment, job characteristics and performance

criterion. Regarding the field α, we use four entries in this paper, namely 1, Fm, Jm and Om, to denote the single-

machine, flow shop (with m machines), job shop (with m machines) and open shop (with m machines) environments,

respectively.

As regards the β field, (aj , Lj , bj) represents the coupled task characteristic in the single-machine setting, which can

be modified based on the values of aj , Lj and bj . On the other hand, in the shop setting, the coupled task problem

is represented by Lj . Two other characteristics of the jobs include prec and Gc, indicating precedence constraints and

compatibility constraints, respectively. These constraints can be in different forms, e.g., star, chain, etc. The situations

where only permutation schedules are considered is shown by perm and where a fixed-job-sequence is stipulated is

denoted by fjs. The sequence-dependent setup times are denoted as STsd.

With respect to the field γ, let dj , Cj , Ej and Tj denote the due date, completion time, earliness and tardiness of job

j, respectively, where Ej = max{dj − Cj , 0} and Tj = max{Cj − dj , 0}. The most commonly used objective function

for the coupled task scheduling problem is the schedule length, i.e., the makespan (the maximum job completion time),

which is denoted as Cmax. Other objective functions include the total completion time
∑
Cj , maximum lateness Lmax,

i.e., the maximum deviation of Cj−dj , earliness and tardiness penalties
∑

(Ej + Tj) and total energy consumption TEC

(as in Liu et al., 2017). Also note that we represent a general regular objective function by f . An objective function is

called regular if it is non-decreasing in the completion times of the jobs.

Tables 2 and 3 summarize the notation used in this paper, as well as the entries used in the three-field notation.

3 The single-machine scheduling problem

The majority of the studies on the coupled task scheduling problem are in the context of exact delays in the single-

machine environment. Given a set N of jobs, job j ∈ N is represented by the triple (aj , Lj , bj). Preemption is not

allowed, implying once the operation of a task is started, it must be completed with no interruption. However, the tasks

of other jobs can be processed during the delay period. Next, we first discuss studies considering the objective function

of minimizing the makespan and then we review works that possess the cyclic characteristic.

3.1 Makespan

Almost all the available studies in the single-machine environment consider the objective function of minimizing the

makespan, i.e., Cmax. There are several studies, however, that consider the cyclic characteristic, which we review in

Section 3.2. It should be noted that in the single-machine environment minimizing the idle times of the machine is

equivalent to minimizing the makespan.
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Table 2: Mathematical notation used in this paper.
Notation Description
Set:
N Set of jobs, N = {1, . . . , n}, indexed by j.
H Set of tasks, H = {1, . . . , 2n}, indexed by h, where H2j−1 and H2j are the initial and completion

tasks of job j.
M Set of machines, M = {1, . . . ,m}, indexed by k.
Θ Set of time slots, Θ = {1, . . . , T }, indexed by t.
Parameter:
n Number of jobs, and also number of positions in the shop setting.
m Number of machines.
T Number of time slots.
aj Processing time of the initial task of job j, aj ∈ Z+, also processing time of job j on the first machine

in a two-machine shop setting.
bj Processing time of the completion task of job j, bj ∈ Z+, also processing time of job j on the second

machine in a two-machine shop setting.
Lj Duration of the delay of job j, Lj ∈ Z+, in the single-machine or two-machine shop setting.
dj Due date of job j.
pkj Processing time of job j on machine k, pkj ∈ Z+, in the m-machine shop setting.
Lkj Duration of the delay of job j after processing on machine k, Lkj ∈ Z+, in the m-machine shop

setting.

Table 3: The entries used in this paper for the three-field notation (α|β|γ).
Notation Description
α:
1 Single machine.
Fm Flow shop with m machines.
Jm Job shop with m machines.
Om Open shop with m machines.
β:
(aj , Lj , bj) Coupled tasks in the single-machine setting.
Lj Coupled tasks in the shop setting.
prec Precedence constraints, which may be in the special form in/outtree or chain.
Gc Compatibility graph, which may be in the special form star or chain.
perm Permutation.
fjs Fixed-job-sequence.
STsd Sequence-dependent setup times.
γ:
Cmax Makespan.∑
Cj Total completion time.

Lmax Maximum lateness.∑
(Ej + Tj) Earliness-tardiness penalties.

TEC Total energy consumption.
f A general regular objective function.

Shapiro (1980) made the first attempt to explore the computational complexity of the single-machine coupled task

scheduling problem. He showed that the problem is equivalent to a job shop, where n jobs are to be scheduled on two

machines (e.g., M1 and M2) with the following characteristics: (1) every job requires three tasks, where the first task is

performed on M1, the second task, i.e., the delay period, on M2, and the third task on M1; (2) machine M1 may only

process one task at a time, however, M2 has infinite processing capacity; and (3) no waiting time between every pair

of tasks of a job is permitted, i.e., once the processing of a job is started, all its tasks must be finished with no delay.

Hence, we derive the NP -hardness of the problem from that of the two-machine job shop problem. Shapiro (1980) also

proposed the first heuristic algorithms for the problem. He labeled his three simple heuristics as “sequencing”, “nesting”

and “fitting” as follows.

The sequencing heuristic, also known as “interleaving”, constructs an ordered subset of jobs such that the completion

tasks are sequenced for processing in the same order as the initial tasks are scheduled. In fact, the procedure finds as

many jobs as their initial tasks can be processed successively with no overlap in their completion tasks. Figure 5a shows

the operation of the sequencing heuristic for two jobs j and j′. The nesting heuristic is similar to the sequencing heuristic;

however, the completion tasks are processed in the reverse order of the initial tasks. In particular, this procedure allows

the jobs to be processed during the delay periods of the previous jobs. Figure 5b shows the nesting heuristic. The fitting

heuristic allows the user to specify a priority order for the jobs. This is almost an interactive scheduling procedure, which

is only applicable to instances with a small number of jobs.

Orman and Potts (1997) provided a comprehensive study of the complexity issues of the problem. They concluded

the strong NP -hardness for certain cases, which we review in Section 3.1.1. An important result of their study is the

symmetry property for the problem. Specifically, they showed that the makespan minimization problem defined by

(aj , Lj , bj) is equivalent to the one defined by (bj , Lj , aj). In other words, the two problems are identical. They called

the latter the “reverse” of the former.

Sherali and Smith (2005) studied two variants of the problem. The first variant aims at maximizing the sum of

the weights of the jobs that are completed before the time Tmax. In other words, the model decides which jobs to be
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Figure 5: (a): Interleaving jobs j and j′, and (b): nesting jobs j and j′.

scheduled before Tmax and which ones to be rejected, so as to maximize the total weight. The second variant is the

makespan minimization problem. Through a reduction from the 3-Partition problem, they showed that both variants

are strongly NP -hard. They proposed two methods to formulate the two variants, namely discretization formulation, in

which a time horizon is discretized into unit time slots, and the problem is then to determine the starting time slots for

the first tasks of all the jobs, while all the jobs must complete before a time T , and continuous formulation, where the

jobs can start at any time.

Condotta and Shakhlevich (2012) studied the complexity of a restricted version of the problem, where the sequence

for either the initial or completion tasks of all the jobs is given. They proved that obtaining the optimal solution, given

a sequence for the initial tasks, is NP -hard in the strong sense, even if all the jobs have unit execution times (UET).

Note that due to the symmetry property of the coupled task scheduling problem, the NP -hardness result holds when

the sequence for the completion tasks is given.

Ageev and Kononov (2007) provided an approximation algorithm for the problem. In particular, they proposed an

algorithm that works by ordering the jobs in non-increasing order of aj + Lj , i.e., LPT(aj+Lj), and showed that it is

a 3.5-approximation algorithm for the problem. This job ordering has a time complexity of O(n logn), where n is the

number of jobs. Li and Zhao (2007) defined the “singleton” job as the job that can neither be interleaved nor nested.

Particularly, job j is a singleton if it cannot be nested within any other job j′ ∈ N , nor j′ can be nested within j, i.e.,

in the delay period, nor they can be interleaved with each other. They observed that such jobs can be “appended”

(appending refers to scheduling a job without any interleaving or nesting moves) one after another at the end of an

optimal schedule of the remaining jobs, i.e., all the jobs excluding the singleton ones. They also presented a lower bound

on the makespan as follows:

C∗max ≥ max
{
Pa + Pb,max

j∈N
{aj + Lj + bj}, Pa + min

j∈N
Lj , Pb + min

j∈N
Lj

}
, (1)

where Pa =
∑
j∈N aj , Pb =

∑
j∈N bj , and C∗max is the optimal makespan.

Li and Zhao (2007) proposed the first meta-heuristic, i.e., a tabu search (TS) algorithm. In order to use permutation

representations for generating neighborhoods, they applied a greedy heuristic, which builds a non-permutation schedule

from a given permutation one. The heuristic applies the interleaving, nesting and appending operations for scheduling

a job at the earliest possible time. The neighborhood procedure consists of removing a fixed number of consecutive

jobs and inserting them in different positions in the sequence. The TS algorithm of Condotta and Shakhlevich (2012)

includes a neighborhood that removes a job from its position and inserts it in another position. They used the disjunctive

graph model for job re-insertion. In a disjunctive graph, the nodes represent tasks and the arcs show the precedence

relations between the tasks, where the arcs can be either conjunctive or disjunctive. The conjunctive arcs represent the

precedence relations between the tasks of the same job. The disjunctive arcs, however, show the precedence requirements

between the tasks of different jobs. Their TS algorithm outperforms the adapted heuristic of joint decompose local search

proposed for the problem with flexible delays (Potts and Whitehead, 2007) and their own greedy dispatching rule.

Békési et al. (2014) proposed a branch-and-bound (B&B) algorithm. They developed two mathematical programming

formulations based on linear ordering variables. They also implemented two additional models, a time-indexed model

by utilizing the discretized model of Elshafei et al. (2004) and the continuous model of Sherali and Smith (2005). They

used the four models to evaluate the performance of their B&B algorithm. They concluded that for instances with UET

tasks, the time-indexed model performs better, while for the remaining instances, the B&B algorithm obtains higher

quality solutions and in shorter times than optimizing the models by solvers.

3.1.1 Restrictions on the duration

In their study, Orman and Potts (1997) classified the problem with respect to the restrictions on the duration of the

tasks and the delay periods. They showed that many special cases in this regard are strongly NP -hard. For example,

the case (aj = Lj = bj) is NP -hard in the strong sense, so the cases (aj , Lj = bj), (aj = bj , Lj) and (aj = Lj , bj) are also

NP -hard in the strong sense. They also showed the strong NP -hardness of the case (aj , L, b), implying the same result

for the cases (a, Lj , b), (a, L, bj), (aj , Lj , b), (a, Lj , bj) and (aj , L, bj). We note that a, L and b indicate that all the jobs

have a common initial task, a delay and a completion task, respectively. Even when the initial and completion tasks are
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equal, i.e., (p, Lj , p) for some constant p, they proved that the case is strongly NP -hard (the same applies to the case

(a, Lj , b)). They proposed two optimal algorithms with an O(n) time complexity for the cases (p, p, bj) and (p, L, p). The

former implies that the special cases (aj , p, p), (p, p, b) and (a, p, p) can also be optimally solved by the same algorithm.

Overall, the study of Orman and Potts (1997) shows that the problem is strongly NP -hard even if two out of the

three fields, i.e., (aj , Lj , bj), are equal for all the jobs. There is one special case, however, whose complexity status has

remained open to date, where all the jobs have the same tasks and delay, i.e., (a, L, b). This special case is called the

“identical” problem.

Ahr et al. (2004) also studied the identical problem. They assumed two conditions. First, a ≥ b because the problem

is equivalent if b ≥ a, due to the reverse property discussed earlier. Second, a < L < (n−1)a; otherwise, a simple greedy

heuristic yields the optimal solution. Under the two assumptions, they proposed a dynamic programming algorithm

with an O(nr2L) time complexity, where r ≤ a−1
√
a (note that a−1

√
a approaches 1 when a increases). This algorithm

has a linear time complexity in the number of jobs only when L is fixed; however, the complexity status of the problem

still remains open. Studying the identical problem, Baptiste (2010) showed that it can be solved by an algorithm in

O(v2v+5), where v ≤ (aL/(a−1))a
L/(a−1)

. For fixed a, L and b, his algorithm has an O(logn) time complexity, so is linear

in the number of jobs. This implies that the computational complexity of the identical problem still remains open for

arbitrary inputs a, L and b. Baptiste (2010) also showed that if all the processing times take integer values, then an

optimal schedule includes integer starting times.

Arbitrary delays make the problem hard to solve, even with UET tasks. Yu et al. (2004) showed the strong NP -

hardness of the two-machine flow shop scheduling problem with exact delays and UET tasks. Based on the NP -hardness

of the flow shop problem, they implied that the single-machine coupled task scheduling problem with UET tasks is also

strongly NP -hard.

Several studies develop approximation algorithms and ratios for special cases of the problem. For example, Ageev and

Kononov (2007) proposed an O(n logn) algorithm based on LPT(aj+Lj), and showed that it is a 3-approximation when

aj ≤ bj or bj ≤ aj , and a 2.5-approximation if aj = bj . Importantly, they proved that, for any ε > 0, the existence of a

(2−ε)-approximation algorithm for the problem implies P = NP , even if aj = bj . Ageev and Baburin (2007) studied the

case of UET tasks. They proposed an O(n logn) algorithm based on non-decreasing ordering of Lj , i.e., SPT(Lj), and

showed that it is a 1.75-approximation. Békési et al. (2009) later argued that there are some flaws in the approximation

algorithm of Ageev and Baburin (2007). They re-calculated the ratio as 28
19
≤ ρ ≤ 7

4
. Ageev and Ivanov (2016) studied

the case with equal delay, i.e., (aj , L, bj). They showed that the LPT(aj+Lj) algorithm leads to ratios of 2 when aj ≤ bj ,
and 1.5 when aj = bj . Also, they showed that the 2-approximation algorithm provides the same ratio for the identical

problem. In addition, for any ε > 0, the existence of a (1.25− ε)-approximation algorithm implies P = NP , even when

aj = bj . They proposed an O(n logn) constructive algorithm with a 3-approximation ratio.

Li and Zhao (2007) studied the special case where the initial and completion tasks, and the delay have the same

value for every job, i.e., (pj , pj , pj). For this case, denoted as the “stretched” case (Darties et al., 2016), they showed

that no two jobs can be interleaved, and that any schedule without forced idle time yields a makespan value that is no

greater than 1.5 times the optimal. For the problem with equal delays and equal completion tasks, i.e., (aj , L, b), they

concluded that no nesting is possible for any pair of jobs. They showed that a schedule with makespan at most three

times of the optimal one can be constructed in linear time.

3.1.2 Restrictions on the job sequence

Restrictions on the job sequence include precedence relationships, compatibility and fixed-job-sequences. In this section

we discuss research in each area.

Precedence constraints. Precedence constraints model jobs’ dependency, i.e., when a job is required to be processed

before another job. Precedence constraints are usually defined by using a precedence graph, which can be in a general

form, or in a special form such as a chain or a star. The coupled task problem with precedence constraints is usually

harder to solve. For example, while the problem with equal initial and completion tasks, and equal delay, i.e., (p, L, p),

is polynomially solvable (Orman and Potts, 1997), if precedence constraints are included, the problem is not necessarily

solvable in polynomial time.

Blazewicz et al. (2010) investigated the problem with UET tasks and two types of precedence constraints, namely

strict and weak precedence constraints. For two jobs j and j′, the strict precedence constraint Nj ≺ Nj′ (Nj precedes Nj′)

means bj ≺ aj′ , i.e., bj must be completed prior to the start of aj′ . On the other hand, the weak precedence constraint

Nj → Nj′ means aj ≺ aj′ and bj ≺ bj′ , i.e., aj must be completed prior to the start of aj′ and bj must be completed

prior to the start of bj′ . They showed that the problem with strict precedence constraints is NP -hard in the strong

sense, when L is arbitrary. However, for the special case where the delay duration is equal to two and the precedence

graph is an in/out-tree (the in-tree (out-tree) precedence constraints occur when every job has at most one immediate

successor (predecessor)), the problem can be solved in O(n) time. For this reason, they developed an algorithm that
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operates by utilizing the rule proposed by McNaughton (1959) for the parallel-machine scheduling problem.

Ecker and Tanaś (2012) studied the problem with UET tasks, equal delays, and strict precedence constraints in the

form of chains. Based on McNaughton’s rule, they proposed an algorithm that solves the problem in O(n logn) time if

L is a fixed constant. Blazewicz et al. (2012) studied a very special case of the problem where L = 4. They proposed a

greedy heuristic and an optimal algorithm with an O(n logn) time complexity. As a generalization of the two algorithms,

they presented an approximation algorithm that works for any L = 2r, r ∈ N, and runs in O(n logn) time. The solution

delivered by the approximate algorithm is at most L times worse than that of the optimal.

Compatibility constraints. Two jobs j and j′ are compatible if at least one of the tasks of either of jobs can be

processed during the idle time of the other job. Compatibility of jobs can be represented by a compatibility graph, in

which an edge is associated with every two compatible jobs. Simonin (2009) showed that the identical coupled task

problem with compatibility constraints is NP -hard.

Simonin et al. (2011b) showed that the identical problem can be solved in polynomial time if L < a + b. However,

it is NP -hard if L = a + b. They proposed a ρ-approximation algorithm, where ρ depends on the values of a and b

(a > b); however, 1.25 ≤ ρ ≤ 1.5. Simonin et al. (2011a) investigated the identical problem with precedence constraints,

incompatibility graph, and UET tasks. They considered equal delays for all the jobs and showed that the problem is

NP -hard when L ≥ 3. They presented an approximation algorithm with a ratio of L+6
6
− 1

2(L+2)
+ L+3

6n(L+2)
(it is trivial

though if L = 1). When L = 2, Simonin et al. (2013) studied the problem under the conditions of with and without

“triangles connectivity” in the compatibility graph. They showed that the problem is NP -hard under both conditions,

and presented a 10
9

( 13
12

)-approximation algorithm for the existence (lack) of triangles. Darties et al. (2016) studied the

case (pj , pj , pj) and denoted pj as the stretch factor of job j. They showed that the problem can be solved in O(n3) time

when the compatibility graph is a chain and it is NP -hard when the graph is a star. For the problem with a chain or a

2-stage bipartite compatibility graph, they proposed 7
6

and 13
9

-approximation algorithms (a 2-stage is a bipartite graph

that has three sets of disjoint nodes. The first set is disjoint, but connected to the second set, which itself is also disjoint

but connected to the third set).

Recently, Bessy and Giroudeau (2019) investigated the parameterized complexity of the coupled task scheduling

problem with compatibility constraints. Given a fixed due date d for all the jobs, the parameterized analysis includes

whether a schedule in which at least a fixed number of jobs are completely processed before d exists. They proved that

the problem is fixed-parameter tractable (FPT) when the total duration of every job, i.e., aj+Lj+bj , ∀j ∈ N , is bounded

by a constant, and also showed that the problem is W[1]-hard otherwise. Particularly, they showed that for every ζ ≥ 4,

where ζ is an upper bound on the total duration of a job, i.e., aj +Lj + bj ≤ ζ, an FPT algorithm exists for the coupled

task scheduling problem with a time complexity of 2O(k)n2ζ log2 n, where k ≤ n.

Fixed-job-sequence. Hwang and Lin (2011) studied the problem subject to a fixed-job-sequence (fjs), assuming weak

precedence constraints. Note that the problem with the fjs assumption and strict precedence constraints is trivial. They

argued that although fjs implies a preassigned job sequence, the problem remains a sequencing one due to the interleaving

jobs. They developed a procedure to construct a schedule for a given sequence, and showed that if such a sequence is

feasible, then the schedule has the minimum makespan among all the feasible sequences. The procedure also concludes

the infeasibility of a given sequence in O(n2) time. While the complexity status of the problem is open, they proposed

polynomial-time procedures for three special cases of the problem, namely (pj , pj , pj), (p, p, bj) and (p, L, p).

3.2 Cyclic scheduling

Ahr et al. (2004) investigated an interesting structure of the optimal schedule for the identical problem when the number

of jobs theoretically approaches infinity. They argued that an optimal schedule consists of three parts, namely an

“initial” segment, followed by a certain number of repetition of cycles (the “middle” part), and a “finishing” segment.

They stated that the middle segment repetitions must contain the minimum mean cycle, i.e., the cycle with the smallest

mean weight value. For the special case where b = 1, they conjectured a formula for the minimum mean cycle time. They

also presented optimal ratios and mean cycle times for certain small instances. This motivates Brauner et al. (2009)

to link the problem to a class of cyclic production scheduling problems, namely the one-machine no-wait robotic cell

problem. They showed that minimizing the makespan for the single-machine identical coupled task scheduling problem

is equivalent to maximizing the throughput rate in a one-machine no-wait robotic cell with the characteristics of having

an input station, an output station and one machine. Raw material and finished products can be stored in input and

output stations with infinite capacity. Any number of products can be treated simultaneously by the machine. A single

transporter that has unit capacity carries materials between stations and the machine. To obtain a production pattern,

they adapted the algorithm of Ahr et al. (2004).

Lehoux-Lebacque et al. (2015) continued work on the identical problem in the cyclic case. They considered the

objective function of maximizing the throughput, i.e., T (C)
N(C)

, where T (C) is the cycle time and N(C) is the number of
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tasks in the cycle C. It should be noted that maximizing the throughput is equivalent to minimizing the mean cycle time

(N(C)
T (C)

). They studied the problem for a > b, as for b > a the reverse property holds and for a = b it is trivial. Likewise,

the condition L > a + b is imposed; otherwise, the optimal cycle can be easily obtained. They studied all the possible

patterns that may occur in a cycle, and presented an algorithm with a time complexity of O((logL)2) to find the optimal

cycle. In addition, considering β = b L
a+b
c, if L− β(a+ b) ≤ a, the optimal mean cycle is the triple (a, L−β(a+b)

β+1
, b), i.e.,

the mean cycle consists of one initial task a, an idle time, which is equal to L−β(a+b)
β+1

, and one completion task b. Such

results let them arrive at the conjectures of Ahr et al. (2004). The results of Lehoux-Lebacque et al. (2015) enable the

finding of the optimal schedule for the middle segment when n is very large. However, obtaining the optimal schedule

for the initial and finishing segments is not trivial.

Table 4 summarizes the reviewed studies and their results for the single-machine coupled task scheduling problem.
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Table 4: Summary of of the reviewed literature on the single-machine coupled task scheduling problem.

Problem Complexity and solution approach Comment Reference

1|β|Cmax, where β is:

(aj , Lj , bj) NP -hard, nesting and interleaving heuristics Experiments with simulated data Shapiro (1980)

Strongly NP -hard, mathematical formulations Also holds for weighted model with
∑
j∈N wj , experiments

with normal data

Sherali and Smith (2005)

3.5-approximation algorithm with LPT(aj+Lj)
O(n logn) Ageev and Kononov (2007)

Tabu search algorithm Experiments with uniform data Li and Zhao (2007)

Strongly NP -hard even if the sequence for initial tasks is given,

tabu search algorithm

Experiments with uniform data Condotta and Shakhlevich (2012)

B&B algorithm Experiments with uniform and normal data Békési et al. (2014)

(aj = Lj = bj) Strongly NP -hard Also holds for (aj , Lj = bj), (aj = bj , Lj), (aj = Lj , bj) Orman and Potts (1997)

(aj , L, b) Strongly NP -hard Also holds for (a, Lj , b), (a, L, bj), (aj , Lj , b), (a, Lj , bj),

(aj , L, bj)

Orman and Potts (1997)

(p, Lj , p) Strongly NP -hard Also holds for (a, Lj , b) Orman and Potts (1997)

(p, p, bj) Optimal with a constructive algorithm O(n), also holds for (aj , p, p) Orman and Potts (1997)

(p, L, p) Optimal with a constructive algorithm O(n), also holds for (a, p, p), (p, p, b) and (p, p, p) Orman and Potts (1997)

(a, L, b) Open problem for arbitrary a, b and L Orman and Potts (1997)

O(nr2L) algorithm, where r ≤ a−1
√
a Linear in n if L is fixed, experiments with random data Ahr et al. (2004)

O(logn) algorithm Linear in n if a, b and L are fixed Baptiste (2010)

2-approximation algorithm with LPT(aj+Lj)
O(n logn) Ageev and Ivanov (2016)

(aj ≥ bj , Lj) 3-approximation algorithm with LPT(aj+Lj)
O(n logn), also holds for (aj ≤ bj , Lj) Ageev and Kononov (2007)

(aj = bj , Lj) 2.5-approximation algorithm with LPT(aj+Lj)
O(n logn) Ageev and Kononov (2007)

(2-ε)-approximation algorithm implies P = NP Ageev and Kononov (2007)

(1, Lj , 1) ρ-approximation algorithm, where 28
19
≤ ρ ≤ 7

4
Békési et al. (2009)

Experiments with uniform data Békési et al. (2014)

(aj , L, bj) 3-approximation algorithm with a constructive heuristic O(n logn) Ageev and Ivanov (2016)

(aj ≤ bj , L) 2-approximation algorithm with a constructive heuristic O(n logn) Ageev and Ivanov (2016)

(aj = bj , L) 1.5-approximation algorithm with a constructive heuristic O(n logn) Ageev and Ivanov (2016)

(1.25-ε)-approximation algorithm implies P = NP Also holds for (aj ≤ bj , L) and (aj , L, bj) Ageev and Ivanov (2016)

(pj , pj , pj) 1.5-approximation algorithm with any feasible schedule Li and Zhao (2007)

(aj , L, b) 3-approximation algorithm with a constructive heuristic Li and Zhao (2007)

1|β, prec|Cmax, where β is:

(1, L, 1) Strongly NP -hard L is a part of input Blazewicz et al. (2010)

(1, 2, 1), in/out− tree Optimal with a constructive algorithm O(n) Blazewicz et al. (2010)

(1, L, 1), chain Optimal with an algorithm based on McNaughton’s rule O(n logn) Ecker and Tanaś (2012)

(1, 4, 1), chain Greedy heuristic O(n logn) Blazewicz et al. (2012)

Optimal with an algorithm based on McNaughton’s rule O(n logn)

(1, 2r, 1), chain, r ∈ N An approximation algorithm based on McNaughton’s rule O(n logn), experiments with random data Blazewicz et al. (2012)

1|β,Gc|Cmax, where β is:

(a, L, b) NP -hard Also holds for (aj = Lj = bj) Simonin (2009)

(a, L, b), L < a+ b Optimal with a maximum matching O(r
√
n), where r is the number of edges in Gc Simonin et al. (2011a)

(a, L, b), L = a+ b NP -hard Simonin et al. (2011a)

1
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3a+2b
2a+2b

-approximation algorithm, 1.25 ≤ ρ ≤ 1.5 Upper bound decreases to 1+
√
3

2
for some special cases

(1, L, 1), L ≥ 3, prec NP -hard Optimal with a maximum matching when L = 1 Simonin et al. (2011b)
L+6
6
− 1

2(L+2)
+ L+3

6n(L+2)
-approximation algorithm

(1, 2, 1) 10
9

-approximation algorithm for Gc in presence of triangles 13
12

-approximation algorithm for Gc in lack of triangles Simonin et al. (2013)

(pj , pj , pj), chain O(n3) Darties et al. (2016)

(pj , pj , pj), star NP -hard Also holds for 2-stage bipartite Gc Darties et al. (2016)
7
6

-approximation algorithm Also 13
9

-approximation algorithm for 2-stage bipartite Gc Darties et al. (2016)

k − parameterized, d FPT with 2O(k)n2ζ log2 n time when ζ-bounded with ζ ≥ 4 W[1]-hard otherwise Bessy and Giroudeau (2019)

1|β, fjs|Cmax, where β is:

(aj , Lj , bj) Optimal or showing infeasibility O(n2) Hwang and Lin (2011)

(pj , pj , pj) Optimal with a constructive algorithm O(n) Hwang and Lin (2011)

(p, p, bj) Optimal with a forward dynamic programming O(n) Hwang and Lin (2011)

(p, L, p) Optimal with a constructive algorithm O(n), symmetric to 1|(p, L, p)|Cmax Hwang and Lin (2011)

1
1



4 The shop scheduling problem

Almost all the published studies on the coupled task scheduling problem in the shop environment are conducted in the

flow shop context. Therefore, we discuss the flow shop environment in this section. In Sections 4.6 and 4.7, we present

research in other shop scheduling environments.

The classical flow shop scheduling problem includes a set N of jobs to be processed on a set M of different machines.

Job j consists of a set of m tasks (operations) to be processed in the “same” sequence on the m machines.

The coupled task scheduling in the flow shop environment deals with the situation in which there are “exact” delays

between every pair of consecutive tasks of a job. All the tasks have known processing times and all the delays have

known durations. In addition, the delay durations are strict, i.e., once the delay period is elapsed, the processing of the

next task must immediately start. No two tasks can be processed at the same time on one machine and preemption is

not allowed. However, tasks of other jobs can be processed during the delay period. Figure 6 shows a schematic of the

m-machine flow shop coupled task scheduling problem.

Figure 6: Schematic of the m-machine flow shop coupled task scheduling problem.

The flow shop coupled task problem is a generalization of the no-wait flow shop scheduling problem. In other words,

the no-wait flow shop problem is a special case of the flow shop coupled task problem, where Lkj = 0,∀k ∈M\{m}, j ∈ N .

Recall that in the no-wait flow shop, once the processing of a job is started, its tasks must be processed on all the machines

(from the first to the last) without any interruption. Next, we review research in the context of the flow shop coupled

scheduling problem according to the performance criterion. The major performance criteria adopted in the literature

include the makespan, total completion time, maximum lateness and earliness and tardiness.

4.1 Makespan

The problem of minimizing the makespan in a two-machine flow shop, i.e., F2||Cmax, is one of the first and well studied

scheduling problems. Johnson (1954) proposed an O(n logn) algorithm to find the optimal schedule for the problem,

which is a permutation one. A permutation schedule is any schedule in which the processing orders of the jobs on all

the m machines are the same. For the same two-machine problem with exact delays, i.e., F2|Lj |Cmax, there exists an

optimal schedule, which is also a permutation one, if all the delays are equal, i.e., Lj = L, and the optimal schedule is

obtained in O(n logn) time (Leung et al., 2007). However, they did not discuss how the algorithm works. We observe

that the algorithm proposed by Gilmore and Gomory (1964) for the two-machine no-wait flow shop problem is optimal

for F2|Lj = L|Cmax as well. This is because in any sequence for F2|Lj = L|Cmax, the delay duration of the first job

leads to shifting the completion task of all the jobs forward, i.e., C
Lj=L

j = Cno-wait
j + L. Moreover, there is no job that

can be swapped in order to use this delay duration because all the jobs have an identical delay. Hence, the optimal

solution for the no-wait case yields the optimal solution for the problem F2|Lj = L|Cmax, where C
Lj=L
max = Cno-wait

max +L.

However, the problem is not trivial if arbitrary delays are considered. For example, Yu et al. (2004) showed that even

if two distinct values are considered for the delays, then the two-machine flow shop coupled task problem to minimize the

makespan is strongly NP -hard. This result holds even for the case with UET tasks. It should be noted that the optimal

schedule for the problem with arbitrary delays is not necessarily a permutation one. Leung et al. (2007) discussed an

example for this, which is shown in Figure 7. For two jobs N1 = (1, 8, 1) and N2 = (2, 1, 3), the figure shows that the

optimal makespan is 10. However, the makespan of the best permutation schedule is 12.

Figure 7: An example showing that the optimal schedule for F2|Lj |Cmax is not necessarily a permutation one.

Leung et al. (2007) also presented a simple lower bound for F2|Lj |Cmax as follows:
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C∗max ≥ max
{
Pa, Pb,max

j∈N
{aj + Lj + bj}

}
, (2)

where Pa =
∑
j∈N aj and Pb =

∑
j∈N bj .

For the m-machine case Fm|Lj |Cmax, Hamdi and Loukil (2017) proposed a lower bound as follows:

C∗max ≥ max
k∈M\{m}

{ ∑
j∈N

pkj +
∑

k′∈M\{m}

min
j∈N
{pk′j + Lk′j}

}
. (3)

The lower bound indicates that the minimum completion time of a machine is equal to the sum of its workload (all

the processing times) plus its earliest starting time, i.e., when at least one task is finished on the preceding machine and

the delay after that task is elapsed.

For the two-machine flow shop coupled task problem, Ageev and Kononov (2007) presented a two-phase algorithm.

The first phase sequences the jobs in SPT(aj+Lj). The second phase constructs the schedule for that sequence. They

showed that this simple algorithm provides a 3-approximation ratio for the problem, and that the ratio is relatively small

because, for any ε > 0, the existence of a (1.5 − ε)-approximation algorithm for the problem implies P = NP , even if

aj = bj . They discussed the same algorithm that provides a 2-approximation ratio for the special case where aj ≤ bj or

bj ≤ aj . The algorithm can be implemented in O(n logn) time.

Ageev and Baburin (2007) proposed a two-phase algorithm for the two-machine flow shop coupled task problem with

UET tasks. Here, the first phase includes sequencing the jobs in SPT(Lj). They showed that the algorithm provides a

1.5-approximation ratio for the problem, and has a time complexity of O(n2 logn). They did not analyze the tightness

of the ratio, which remains as an open question. Both of the algorithms of Ageev and Kononov (2007) and Ageev and

Baburin (2007) are essentially the same when UET tasks are considered because aj = 1, ∀j ∈ N , and sequencing the jobs

in SPT(aj+Lj) leads to the same order obtained by SPT(Lj). To conclude, for the two-machine flow shop coupled task

problem, sorting the jobs in SPT(aj+Lj) leads to a 3-approximation algorithm for the general case, to a 2-approximation

when aj ≤ bj or bj ≤ aj , and to a 1.5-approximation when aj = bj = 1.

A common assumption in scheduling research is that the processing times take positive integers. Leung et al. (2007)

considered a variant in which at least one positive task is given for every job. In other words, there may be jobs with

only one positive task. For convenience, we use F g to denote this variant and F to denote the classical case. It should

be noted that F g is a generalization of F . In their study, if one of the tasks of a job has zero processing time, the delay

of the job also has a zero value. On the other hand, if the delay duration of a job takes a non-zero value, both tasks of

the job have positive processing times. However, there might be a job with positive processing times for its two tasks

and a zero-duration delay.

Leung et al. (2007) showed that the problem F2g|Lj ∈ {λ1, λ2}|Cmax, i.e., where the delay can only take two values, is

strongly NP -hard because the F g variant of the two-machine no-wait flow shop problem is strongly NP -hard (Sahni and

Cho, 1979). They proposed a 3-approximation algorithm, which is applicable to the F2 and F2g problems in O(n logn)

time. The algorithm sequences the jobs in SPT(Lj) and then obtains the schedule for the sequence. They showed that

when aj ≥ bj , sequencing the jobs in SPT(aj+Lj) leads to a 2-approximation algorithm. The same argument applies to

the F2g variant. Likewise, sequencing the jobs in LPT(Lj+bj) provides a 2-approximation algorithm for the case aj ≤ bj ,
for both the F and F g variants. They showed that the ratios are tight. Recently, Ageev (2019) developed an O(n logn)-

time 2-approximation algorithm for F2|Lj ∈ {λ1, λ2}|Cmax, and showed that the existence of a (1.25− ε)-approximation

algorithm for the problem implies P = NP , if λ1 = 0.

4.2 Total completion time

Leung et al. (2007) studied the flow shop coupled task problem to minimize the total completion time. They applied

the NP -hardness of the two-machine no-wait flow shop scheduling problem to minimize the total completion time

(Röck, 1984) to imply that the following two-machine problems are strongly NP -hard: (1) the F variant with equal

delays and (2) the F g variant with arbitrary delays.

They observed that a schedule is optimal if (1) the initial tasks are scheduled in non-decreasing order, and from time

zero with no idle time between them, or (2) the completion tasks are scheduled in non-decreasing order, and from time

minj∈N{aj + Lj} with no idle time between them. Based on these observations, they proposed a lower bound on the

total completion time on two machines. Let a1 ≤ a2 ≤ · · · ≤ an denote the processing times of the tasks on the first

machine, sorted in non-decreasing order of the values. Similarly, let b1 ≤ b2 ≤ · · · ≤ bn denote the processing times

of the tasks on the second machine, again sorted in non-decreasing order of their values. Let P ′a =
∑
i∈N (n − i + 1)ai

P ′b =
∑
i∈N (n− i+ 1)bi and L′ =

∑
j∈N Lj , and the lower bound is as follows:

C∗ ≥ max
{
P ′a + L′ + Pb,min

j∈N
{aj + Lj}+ P ′b

}
, (4)

where C∗ is the optimal value of the total completion time.
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Another interesting result of their study includes generating an optimal schedule for a special case of the F variant

where aj = a, bj = b, and a ≥ b by sequencing the jobs in SPT(Lj). This algorithm, however, is not optimal if a < b and

provides a 2-approximation ratio instead.

Huo et al. (2009) provided the major results for the total completion time criterion. They studied the permutation

version of the flow shop coupled task problem. They showed that, as for the makespan minimization criterion, the

optimal schedule for the two-machine flow shop to minimize the total completion time is not a permutation schedule.

This can be shown by the following example. Consider three jobs N1 = (1, 5, 3), N2 = (1, 9, 2) and N3 = (3, 3, 3), where

a non-permutation schedule generates the minimum total completion time of 35, whereas that of a permutation one is

38. They argued that forced idle time will never improve a permutation schedule under arbitrary delays. Therefore,

they assumed no forced idle time in any feasible schedule for the problem. Because any feasible schedule for the two-

machine no-wait flow shop scheduling problem, which itself is NP -hard, is a permutation schedule, they implied that

the permutation flow shop coupled task problem is strongly NP -hard.

They investigated several special cases as well. For the first case, let the jobs be ordered in such a way that aj ≤ aj+1.

If aj+1 + Lj+1 ≥ Lj + bj for all 1 ≤ j ≤ n − 1, the problem is optimally solved by sequencing the jobs in SPT(aj).

For the second case, assume that the jobs are ordered in such a way that bj ≤ bj+1. If a1 + L1 = minj∈N{aj + bj}
and aj+1 + Lj+1 < Lj + bj for all 1 ≤ j ≤ n − 1, the problem is also optimally solved by sequencing the jobs in

SPT(bj). The third case is when maxj∈N aj ≤ minj′∈N bj′ , Lj = L, ∀j ∈ N , which is also polynomially solvable by

a SPT(bj)-based algorithm that obtains the minimum total completion time from a total of n schedules. Finally, for

F2|perm,Lj , aj = a, bj = b|
∑
Cj , sequencing the jobs in SPT(aj+Lj+bj) is optimal. The same rule also leads to an

optimal solution for F2|perm,Lj = L, aj′ < aj ⇒ bj′ < bj |
∑
Cj .

Huo et al. (2009) proposed two meta-heuristics, namely simulated annealing (SA) and tabu search (TS), for the

general case of the problem. According to the computational results, SA performs slightly better than TS in terms of

both solution quality and computing time. In addition, they showed that a greedy heuristic, which inserts the jobs one

by one such that the completion time of the inserted job has the smallest value, performs better than sorting the jobs in

non-decreasing order of any of the following: aj , bj , aj + Lj , Lj + bj and aj + Lj + bj .

It should be noted that the problem to minimize the total completion time is computationally less demanding than

that to minimize the makespan. For example, F2|Lj , aj = a, bj = b, a ≥ b|
∑
Cj and so F2|Lj , aj = bj |

∑
Cj are

polynomially solvable; but F2|Lj , aj = bj = 1|Cmax is NP -hard.

4.3 Maximum lateness

Fondrevelle et al. (2009) studied the m-machine flow shop coupled task problem to minimize the maximum lateness.

They considered the problem in the permutation setting, finding that permutation schedules are not dominating even if

only one job has a delay greater than 0.

They defined the lateness of a job based on its completion time on any machine k < m and distinguished three different

forms of the jobs. They presented a special case of the problem for which the earliest due date (EDD) dispatching rule

provides the optimal schedule. In addition, they developed several dominance rules for the two-machine problem and

proposed a B&B algorithm. They used the well-known algorithm of Nawaz, Enscore and Ham (NEH) (Nawaz et al., 1983)

to build upper bounds, and the EDD rule and an extension of the algorithm of Gilmore and Gomory (1964) (for the

no-wait flow shop problem) to generate lower bounds.

4.4 Earliness and tardiness penalties

Hamdi and Loukil (2017) considered permutation schedules for the flow shop coupled task problem to minimize the total

earliness and tardiness penalties. They proposed three mathematical programming formulations, namely completion

time-based, idle time-based and starting time-based. They also discussed three lower bounds. The first is a linear

relaxation bound and the second one is calculated by summing two bounds on the values of total earliness and tardiness.

The third bound is obtained by relaxing the processing times and delays of the jobs. Also, they used simple sequencing

rules to produce upper bounds.

4.5 Other variants of the flow shop coupled task scheduling problem

As reviewed, the flow shop coupled task scheduling problem with an exact delay period between every two consecutive

tasks is an important variant. In this section we discuss two additional variants with exact delays in the flow shop

environment.

Two-machine flow shop problem with coupled tasks on the first machine. Meziani et al. (2018) studied

the two-machine flow shop problem to minimize the makespan, in which the coupled tasks with an exact delay are

only considered on the first machine. Specifically, every job consists of three tasks, two coupled tasks on the first
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machine, followed by a single task on the second machine. The processing times of the tasks of job j are represented

by (aj , Lj , bj , cj), in which aj and bj are the coupled tasks with an exact delay Lj between them, and cj represents the

third task. The task on the second machine can start if the tasks on the first machine are finished. Figure 8 shows a

schematic presentation of this problem. It should be noted that the problem is NP -hard because the one on the first

machine is NP -hard. Meziani et al. (2018) observed that the makespan is at least equal to (1) the sum of all the tasks

on M1 plus at least one task on M2, (2) the smallest job on M1 plus the sum of all the tasks on M2, (3) a lower bound

on M1, where bj = 0, ∀j ∈ N , plus at least one task on M2 and (4) a lower bound on M1, where aj = 0, ∀j ∈ N , plus at

least one task on M2. Based on these observations, they proposed a lower bound for the problem as follows:

LB = max
{ ∑
j∈N

(aj + bj) + min
j∈N

cj ,min
j∈N
{aj + Lj + bj}+

∑
j∈N

cj ,

∑
j∈N

aj + min
j∈N

Lj + min
j∈N

cj ,
∑
j∈N

bj + min
j∈N

Lj + min
j∈N

cj
}
.

(5)

Figure 8: Schematic of the two-machine flow shop problem with coupled tasks on the first machine, and a single task on
the second machine.

They also proposed four SPT- and LPT-based heuristics and two meta-heuristics, namely particle swarm optimization

(PSO) and simulated annealing (SA). They further designed a hybrid algorithm, in which SA guides PSO to avoid being

trapped in low-quality local optima. The performance of the proposed algorithms evaluated on a series of problem

instances confirms the superiority of the hybridized algorithm.

Meziani et al. (2019) extended their previous study and examined the complexity status of several cases. For ex-

ample, they proved the NP -hardness of the cases (aj , p, p, cj) and (p, p, bj , cj). For the cases (a, p, p, cj), (p, p, b, cj) and

(p, L, p, cj), they proposed optimal solutions by extending the algorithm of Johnson (1954), which has an O(n logn) time

complexity. They also proposed an O(n2 logn)-time algorithm, by modifying the algorithm of Mitten (1959), to solve

the cases (aj , p, p, cj) and (p, p, bj , cj).

The chain re-entrant flow shop problem. Amrouche and Boudhar (2016) studied a variant in which the coupled

tasks are considered in the re-entrant flow shop scheduling environment. In the re-entrant flow shop problem, the jobs

may visit any machine more than once. There are various types of the re-entrant shop, such as the chain re-entrant and V -

shop. In the chain re-entrant problem, the jobs visit M1, followed by the rest of the m−1 machines, and return back to M1

for their terminating task. In the V -shop problem, the jobs follow the route M1,M2, . . . ,Mm−1,Mm,Mm−1, . . . ,M2,M1.

Note that for the two-machine flow shop, the chain re-entrant and V -shop are identical. Amrouche and Boudhar (2016)

studied the two-machine chain re-entrant problem to minimize the makespan, i.e., the jobs pass from the first machine

to the second one, and return to the first machine; in other words, in the order M1,M2,M1. Here, the processing times

of the tasks of job j can be represented by the triple (aj , bj , cj), where aj and cj are processed on the first machine and

bj is processed on the second machine. We call this problem the “Ch-R”. Figure 9 illustrates this.

Figure 9: The two-machine chain re-entrant flow shop coupled task problem.

First, they considered an equal delay, i.e., Lj = L, between two tasks of every job on the first machine, i.e., between

the completion of aj and start of cj . They showed that even aj = cj = p leads to a strongly NP -hard problem. Therefore,

the general form of the problem is also strongly NP -hard. They showed that the special case where aj >
L
2
, cj >

L
2

reduces to the maximum weight matching problem, so is solvable in O(n2.5) time. They also showed that the case where

bj = Lj = L ≥ aj + cj is polynomially solvable.

Amrouche et al. (2017) showed that when the delay is equal to the processing time of the task on the second machine,

i.e., bj = Lj , the problem is NP -hard in the strong sense. In addition, they showed that the special case of the problem
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where bj = Lj = L, aj + cj > L reduces to the maximum weight matching problem, so is solvable in O(n2.5) time. The

case where aj = a ≥ cj and bj + bj′ ≤ 2a = Lj is also polynomially solvable. For the special case with identical delays,

i.e., Lj = L, ∀j ∈ N , they proposed a heuristic procedure with nine job arrangement rules. Eight rules include sorting

the jobs in non-increasing and non-decreasing order of aj , bj , cj and aj + cj . The ninth one is a heuristic that generates

the schedule with some best fitted batches of the jobs, where each batch consists of a subset of interleaving jobs, and a

union of all the batches form a complete solution. Their experiments concluded that both the heuristic and sequencing

rule in non-increasing order of aj + cj perform the best.

Liu et al. (2017) extended the setting of Amrouche and Boudhar (2016) and modeled the time-in-use electricity

prices for energy consumption as a bi-criteria re-entrant flow shop. They investigated the two objective functions of

minimizing the makespan and minimizing the total energy consumption. They developed a mathematical formulation

and proposed two solution methods, namely ε-constraint and non-dominated sorting genetic algorithm II (NSGA II).

They only presented the optimal Pareto front for one small example and conducted no computational experiments to

assess the performance of the solution methods.

4.6 The job shop problem

The classical job shop scheduling problem includes a set N of jobs to be processed on a set M of different machines.

Each job has a pre-specified processing order on the machines. The job shop coupled task scheduling problem is similar

to its flow shop counterpart with the only difference that each job has its own pre-specified order in which its tasks are

processed on the machines.

Gröflin and Klinkert (2007) first considered the job shop coupled task scheduling problem. They studied the optimal

job insertion in the job shop environment, where the delays can also take negative values, and the objective is to minimize

the makespan. The insertion issue arises when additional tasks or jobs are inserted into a given schedule. They showed

that the job insertion problem is NP -hard in the classical job shop environment; however, it is polynomially solvable in

the job shop coupled task setting.

Bürgy and Gröflin (2013) studied a similar job insertion problem, where sequence-dependent setup times between con-

secutive tasks on a machine are present. They proposed an O(n2 max{n,m})-time algorithm to solve the problem. They

also developed a heuristic based on their optimal job insertion algorithm. Later, Bürgy and Gröflin (2017) generalized

their earlier results to the case of minimizing a general regular objective function.

4.7 The open shop problem

The classical open shop scheduling problem includes a set N of jobs to be processed on a set M of different machines. Job

j consists of m tasks, which can be processed in any order on the m machines. The open shop coupled task scheduling

problem is similar to its flow shop counterpart with the only difference that the order in which the tasks of a job are

processed on the machines is immaterial, i.e., it may be chosen by the scheduler.

Ageev (2018) argued that because the open shop problem is a generalization of the no-wait environment, and in view

of the NP -hardness of the two-machine no-wait open shop problem (Giaro, 2001), the two-machine open shop coupled

task problem with exact delays is therefore NP -hard. By using the Partition problem, they proved that the existence

of a (1.5− ε)-approximation algorithm for the special case where aj = bj implies P = NP , for any ε > 0. They further

showed that when the delays can take only two values, there is no approximation algorithm with a ratio better than

(1.5− ε) for any ε > 0.

Table 5 summarizes the major results for the shop coupled task scheduling problem.
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Table 5: Summary of the reviewed literature on the shop coupled task scheduling problem.

Problem Complexity and solution approaches Comment Reference

F2|β|Cmax, where β is:

(aj , Lj , bj) Strongly NP -hard Yu et al. (2004)

3-approximation algorithm with SPT(aj+Lj)
O(n logn) Ageev and Kononov (2007)

3-approximation algorithm with SPT(Lj)
O(n logn), also applicable to F2g Leung et al. (2007)

(aj , Lj ∈ {λ1, λ2}, bj) Strongly NP -hard Holds for F2g Leung et al. (2007)

2-approximation algorithm (1.25-ε)-approximation algorithm im-

plies P = NP if λ1 = 0

Ageev (2019)

(aj ≤ bj , Lj) 2-approximation algorithm with LPT(Lj+bj)
, (likewise, SPT(aj+Lj)

for (aj ≥ bj , Lj) O(n logn), applicable to F2g Leung et al. (2007)

2-approximation algorithm with SPT(aj+Lj)
O(n logn) Ageev and Kononov (2007)

(aj = bj , Lj) (1.5-ε)-approximation algorithm implies P = NP Ageev and Kononov (2007)

(1, Lj , 1) Strongly NP -hard Yu et al. (2004)

1.5-approximation algorithm with SPT(Lj)
O(n logn) Ageev and Baburin (2007)

(aj , L, bj) Optimal with algorithm of Gilmore and Gomory (1964) O(n logn) Leung et al. (2007)

(Ch−R, bj ≤ L) Strongly NP -hard Holds for the case aj = cj = p Amrouche and Boudhar (2016)

(Ch−R, aj ≥ L
2
, cj ≥ L

2
, Lj = L) Optimal with a maximum weight matching algorithm O(n2.5) Amrouche and Boudhar (2016)

(Ch−R, bj = Lj = L, aj + cj ≤ L) Optimal with a constructive algorithm Polynomial Amrouche and Boudhar (2016)

(Ch−R, bj = Lj) Strongly NP -hard Experiments with uniform data Amrouche et al. (2017)

(Ch−R, bj = Lj = L, aj + cj > L) Optimal with a maximum weight matching algorithm O(n2.5) Amrouche et al. (2017)

(Ch−R, aj = a, bj + bj′ ≤ 2a, cj ≤ a, Lj = 2a) Optimal with a constructive algorithm O(n logn) Amrouche et al. (2017)

(aj , Lj , bj , cj) PSO, SA, SA+PSO Experiments with uniform data Meziani et al. (2018)

(aj , p, p, cj) NP -hard Holds for (p, p, bj , cj) Meziani et al. (2019)

(a, p, p, cj) Optimal with a constructive algorithm O(n logn), holds for (p, p, b, cj);

(p, L, p, cj)

Meziani et al. (2019)

(aj , p, p, c) Optimal with a constructive algorithm O(n2 logn), holds for (p, p, bj , c) Meziani et al. (2019)

F2|β|
∑
Cj , where β is:

(aj , Lj , bj) Strongly NP -hard Holds for F2g Leung et al. (2007)

(aj , L, bj) Strongly NP -hard Leung et al. (2007)

(a, Lj , b, a ≥ b) Optimal with SPT(Lj)
O(n logn) Leung et al. (2007)

(a, Lj , b, a < b) 2-approximation algorithm with SPT(Lj)
O(n logn) Leung et al. (2007)

(aj , Lj , bj), perm Strongly NP -hard Experiments with uniform data Huo et al. (2009)

(aj ≤ aj+1 ⇒ (aj+1 +Lj+1) ≥ (Lj + bj)), perm Optimal with SPT(aj)
O(n logn) Huo et al. (2009)

(bj ≤ bj+1 ⇒ (a1 + L1) = minj∈N{aj +

Lj}, (aj+1 + Lj+1) < (Lj + bj)), perm

Optimal with SPT(bj)
O(n logn) Huo et al. (2009)

(maxj∈N aj ≤ minj′∈N bj′ , L), perm Optimal with a variant of SPT(bj)
O(n2 logn) Huo et al. (2009)

(a, Lj , b), perm Optimal with SPT(aj+Lj+bj)
O(n logn) Huo et al. (2009)

(L, aj′ < aj ⇒ bj′ < bj), perm Optimal with SPT(aj+Lj+bj)
O(n logn) Huo et al. (2009)

Problems with other objective functions:

Fm|perm,Lj |Lmax B&B algorithm Experiments with uniform data Fondrevelle et al. (2009)

Fm|perm,Lj |
∑

(Ej + Tj) Mathematical programming formulations Experiments with uniform data Hamdi and Loukil (2017)

F2|Ch−R, bj ≤ Lj = L|Cmax, TEC ε-constraint method, NSGA II Liu et al. (2017)

Job shop and open shop results:

1
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Jm|Lj ∈ Z, STsd|Cmax Heuristic based on optimal job reinsertion Bürgy and Gröflin (2013)

Jm|Lj ∈ Z, STsd|f Heuristic based on optimal job reinsertion Bürgy and Gröflin (2017)

O2|(Lj , aj = bj)|Cmax (1.5-ε)-approximation algorithm implies P = NP Ageev (2018)

O2|(aj , Lj ∈ {λ1, λ2}, bj)|Cmax (1.25-ε)-approximation algorithm implies P = NP Ageev (2018)
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5 Benchmark instances

To the best of our knowledge, there are no published benchmark instances for the coupled task scheduling problem.

Several studies, however, generated their own instances to evaluate their proposed algorithms. Often, those instance

generation schemes include small- and medium-sized instances, and they may only be applicable to certain special cases.

Also, because previously generated instances were not published in the literature, there is a demand for standard test

beds; particularly, for evaluation and comparison purposes. Therefore, we propose comprehensive sets of instances for

the coupled task scheduling problem, and for both the single-machine and shop environments. Our instance generation

scheme incorporates various conditions on the jobs and machines, including number of jobs, values for the processing

times and delays, and the machine setting. Our sets also include instances for special cases. Next, we review the previous

instance generation schemes and then propose standard benchmark instances for the coupled task scheduling problem.

5.1 Previous instance generation schemes

The first instance generation scheme is due to Shapiro (1980). He generated a set of problem instances by simulating a

radar process. The instances set includes a total number of 250 instances with 20 to 500 jobs, where the task processing

times are in the range of 10 and 100, and the delay durations in the range of 300 and 1,300. Ahr et al. (2004); Li and

Zhao (2007); Brauner et al. (2009); Blazewicz et al. (2012) adopted a similar approach, i.e., taking values from a discrete

uniform interval.

The instances in Sherali and Smith (2005) consist of 8 to 14 jobs, with aj taken from the normal distribution with

a mean of 30 time units and a standard deviation of 5 time units, i.e., N(30, 5). Likewise, bj and Lj are taken from

N(120, 30) and N(600, 100), respectively. Condotta and Shakhlevich (2012) defined three types of delay in their instance

generation. In the first type, the delays are in a small range, while in the second and third types, the delays take

considerably different values. In a set of data in Békési et al. (2014), aj and bj take values in the range of 1 and 100,

and the values of Lj are generated such that the jobs are perfectly “fitted”, i.e., the jobs can be scheduled in such a way

that the makespan is at most one unit greater than the trivial lower bound Pa + Pb.

Considering the studies in the shop setting, the discrete uniform distribution is used by all the works with a data

generation scheme, including Huo et al. (2009); Fondrevelle et al. (2009); Hamdi and Loukil (2017); Amrouche et

al. (2017); Meziani et al. (2018).

As Tables 6 and 7 show, the previous studies generate different instances in order to evaluate their proposed methods.

To the best of our knowledge, none of those instances are available. Instead, the instance generation scheme is designed

and discussed in those studies, which are not useful for comparing various algorithms and solution methods, because even

the same instance generation scheme may lead to different values, e.g., (aj , Lj , bj), so different instances. To overcome

the limitation, we propose a complete set of benchmark instances for the coupled task scheduling problem, which is

available online in the Mendeley data repository at http://dx.doi.org/10.17632/dd7ht5k5pn.1. Section 5.2 explains

the procedure and the generated instances for the single-machine problem and Section 5.3 discusses those for the shop

setting.
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Table 6: Characteristics of the data sets proposed in previous studies in the single-machine environment.
Study Job (aj , Lj , bj) Number of instances
Shapiro (1980) {20, 50, 100, 200, 500} ([10, 100], [300, 1300], [10, 100]) 250
Ahr et al. (2004) {1000, 2000} (aj = a ∈ [4, 10], Lj = L ∈ [10, 30], bj = b ∈ [2, 5]) 24
Sherali and Smith (2005) {8, 10, 12, 14} (N(30, 5), N(600, 100), N(120, 30)) 20
Li and Zhao (2007) {50, 100, 200, 500} ([1, 100], [1, 100], [1, 100]) 80
Condotta and Shakhlevich (2012) {20, 30, 50, 100} ([1, 100], three classes, [1, 100]): 400

Class 1: [0.9 α
2n

(Pa + Pb), 1.1
α
2n

(Pa + Pb)], α ∈ {1, n5 ,
n
5
}

Class 2: [1, α], α ∈ {5, 10, 25, 50}
Class 3: [1, α

2n
(Pa + Pb)], α ∈ {1, n5 ,

n
5
}

Brauner et al. (2009) Cyclic (5, Lj = L ∈ [10, 43], 3) 23
Blazewicz et al. (2012) {2, 3, . . . , 838} (1, 4, 1) 16569
Békési et al. (2014) {8, 9, 10, 11, 12, 20} ([1, 10], [1, 10], [1, 10]) 240

{7, 8, 9, 10, 11, 12} (1, [1, 10], 1)
{7, 8, 9, 10, 11, 12} (N(30, 5), N(600, 100), N(120, 30))
{7, 8, 9, 10, 11, 12} ([1, 100], “fitted” delays, [1, 100])

Table 7: Characteristics of the data sets proposed in previous studies in the flow shop environment.
Study Job Machine (pkj , Lkj) Number of instances
Huo et al. (2009) {20, 40, 60, 80, 100, 120} 2 ([1, 100], [1, 100]) 240
Fondrevelle et al. (2009) {14, 16} {2, 5} ([20, 50], several classes of delays) 130
Hamdi and Loukil (2017) {5, 10, 15, 20} {3, 5, 10} ([20, 50], [0, 100]) 480
Amrouche et al. (2017) {20, 50, 100, 200, 300, 500, 600, 700, 800, 1000} 2 Classes 1 to 6: aj , bj , cj ∈ ([1, 20], [20, 40] or [40, 60]), Lj = L = 60 8000

Class 7: aj , bj , cj ∈ [1, 40], Lj = L = 40
Class 8: aj , bj , cj ∈ [1, 40], Lj = L = 80

Meziani et al. (2018) {10, 30, 50, 100, 250, 500, 1000} 2 Classes 1 to 3: aj , bj , cj , Lj ∈ [1, 50] or, ∈ [50, 100], or ∈ [100, 150] 700
Class 4: aj , bj , Lj ∈ [100, 150] and cj ∈ [1, 50]
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5.2 The single-machine coupled task setting

We include two major factors to generate instances for the single-machine coupled task scheduling problem, namely

number of jobs and attributes of the jobs, i.e., values of (aj , Lj , bj). The instances with a small number of jobs may be

useful for evaluating exact solution methods (see, e.g., Sherali and Smith, 2005). A larger number of jobs are needed

for evaluating heuristic algorithms. Therefore, we consider the following set {5, 10, 15, 20, 25, 40, 50, 100} for the number

of jobs. The previous studies investigate different ranges for the durations of the jobs, e.g., 2 and 10 (Ahr et al., 2004;

Békési et al., 2014), as well as 1 and 100 (Li and Zhao, 2007; Condotta and Shakhlevich, 2012). To be inclusive, we

investigate jobs with small, medium and large durations, where the values of (aj , Lj , bj) are randomly generated from

the discrete uniform distribution in the ranges as follows:

• Small jobs: aj , bj ∼ U(1, 20), Lj ∼ U(10, 80)

• Medium jobs: aj , bj ∼ U(1, 50), Lj ∼ U(25, 200)

• Large jobs: aj , bj ∼ U(1, 100), Lj ∼ U(50, 400)

Given eight values for the number of jobs and three alternatives for their sizes, we have a total of 24 combinations.

Generating ten instances for each combination will result in a set with 240 instances. In other words, per each number

of jobs, i.e., n, 30 instances are generated, where every ten instances have the same characteristics as discussed above.

We name this set the “general set”. For illustration purposes, we show the name of an instance in the format

n-x-y-gen, where n denotes the number of jobs, x denotes the instance ID (number), ranging from 1 to 10, and y denotes

the sizes of the jobs that can be S, M, or L, denoting small, medium, or large jobs’ attributes as discussed above. The

gen denotes the general set. For example, n = 5 and small jobs result in a 5-1-S-gen instance with the following job

attributes

N1 = (5, 30, 14), N2 = (17, 10, 9), N3 = (15, 52, 6), N4 = (7, 33, 18), N5 = (19, 41, 8).

Although there is no prior research considering the single-machine coupled task problem with a due date related

criterion, we generate a set of due dates to complete the proposed data set. Specifically, we follow the approach proposed

by Potts and Van Wassenhove (1982), which is also used in Fondrevelle et al. (2009); Hamdi and Loukil (2017). The

method is to generate the due dates in the interval [Px, Py], where P is a lower bound for the problem. We use the

bound P = Pa + Pb, and set x = 0.05 and y = 0.95.

To better reflect the characteristics of the special cases of the single-machine coupled task scheduling problem, where

restrictions on the durations of the tasks and/or delays exist, we generate the second set, i.e., the “restricted set”.

Because the identical problem in which all the jobs are identical is the extreme special case, we generate the restricted

set based on the identical problem. The set has 240 instances, where all the jobs of a particular instance are identical,

i.e., (a, L, b) ∼ U(α, β) with the same characteristics and values of α and β as those of the general set. Our naming

convention for this set is n-x-y-res, where n, x, and y are as before, and res denotes the restricted set. For example,

5-1-S-res may represent an instance with 5 small jobs as follows:

N1 = N2 = N3 = N4 = N5 = (16, 47, 9).

Notice that having the two sets allows us to generate instances for every special case, as well as every restriction

on the task/delay durations. For example, an instance with five small jobs for the case (aj = a, Lj , bj), where all the

initial tasks taking an identical processing time can be generated by using the first values from the restricted set, and

the second and third values from the general set. This results in

N1 = (16, 30, 14), N2 = (16, 10, 9), N3 = (16, 52, 6), N4 = (16, 33, 18), N5 = (16, 41, 8).

We use n-x-y-a to denote this special case, where a stands for identical initial tasks. Benchmark instances for the

other special cases can also be generated in the same way. For example, the special case (p, Lj , p), p > 0, where the

initial and completion tasks of every job are equal to p, can be generated from the instances for (a, Lj , b) and setting

bj = a,∀j ∈ N . The special case aj ≥ bj can be generated from the general set by interchanging the processing times of

the tasks of job j with aj < bj . Similarly, instances for the problem with UET tasks, i.e., (1, Lj , 1), can be generated by

using the general set instances and setting all the task processing times to 1. We generate data sets for all these special

cases and make them publicly available for future research. Table 8 shows the naming convention for the instances

generated for those special cases. In total, we generate 11 sets, each with 240 instances, i.e., 2,640 problem instances for

the single-machine coupled task scheduling problem.
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Table 8: Naming convention for instances of the single-machine coupled task problem.
Type Description
gen general set
res restricted set (a, L, b)
a restricted set (a, Lj , bj)
L restricted set (aj , L, bj)
b restricted set (aj , Lj , b)
aL restricted set (a, L, bj)
ab restricted set (a, Lj , b)
Lb restricted set (aj , L, b)
p restricted set (p, Lj , p)
a>b restricted set (aj , Lj , bj), aj ≥ bj
UET restricted set (1, Lj , 1)

5.3 The shop coupled task setting

In order to generate benchmark instances for the two-machine flow shop coupled task scheduling problem, we use the

instance generation parameters of the single-machine problem (see Section 5.2). In particular, the completion task

durations can be considered as the processing times of the tasks on the second machine. Hence, all the sets discussed in

Section 5.2 can easily be used for the two-machine flow shop coupled task scheduling problem.

For the m-machine flow shop scheduling problem, however, the numbers of jobs n and machines m need to be

chosen. The majority of previous studies investigate problems with up to five machines. An exception is Hamdi and

Loukil (2017), who solved instances with up to ten machines. Also, the number of jobs is set to at most 20 in the

previous studies. To cover a broader range of instances, we set n = {10, 20, 50, 100} and m = {5, 10, 20}, which results

in 12 combinations. For each combination, ten instances are generated, so a total of 120 instances are produced. The

tasks’ processing times and delay durations are randomly taken from a discrete uniform distribution with the following

parameters: pkj ∼ U(1, 100) and Lkj ∼ U(1, 20). It should be noted that the values of the delay duration are not from

a wide range as in the single-machine case. This is because to reflect the true nature of delays in the flow shop, which

are mainly related to the transport of the tasks. We also show the name of an instance in the format n-m-x, where n

denotes the number of jobs, m denotes the number of machines and x denotes the instance number, ranging from one to

ten. In addition, we generate due dates for the jobs following the same method discussed in the single-machine setting,

where the lower bound follows Equation (3), and the same values are used for x and y.

We note that the same data set can be used for the open shop coupled task scheduling problem, with the only change

that we do not consider the pre-specified sequence for the tasks of the jobs. To utilize the proposed data set for the job

shop setting, however, we need to generate a sequence for the tasks of each job.

6 Mathematical models

In this section we discuss the mathematical programming formulations for the coupled task scheduling problem docu-

mented in the literature. We first discuss the models for the single-machine coupled task scheduling problem and then

consider those for the flow shop setting.

6.1 The single-machine models

Let N , indexed by j, and H = {1, 2, . . . , 2n}, indexed by h, denote sets of jobs and tasks, respectively, where H2j−1 and

H2j represent the initial and completion tasks of job j.

Elshafei et al. (2004) proposed the first mathematical formulation for the single-machine coupled task scheduling

problem. For this time-indexed model, they discretized the time horizon into a set Θ = {1, . . . , T } of unit time slots.

The binary decision variable xjt,∀j ∈ N, t ∈ Θ, takes the value of 1 if job j starts its processing at time slot t, and

0 otherwise. They considered the objective function of minimizing the makespan. Model S1 in the following is their

formulation.

Model S1

z = minCmax (6)

subject to

Cmax ≥
τj∑
t=1

(t+ Pj − 1)xjt, j ∈ N, (7)
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τj∑
t=1

xjt = 1, j ∈ N, (8)∑
j∈N

∑
v∈s2j−1
1≤v≤τj

xjv +
∑
j∈N

∑
v∈s2j

1≤v≤τj

xjv ≤ 1, t ∈ Θ, (9)

xjt ∈ {0, 1}, j ∈ N, t ∈ Θ. (10)

The objective function (6) minimizes the makespan, where the makespan is enforced to be at least as large as the

finishing time of every job (constraints (7)). Here, τj = T − Pj + 1 is the latest time that if aj is scheduled by τj ,

processing of bj will finish by time T (end of the time horizon), where Pj = aj +Lj + bj is total time that job j remains

in the system after its initial task starts processing. Constraints (8) ensure that every job starts at exactly one time

slot, and constraints (9) indicate that at most one job can occupy each time slot, i.e., no two jobs will overlap in the

schedule. In other words, time slot t is occupied by aj , if the starting time of job j is in s2j−1 ∈ {t − aj + 1, . . . , t}, or

it is occupied by bj , if the starting time of job j is in s2j ∈ {t− Pj + 1, . . . , t− aj − Lj}. Note that the value of v must

always remain between 1 and τj and any other value is ignored.

Elshafei et al. (2004) also proposed the weighted version of model S1, in which the objective is to maximize the total

weight of the completed jobs within a time limit Tmax of the time horizon, where Θ′ = {1, . . . , Tmax}. Model W1 shows

their formulation.

Model W1

z = max
∑
j∈N

τj∑
t=1

wjxjt (11)

subject to

τj∑
t=1

xjt ≤ 1, j ∈ N, (12)∑
j∈N

∑
v∈s2j−1
1≤v≤τj

xjv +
∑
j∈N

∑
v∈s2j

1≤v≤τj

xjv ≤ 1, t ∈ Θ′, (13)

xjt ∈ {0, 1}, j ∈ N, t ∈ Θ′. (14)

The objective function (11) maximizes the total weight of the completed jobs, where wj is the weight of job j.

Recall that this model does not require all the jobs to be scheduled, so constraints (12) reflect this. In other words, the

constraints ensure that a job should be started at exactly one time slot t, if it is scheduled within the time limit Tmax.

Note that in model W1, the value of τj is calculated by using the value of Tmax, i.e., τj = Tmax−Pj + 1, instead of using

the value of T .

The numbers of decision variables and constraints in the time-indexed formulations, i.e., models S1 and W1, depend

on the number of time slots. Hence, it is very likely that it grows quickly as the size of the problem increases. Sherali

and Smith (2005) attempted to overcome this issue by proposing alternative formulations with continuous time horizon.

They considered five possible relative configurations for every pair of jobs j and j′:

1. processing of job j is finished before job j′ starts;

2. processing of job j′ is finished before job j starts;

3. the initial task of job j′, i.e., aj′ , is interleaved between the two tasks of job j (this setting is only possible if

aj′ ≤ Lj and bj ≤ Lj′);

4. the initial task of job j, i.e., aj , is interleaved between the two tasks of job j′ (this setting is only possible if aj ≤ Lj′
and bj′ ≤ Lj); and,

5. job j is nested between the two tasks of job j′ (if Lj′ ≥ Pj), or job j′ is nested between the two tasks of job j (if

Lj ≥ Pj′ ; note that at most one of the two cases is possible).

Configurations 1 and 2 are always possible if the time horizon is relatively large, i.e., if T ≥ Pj + Pj′ ,∀(j, j′) ∈ N
(Pj = aj + Lj + bj). According to those five configurations, Sherali and Smith (2005) defined a binary decision variable

yjj′ν , which takes 1 if jobs j and j′, j < j′, are scheduled relative to each other based on configuration ν = 1, . . . , 5. For

a configuration ν and jobs j and j′, ljj′ν and rjj′ν denote two constants representing the earliest and latest times that

job j′ can start its processing relative to job j, i.e., ljj′ν ≤ sj′ − sj ≤ rjj′ν , where sj is the starting time of job j.
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The following example illustrates the calculation of those constants. Consider job j with aj = 1, Lj = 4 and bj = 3

and job j′ with aj′ = 1, Lj′ = 10 and bj′ = 2. If the time horizon is equal to 40 time units, configurations 1 and 2 are

both possible and we have ljj′1 = 8, rjj′1 = 27, ljj′2 = −32 and rjj′2 = −13. Configuration 3 is possible as aj′ ≤ Lj

and bj ≤ Lj′ , so we have ljj′3 = 1 and rjj′3 = 4. Configuration 4 is possible as aj ≤ Lj′ and bj′ ≤ Lj , so ljj′4 = −10

and rjj′4 = −8. Figure 10 shows the relative positions of jobs j and j′ under configuration 4. Lastly, configuration 5 is

possible for the nesting of job j between the two tasks of job j′, so we have ljj′5 = −3 and rjj′5 = −1.

Figure 10: Calculation of rjj′4 and ljj′4 for two jobs j (aj = 1, Lj = 4, bj = 3) and j′ (aj′ = 1, Lj′ = 10, bj′ = 2).

Following the above definitions, Sherali and Smith (2005) formulated the problem to minimize the makespan into

model S2 as follows:

Model S2

z = minCmax (15)

subject to

Cmax ≥ sj + Pj , j ∈ N, (16)

5∑
ν=1

yjj′ν = 1, (j, j′) ∈ N, j < j′, (17)

sj′ − sj ≥
5∑
ν=1

ljj′νyjj′ν , (j, j′) ∈ N, j < j′, (18)

sj′ − sj ≤
5∑
ν=1

rjj′νyjj′ν , (j, j′) ∈ N, j < j′, (19)

sj ≥ 0, j ∈ N, (20)

yjj′ν ∈ {0, 1}, (j, j′) ∈ N, j < j′, 1 ≤ ν ≤ 5. (21)

The objective function (15) minimizes the makespan, where the makespan is enforced to be at least as large as the

finishing time of every job (constraints (16)). Constraints (17) ensure that exactly one configuration is selected for every

pair of jobs. Constraints (18) and (19) ensure that the difference between the starting time of every pair of jobs is within

the permissible upper and lower bounds, under their selected configuration. Note that if there is a configuration ν that

is not possible for two jobs j and j′, the relative decision variable yjj′ν is set to zero.

Sherali and Smith (2005) also proposed the weighted version of model S2. They defined a binary decision variable xj

that is equal to 1 if job j is totally completed, i.e., both of its tasks are processed, before Tmax. The weighted formulation

maximizes the total weight of the completed jobs within the time limit Tmax. Model W2 is as follows:

Model W2

z = max
∑
j∈N

wjxj (22)

subject to

sj + Pj ≤ UB − xj(UB − Tmax), j ∈ N, (23)

(17) to (21),

xj ∈ {0, 1}, j ∈ N, (24)
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where UB is an upper bound for the problem, which can be set to
∑
j∈N Pj . Constraints (23) state that if job j is

selected to be scheduled, it must finish before the time limit. In model W2, the values of ljj′ν and rjj′ν are the same as

those in model S2.

Békési et al. (2014) proposed two linear ordering-based formulations of the problem to minimize the makespan. In

these formulations, a sequence is an ordered set of tasks, rather than jobs. For any pair of tasks h and h′, a binary

variable xhh′ is defined, which takes the value of 1 if task h′ is started after task h in the sequence. Model S3 shows

their first formulation.

Model S3

z = minCmax (25)

subject to

Cmax ≥ s2j + bj , j ∈ N, (26)

x2j−1,2j = 1, j ∈ N, (27)

xhh′ + xh′h = 1, (h, h′) ∈ H,h < h′, (28)

xhh′ + xh′h′′ + xh′′h ≤ 2, (h, h′, h′′) ∈ H,h 6= h′, h 6= h′′, h′ 6= h′′, (29)

s2j = s2j−1 + aj + Lj , j ∈ N, (30)

s2j ≤ UB − bj , j ∈ N, (31)

sh′ ≥ sh + ph − UB(1− xhh′), (h, h′) ∈ H, h 6= h′, (32)

sh ≥ 0, h ∈ H, (33)

xhh′ ∈ {0, 1}, (h, h′) ∈ H, h 6= h′, (34)

where s2j is the start time of the completion task of job j. Constraints (27) indicate that the initial task of each job

should be scheduled before its completion task. The relative order of any pair of tasks is considered by constraints (28).

Constraints (29) are the so-called “3-dicycle inequalities” for any triple distinct tasks. The relation between the starting

times of the tasks of a job is defined by constraints (30), where an upper bound on the starting times of the completion

tasks is set by constraints (31). Constraints (32) relate the starting time variables to the linear ordering variables, where

ph is the processing time of task h. Specifically, the constraints ensure that if task h′ is scheduled after task h, the

starting time of task h′ must be at least as large as the finishing time of task h.

Békési et al. (2014) proposed a second formulation as an alternative for model S3. The model does not use the

starting time variables. The model includes variables yh, which are the idle times of the machine after processing task h,

and positive constants Ch, which are upper bounds on the values of yh. A knapsack constraint is used in order to express

that the sum of the processing times of tasks that are executed between the two tasks of job j must not exceed its delay

duration Lj . Because such a constraint is initially stated non-linear, additional variables yjh, j ∈ N,h ∈ H,h /∈ {2j−1, 2j}
are added for linearization. Model S4 is the formulation as follows:

Model S4

z = min
∑
j∈N

(y2j−1 + y2j) (35)

subject to

y2j−1 +
∑

h/∈{2j−1,2j}

(ph(xh,2j − xh,2j−1) + yjh) = Lj , j ∈ N, (36)

yjh ≤ yh, j ∈ N, h ∈ H, h /∈ {2j − 1, 2j}, (37)

yjh ≤ Cjh(xh,2j − xh,2j−1), j ∈ N, h ∈ H, h /∈ {2j − 1, 2j}, (38)

yjh ≥ yh − Cj(x2j,h + xh,2j−1), j ∈ N, h ∈ H, h /∈ {2j − 1, 2j}, (39)
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(27) to (29), (34)

yj ≥ 0, j ∈ N, (40)

yjh ≥ 0, j ∈ N, h ∈ H, h /∈ {2j − 1, 2j}. (41)

The objective function (35) minimizes the total idle time of the machine, which is equivalent to minimizing the

makespan. The knapsack constraints are presented in (36), indicating that the delay duration of each job consists of the

tasks that are processed between its initial and completion tasks, plus the idle time between them. Constraints (37) to

(39) are used to linearize the knapsack constraints. Here, the constants Cjh = max{0, Lj − ph} are upper bounds on the

values of yjh. In addition, Ch = Lj , if h is the first task of job j, or Ch = maxj∈N{Cjh|h /∈ {2j − 1, 2j}}, if h is the

second task of a job.

6.2 The flow shop models

Hamdi and Loukil (2017) proposed three mathematical formulations for the (permutation) flow shop coupled task schedul-

ing problem. The objective function of the models is to minimize the total earliness and tardiness. The first model,

which we denote by F1, is a completion time-based formulation. It uses the decision variable xij , which takes the value

of 1 if job j is assigned to the sequence position i ∈ N , and 0 otherwise. Also, the non-negative variable Cik denotes the

completion time of job in the sequence position i on machine k. Model F1 shows this formulation as follows:

Model F1

z = min
∑
j∈N

(Ei + Ti) (42)

subject to

∑
j∈N

xij = 1, j ∈ N, (43)∑
j∈N

xij = 1, i ∈ N, (44)

Ti ≥ Cim −
∑
j∈N

djxij , i ∈ N, (45)

Ei ≥
∑
j∈N

djxij − Cim, i ∈ N, (46)

Ci,k+1 = Cik +
∑
j∈N

(pj,k+1 + Ljk)xij , i ∈ N, k ∈M \ {m}, (47)

Ci+1,k ≥ Cik +
∑
j∈N

pjkxi+1,j , i ∈ N \ {n}, k ∈M, (48)

Cik ≥ 0, i ∈ N, k ∈M, (49)

xij ∈ {0, 1}, (i, j) ∈ N, (50)

Ei, Ti ≥ 0, i ∈ N. (51)

The objective function (42) minimizes the total earliness and tardiness. The assignment constraints (43) and (44)

ensure that each job is assigned to exactly one sequence position and each sequence position is assigned to exactly one

job. Constraints (45) and (46) define the tardiness and earliness of the job in the sequence position i. Constraints (47)

define the completion time of each job on consecutive machines. Likewise, constraints (48) calculate the completion

times of any pair of consecutive jobs on every machine. We notice that Hamdi and Loukil (2017) missed a constraint

in model F1, i.e., they did not explicitly define the completion time of the first job on the first machine. In particular,

the omission of such a constraint may result in starting the first job on the first machine before the time horizon, i.e.,

an infeasible solution. To avoid this, we add the following constraint to model F1.

C11 ≥
∑
j∈N

pj1x1j . (52)

We express constraint (52) in the form of greater than or equal to because the objective function of model F3, i.e.,

the total earliness and tardiness is a non-regular one, and forced idle times may therefore improve the objective. In case

of a regular objective function, e.g., minimization of the makespan, forced idle times will not be beneficial, so it suffices

to express constraint (52) as C11 =
∑
j∈N pj1x1j .
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Their second model is an idle time-based formulation, in which the variable Iik is the idle time of machine k after

processing the job in the sequence position i. We notice that their formulation does not generate a valid solution. We

investigate their formulation and observe two flaws. First, the calculation of jobs’ earliness needs fixing. Second, by

defining variable Iik as the idle time of machine k “after” processing the job in the sequence position i, there is no

possibility to have idle time before the processing of the first job on the first machine. Note that because the objective

function is non-regular, it might be beneficial to have idle time before the processing of the first job on the first machine.

For example, in a one-job two-machine instance with a = 2, L = 3, b = 2 and d = 9, the job should start at time 2 to

minimize the total earliness and tardiness (see Figure 11).

Figure 11: An example to clarify the correct definition of idle times.

Consequently, we define variable Iik as the idle time of machine k “before” processing the job in the sequence position

i. We also correct the earliness calculation. The corrected formulation, denoted as model F2, is as follows:

Model F2

(42) to (44)∑
j∈N

(pjk + Ljk)x1j + I1k = I1,k+1, k ∈M \ {m}, (53)∑
j∈N

(pj,k+1 + Ljk)xij + Ii+1,k+1

=
∑
j∈N

(pjk + Ljk)xi+1,j + Ii+1,k, i ∈ N \ n, k ∈M \ {m},
(54)

Ti ≥
i∑

s=1

∑
j∈N

pjmxsj +

i∑
s=1

Ism −
∑
j∈N

djxij , i ∈ N, (55)

Ei ≥
∑
j∈N

djxij −
i∑

s=1

∑
j∈N

pjmxsj −
i∑

s=1

Ism, i ∈ N, (56)

Iik ≥ 0, i ∈ N, k ∈M, (57)

(50) and (51).

Constraints (53) model the idle time before the job in the first position. Similarly, constraints (54) define the idle

time between the remaining jobs on all the machines. In particular, they relate the processing times, delays and idle

times of every two consecutive jobs on any pair of consecutive machines. Constraints (55) and (56) define the tardiness

and earliness, respectively.

The third model proposed by Hamdi and Loukil (2017) is a starting time-based formulation, which uses the variable

sik to express the starting time of the job in position i on machine k. Model F3 in the following shows this formulation.

Model F3

(42) to (44)

Ti ≥ sim +
∑
j∈N

pjmxij −
∑
j∈N

djxij , i ∈ N, (58)

Ei ≥
∑
j∈N

djxij − sim −
∑
j∈N

pjmxij , i ∈ N, (59)

si,k+1 = sik +
∑
j∈N

(pjk + Ljk)xij , i ∈ N, k ∈M \ {m}, (60)

si+1,k ≥ sik +
∑
j∈N

pjkxij , i ∈ N \ {n}, k ∈M, (61)

sik ≥ 0, i ∈ N, k ∈M, (62)

(50) and (51).
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Constraints (58) and (59) define the tardiness and earliness of jobs. Constraints (60) relate the starting times of a

job on every pair of consecutive machines. Finally, constraints (61) relate the starting times of any pair of consecutive

jobs on a machine. Their original model also includes the constraint s11 ≥ 0. This constraint is redundant because it

has already been implied by constraints (62). Therefore, we do not include it in model F3.

Also, we provide an additional formulation for the flow shop coupled task scheduling problem, which Arabameri and

Salmasi (2013) originally proposed for the no-wait flow shop scheduling problem. We choose this model because it is

relatively new and uses the sequential ordering variables (the first three have positional variables). The model proposed

by Arabameri and Salmasi (2013) includes a binary variable xjj′ , which takes 1 if job j′ is placed immediately after job

j in a sequence, and 0 otherwise. Two dummy jobs are considered, where their processing times and delays on all the

machines are equal to zero. The due date of the first dummy job is also set to zero so as to assign it to the first position

in a sequence, and that of the second dummy job is set to a large positive number in order to assign it to the last position

in the sequence. Assuming the set N ′ = {1, . . . , n+ 2} of jobs, model F4 is as follows:

Model F4

z = min
∑

j∈N′\{n+2}

(Ej + Tj) (63)

subject to

∑
j∈N′\{n+2}

j 6=j′

xjj′ = 1, j′ ∈ N ′ \ {1}, (64)

∑
j′∈N′\{1}

j′ 6=j

xjj′ = 1, j ∈ N ′ \ {n+ 2}, (65)

Cj′k +M(1− xjj′) ≥ Cjk + pjk, (j, j′) ∈ N ′, j 6= j′, k ∈M, (66)

Cjk = Cj,k−1 + pjk + Lj,k−1, j ∈ N ′, k ∈M \ {1}, (67)

Tj ≥ Cjm − dj , j ∈ N ′, (68)

Ej ≥ dj − Cjm, j ∈ N ′, (69)

Cjk ≥ 0, j ∈ N ′, k ∈M, (70)

xjj′ ∈ {0, 1}, (j, j′) ∈ N ′, j 6= j′, (71)

Ej , Tj ≥ 0, j ∈ N ′. (72)

The objective function (63) minimizes the total earliness and tardiness of jobs 1 to n + 1. The last job is not

included as it is the second dummy job. Constraints (64) and (65) ensure that all the jobs are sequenced exactly once.

Constraints (66) and (67) relate the completion time variables to the sequential ordering variables. Specifically, they set

the completion times of every two consecutive jobs on every machine, and every job on any pair of consecutive machines.

Here Cjk is the completion time of job j on machine k andM is a sufficiently large constant. Constraints (68) and (69)

define the tardiness and earliness of the jobs.

7 Performance evaluation of models

In this section we evaluate the performance of all ten models discussed in Section 6. For this purpose, we carried out

comprehensive computational experiments. Recall that the mathematical models can be categorized into three groups:

(1) single-machine models to minimize the makespan, i.e., models S1 to S4; (2) single-machine models to minimize the

weighted sum of the completed jobs, i.e., models W1 and W2; and (3) flow shop models to minimize the total earliness

and tardiness, i.e., models F1 to F4. Table 9 summarizes the size of each model, i.e., number of decision variables and

constraints. In the table, n and m denote the numbers of jobs and machines, respectively, and T denotes the number of

discretized time units.

For the first and second groups, which are models for the single-machine coupled task scheduling problem, we tested

240 instances of general set (see Section 5.2). For the weighted models, we randomly generated the job weights from

∼ U(1, 10). We set the parameter Tmax to 1
3

∑
j∈N Pj , where Pj = aj + Lj + bj . For the third group, i.e., the flow

shop coupled task scheduling models, we studied 120 benchmark instances generated in Section 5.3. We used the solver
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Table 9: Numbers of decision variables and constraints in the models.
Model Number of binary variables Number of continuous variables Number of constraints
S1 nT 1 2n+ T
S2 (5n2 − 5n)/2 n+ 1 (3n2 − n)/2
S3 4n2 − 2n n+ 1 8

3
n3 + 2n2 + 7

3
n

S4 4n2 − 2n 2n2 8
3
n3 + 4n2 − 11

3
n

W1 nT - n+ Tmax
W2 (5n2 − 3n)/2 n (3n2 − n)/2
F1 n2 nm+ 2n 2nm+ 3nm+ 1
F2 n2 nm+ 2n nm+ 3n
F3 n2 nm+ 2n 2nm+ 3nm+ 1
F4 (n+ 2)2 − n− 2 (n+ 2)m+ 2(n+ 2) (n+ 2)2m+ 3(n+ 2)− 2

Table 10: Comparison of the performance of the studied mathematical models.
Model Feas Best Opt Gap (%) Time (sec)
S1 210 73 34 30.9 788.2
S2 126 85 61 4.2 674.8
S3 192 148 60 3.3 677.3
S4 166 68 58 15.5 751.7
W1 240 199 102 0.4 578.4
W2 205 153 113 1.1 497.5
F1 106 32 30 5.5 675.5
F2 107 47 36 5.1 645.0
F3 109 32 30 5.6 675.5
F4 120 106 30 0.6 742.7

Gurobi version 8.0.0 (Gurobi Optimization, 2018) to solve the models. We coded all the models in Python version 2.7.

We performed all the computational experiments on a PC with an Intel R© CoreTM i5-7500 CPU clocked at 3.40GHz with

8GB of memory under the Linux Ubuntu 16.04 operating system. The machine has four threads and we ran Gurobi in

the parallel mode, i.e., we used all the four threads. We only changed one Gurobi parameter, i.e., the time limit, for

which we changed its default value to 900 seconds. Therefore, this was the stopping criterion for the solver. For the

remaining parameters of Gurobi, we used their default values.

Table 10 summarizes the results of the computational experiments. We use five criteria to evaluate each model.

These include “feas”, which shows the number of generated feasible solutions by the model within the time limit; “best”,

which is the number of best solutions obtained by the model; “opt”, i.e., the number of optimal solutions delivered by

the model; and “gap (in %)”, which is calculated as z−z∗
z∗ × 100, where z is the objective function value obtained by the

model and z∗ is the best objective function value among all the models, i.e., the best available solution, and is calculated

over the number of feasible solutions for the model. The last metric “Time (sec)” represents the average computing time

in seconds for the model. We highlight the criterion with the best value across the models (per group).

Among the single-machine models to minimize the makespan, i.e., models S1 to S4, the time-indexed model, i.e.,

model S1, generates the largest number of feasible solutions. In addition, as Table 12 shows, model S1 is the only model

that produces feasible solutions for instances with 100 jobs. Despite this, model S1 is not the outperforming model in

terms of solution quality because it only delivers the best solution for 73 (almost 30%) and optimal for 34 (less than

15%) of instances. The model’s gap (from the best solution) is also the highest among all the models. Notice that a

larger gap value implies that the solution is further from the best available one.

Model S2 delivers feasible solutions for slightly more than half of instances (52.5%). Nevertheless, it obtains the

highest number of optimal solutions. Also, its gap is the second best, reflecting the quality of its solutions. Table 12

details the results and shows that the majority of high-quality solutions obtained by model S2 are for instances with

up to 20 jobs. Model S2 was originally proposed to overcome the exponential growth in the numbers of variables and

constraints in the time-indexed model. However, it is evident that it is unable to deliver feasible solutions for instances

with 40 jobs and more.

The linear ordering model, i.e., model S3, obtains the largest number of best solutions. It also delivers the optimal

solutions for a quarter of the instances. The quality of the delivered solutions is very promising because the gap is lowest

among all the models. The model generates feasible solutions for 80% of the instances. The details presented in Table 12

indicate that this model has the capability of models S1 and S2 since it generates quality solutions for a broad range of

the instances. Model S4, which is an alternative for model S3, under-performs model S3 across all the metrics.

The average computation times reported in Table 12 reveal that models S2 and S3 are able to solve slightly larger

instances in a short time, because their computational times do not quickly rise as for models S1 and S4.

Between the weighted models, model W1 generates feasible solutions for all the instances, while model W2 produces

feasible solutions for 205 (almost 86%) instances. Model W1’s better performance is further recognized by its larger

number of best solutions and lower gap values. Particularly, the average gap for model W1 is less than half of that for

model W2. Regarding the number of optimal solutions, however, model W2 obtains more optimal solutions, and in the

order of 11 more instances. Based on the detailed results presented in Table 13, we draw the conclusion that model
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Table 11: Comparison of the LP relaxation objective function generated by the studied mathematical models.
Model LP gap (%) NLP
S1 40.7 155
S2 69.0 207
S3 67.4 197
S4 17.3 207
W1 3.0 211
W2 4.7 220
F1 26.2 120
F2 26.2 120
F3 26.2 120
F4 67.0 120

W2 is a better choice to solve the small instances, due to its shorter computing times and greater numbers of optimal

solutions. On the contrary, model W1 is the best choice when dealing with large instances, due to its competitive gap

and number of best solutions obtained.

Among the flow shop models, i.e., models F1 to F4, the adapted sequential ordering model, i.e., model F4, performs

significantly better than the other models. In particular, it delivers feasible solutions for all the instances, with 106

(nearly 88%) of which being the best available solutions. As a result, the gap value of this model is small, i.e., 0.6%.

Models F1 and F3 behave very closely, which is not surprising since they are very similar. Model F2, i.e., the idle

time-based model, is slightly better than models F1 and F3 because it has a lower average gap, as well as greater number

of best and optimal solutions. Model F2 also reports the largest number of optimal solutions among all the models. The

average computing times of models F1 to F3 are less than that of model F4; particularly, model F2 has the shortest

average time. To conclude, the detailed results presented in Table 14 reveal that model F2 is the best option to solve

instances with up to 10 jobs. However, model F4 is the top performer and the best choice to deal with large instances.

We further investigate the quality of the linear programming (LP) relaxation objective function associated with the

models. For this, we calculate the “LP gap (in %)” as z∗−zLP
z∗ ×100, which represents the the percentage gap between the

LP relaxation objective function zLP (generated by the solver) and z∗ (the best available solution). Table 11 summarizes

the results, where NLP is the number of instances that the model is able to produce the LP solution. Models S2 and

S4, among the single-machine models to minimize the makespan, generate the LP relaxation solution for 207 instances,

which is greater than that of the other two models. Also, we observe that the quality of the bounds generated by model

S4 is far better than that of model S2. Considering the weighted models, model W2 delivers the LP relaxation solution

for a slightly greater number of the instances; however, the quality of the bounds of W1 is better. All the flow shop

models generate LP bounds for all the instances. In addition, the quality of the LP bounds for the three models of F1

to F3 are identical, and is far better than that of model F4.
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Table 12: Detailed performance of the single-machine makespan models (a “-” denotes that the model cannot produce an outcome within the time limit).

n
S1 S2 S3 S4

Feas Best Opt Gap
(%)

Time
(sec)

Feas Best Opt Gap
(%)

Time
(sec)

Feas Best Opt Gap
(%)

Time
(sec)

Feas Best Opt Gap
(%)

Time
(sec)

5 30 30 30 0.0 5.0 30 30 30 0.0 0.0 30 30 30 0.0 0.0 30 30 30 0.0 0.2
10 30 5 4 4.7 843.5 30 30 30 0.0 15.0 30 30 30 0.0 17.8 30 30 28 0.0 596.8
15 30 0 0 12.1 900.1 30 10 1 1.0 883.1 30 21 0 0.2 900.0 30 0 0 7.5 900.0
20 30 1 0 28.6 900.1 27 8 0 8.9 900.0 30 22 0 0.4 900.1 30 0 0 13.4 900.0
25 30 7 0 60.2 900.1 9 7 0 28.8 900.0 30 16 0 1.8 900.2 25 0 0 48.8 900.0
40 30 11 0 70.6 956.9 0 0 0 - 900.0 26 15 0 21.3 900.0 16 4 0 42.2 900.0
50 20 9 0 60.1 900.1 0 0 0 - 900.0 16 14 0 0.4 900.1 5 4 0 10.8 900.0
100 10 10 0 0.0 900.1 0 0 0 - 900.0 0 0 0 - 900.6 0 0 0 - 916.8

Table 13: Detailed performance of the single-machine weighted models (a “-” denotes that the model cannot produce an outcome within the time limit).

n
W1 W2

Feas Best Opt Gap (%) Time (sec) Feas Best Opt Gap (%) Time (sec)
5 30 30 30 0.0 1.5 30 30 30 0.0 0.0
10 30 23 20 0.8 363.8 30 30 30 0.0 6.1
15 30 25 20 0.6 390.7 30 30 22 0.0 274.7
20 30 19 12 0.8 589.2 30 27 14 0.1 517.0
25 30 21 8 0.6 690.1 30 19 9 1.1 651.3
40 30 24 6 0.5 750.5 30 12 5 3.0 802.6
50 30 27 6 0.3 785.1 25 5 3 4.2 828.3
100 30 30 0 0.0 1056.3 0 0 0 - 900.1

Table 14: Detailed performance of the flow shop models.

n
F1 F2 F3 F4

Feas Best Opt Gap
(%)

Time
(sec)

Feas Best Opt Gap
(%)

Time
(sec)

Feas Best Opt Gap
(%)

Time
(sec)

Feas Best Opt Gap
(%)

Time
(sec)

10 30 30 30 0.0 1.8 30 30 30 0.0 1.3 30 30 30 0.0 1.6 30 30 30 0.0 270.6
20 30 1 0 1.4 900.0 30 7 6 0.9 778.8 30 2 0 1.2 900.0 30 27 0 0.0 900.0
50 26 0 0 10.4 900.1 30 0 0 13.7 900.0 29 0 0 9.2 900.1 30 30 0 0.0 900.0
100 20 1 0 13.7 900.1 17 10 0 6.2 900.0 20 0 0 15.2 900.1 30 19 0 2.3 900.1
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8 Discussion and concluding remarks

It has been about 40 years since the coupled task scheduling problem was introduced to the scheduling community.

The early years witnessed only a few studies on this topic, and the majority of works and interests have therefore been

developed in the last few years. One factor contributing to this is that several real-world applications can be modeled as

the coupled task scheduling problem. Therefore, we believe that the present review provides a timely survey of previous

studies, which can be a valuable resource in guiding and directing future research on the topic. In particular, we present

benchmark instances and carry out comprehensive evaluation of the available mathematical models for the problem, so

providing fundamental background for research into algorithm development and computational performance. The fact

that the exact delay is a generalization of the well-known “no-wait” scheduling condition highlights the theoretical and

practical importance of studying the coupled task scheduling problems. In this section we summarize research on the

coupled task scheduling problem, which we discussed in detail in the previous sections, and highlight the main open

problems, as well as potential areas for future research.

8.1 Solution methods

In the single-machine setting, the interleaving and nesting heuristics of Shapiro (1980) are of importance for developing

solution methods. Two TS algorithms were proposed by Li and Zhao (2007); Condotta and Shakhlevich (2012), though no

detailed comparison was reported. Two notable exact algorithms of B&B (Békési et al., 2014) and dynamic programming

(Ahr et al., 2004) were proposed; the latter is for the case of the identical problem. In the domain of approximation

algorithms, simple dispatching rules including SPT and LPT have been widely used in order to derive approximation

ratios, e.g., by Ageev and Kononov (2007); Ageev and Ivanov (2016).

Concerning the flow shop setting, approximation algorithms have been proposed that utilize similar dispatching rules

or algorithms for the single-machine setting. For the objective function of minimizing the total completion time, a TS

and an SA meta-heuristics were proposed by Huo et al. (2009), and SA was shown to slightly perform better. For the

objective function of minimizing the maximum lateness, a B&B algorithm was proposed in Fondrevelle et al. (2009).

Three meta-heuristics of PSO, SA, and a hybrid (SA+PSO) were proposed for the two-machine flow shop, where the

coupled tasks only exist on the first machine. They showed that the hybrid algorithm outperforms the others. For the

only bi-objective study in this domain (minimizing the makespan and the total energy consumption), Liu et al. (2017)

proposed the ε-constraint and an NSGA II algorithms, but provided no computational results.

8.2 Future research directions

We believe the following areas are worth further investigation, so we suggest them as future research directions in this

domain.

Computational complexity under different objective functions. Section 3.1.1 details the complexity of the

single-machine coupled task scheduling problem to minimize the makespan. Here, an important problem is the identical

case, i.e., (a, L, b). Ahr et al. (2004); Baptiste (2010) developed several preliminary results for this case, though its

complexity still remains open.

In addition, there has been no published research investigating the single-machine setting with an objective function

other than the makespan, except for those in the cyclic setting. Investigating the computational complexity of the

problem with different objective functions is valuable because of practical applications of those performance criteria.

Moreover, the multi-objective coupled task problem is an interesting topic for future research, especially due to the

involvement of (conflicting) objectives in real-world applications.

Solution methods. Apart from simple dispatching rules, heuristics, and approximation algorithms, there are very few

advanced and effective solution methods for both the single-machine and flow shop coupled task scheduling problems.

In view of the NP -hardness of the majority of the cases, developing effective and efficient solution methods is highly

desirable.

Scheduling environment. Research in the context of the single-machine problem is more established than that in

the shop setting. While in the shop setting, the flow shop coupled task scheduling problem has received fairly good

attention, research in other shop environments, e.g., the flexible shop settings, needs further development. We observe

that investigation into the job shop and open shop settings is evolving; however, it is still in the nascent stage. It should

be noted that the parallel-machine setting is of significant importance because it may be applied to model the more

complex flexible shop scheduling problem.
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