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Abstract
Co-training is a well-known semi-supervised
learning approach which trains classifiers on two
different views and exchanges labels of unla-
beled instances in an iterative way. During co-
training process, labels of unlabeled instances in
the training pool are very likely to be false es-
pecially in the initial training rounds, while the
standard co-training algorithm utilizes a “draw
without replacement” manner and does not re-
move these false labeled instances from training.
This issue not only tends to degenerate its per-
formance but also hampers its fundamental the-
ory. Besides, there is no optimization model to
explain what objective a co-training process op-
timizes. To these issues, in this study we design a
new co-training algorithm named self-paced co-
training (SPaCo) with a “draw with replacement”
learning mode. The rationality of SPaCo can be
proved under theoretical assumptions utilized in
traditional co-training research, and furthermore,
the algorithm exactly complies with the alter-
native optimization process for an optimization
model of self-paced curriculum learning, which
can be finely explained in robust learning man-
ner. Experimental results substantiate the superi-
ority of the proposed method as compared with
current state-of-the-art co-training methods.

1. Introduction
Semi-supervised learning (SSL) aims to implement learn-
ing on both labeled and unlabeled data through fully
considering the supervised knowledge delivered by la-
beled data and unsupervised data structure under unlabeled
ones (Zhu, 2011). Co-training (Blum & Mitchell, 1998) is
one of the most classical and well known SSL approaches
that train classifiers on two views and exchanges labels of
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unlabeled instances in an iterative way. In the recent years,
co-training has been attracting much attention attributed
to both its wide applications, like web classification and
visual detection (Xu et al., 2009), and rational theoreti-
cal supports (Blum & Mitchell, 1998; Balcan et al., 2004;
Wang & Zhou, 2010; 2013).

However, there are still some limitations existing in cur-
rent co-training investigation. Specifically, although there
are multiple theoretical results to support the rationality
of the co-training regimes, most of them require a strong
pre-assumption that the false pseudo-labeled instances can
be correctly recognized during training by classifiers or
pseudo labels of unlabeled instances predicted in each it-
eration are of a high confidence extent. Based on such
high-confidence assumption, most of current co-training
algorithms add pseudo-labeled samples into training with-
out replacement. Nevertheless, in most real cases such as-
sumption is too subjective to be satisfied, especially in the
early learning stage of a co-training algorithm. The learned
classifiers might be not able to confidently distinguish cer-
tain samples, or precisely pseudo-annotate them with an
expected accuracy requirement. This not only inclines
to degenerate the performance of co-training since those
false pseudo-labeled involved in training have no chance
to be rectified in the latter training process on account of
such “draw without replacement” manner, but also might
make the basic assumption under theoretical support of co-
training incorrect.

Another critical issue in most of current co-training meth-
ods is on their absence of an optimization model that can
measure the performance and explain the intrinsic mecha-
nism under the co-training implementation. As formally
defined in (Mitchell, 1997), the performance measure is
one of the necessary elements for a machine learning
method. It is thus meaningful to explore whether there ex-
ists such an optimization model, which can finely interpret
the co-training implementation as the process of solving
this model. Such model also should be helpful in revealing
more insights underlying co-training.

To address the aforementioned issues, a new co-training
method, called self-paced co-training (SPaCo) is proposed
in this study. The method differs from the previous co-
training regimes mainly in two aspects: Firstly, it utilizes a
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“draw with replacement” learning manner. In the method,
an unlabeled instance having been added into the training
pool is likely to be removed if classifiers in later training
rounds identify it as a low-confidence annotated one. Be-
sides, the pseudo label of an unlabeled instance has chance
to be rectified based on the prediction knowledge obtained
by classifiers in later training rounds. Secondly, the SPaCo
method employs a serial mode to update the classifiers of
two views in co-training implementation instead of the par-
allel mode commonly adopted by previous methods. Under
such amelioration, the new method can be proved to still
guarantee the theoretical effectiveness under ε-expansion
assumption in the traditional co-training theory, while more
importantly, such series implementation exactly complies
with the alternative optimization algorithm on solving a
concise optimization model. Besides, it is substantiated
that the new method can attain evidently better perfor-
mance beyond current state-of-the-art co-training methods
on average of our experiments, which further verifies the
rationality of the proposed SPaCo algorithm.

In summary, this work makes the following contributions:

• A new co-training method, called SPaCo, is proposed
by adopting the “draw with replacement” learning
manner. Similar to traditional co-training strategies,
the theoretical soundness of the new method can also
be proved under the commonly specified ε-expansion
assumption for pseudo-label confidence.

• The implementation process of the new method ex-
actly complies with an alternative updating algo-
rithm for a underlying optimization model. This
model corresponds to a self-paced curriculum learn-
ing paradigm, which helps reveal more “easy-to-hard”
insights under the co-training implementation.

• Through this derived model, the effectiveness of the
proposed SPaCo method can be finely interpreted as:
the method implements robust learning regimes in
both views under the regularization that the robust loss
forms in two views are closely related. This under-
standing provides a natural explanation for the effec-
tiveness mechanism under such co-training strategy,
without any requirement of subjective assumptions for
pseudo-label confidences.

• Experimental results on multiple text classification
and person re-ID data substantiate the superiority of
the SPaCo method as compared with current state-of-
the-art co-training methods.

The rest of the paper is organized as follows. We first
briefly introduce related work in Section 2, and then present
the proposed SPaCo algorithm and its underlying model in
Section 3. More theoretical explanations on its insights are

also provided in this part. We then present the experimental
results and finally give a conclusion remark.

2. Related Work
2.1. Co-training methods

The traditional co-trainig method (Blum & Mitchell, 1998)
builds classifiers for different views and exchanges pre-
dictions of high-confidence unlabeled data to augment the
training set in two views in each training round. After-
wards, multiple advancements have been developed. These
co-training variants can be roughly categorized into two
paradigms. One paradigm is to follow the iterative train-
ing process of co-training but to label unlabeled samples
using different methods with certain confidence criterion in
each iteration (Goldman & Zhou, 2000; Brefeld & Schef-
fer, 2004; 2006; Zhou et al., 2007; Li & Zhou, 2007; Zhang
& Zhou, 2011). The other is to embed extra information
from other views as a regularization term into the learning
objective (Sindhwani et al., 2005; Sindhwani & Rosenberg,
2008; Ye et al., 2015) and turn the semi-supervised multi-
view problem into a new optimization problem.

2.2. Other methods related to co-learning

Recently, there are multiple other methods proposed aim-
ing to simultaneously learn classifiers on two different
views or multi-views. While different from co-training
approaches, these methods directly pseudo-label all unla-
beled samples and involve them into the training process.
A typical approach along this line is Co-EM (Nigam &
Ghani, 2000), which iteratively updates labels of unlabeled
data based on the posterior class probability calculated by
naive Bayesian learners, and updates the classifiers on all
of them. Several other methods directly encode the un-
known labels of unlabeled data and classifier parameters
on two views into a model, and simultaneously calculate all
these variables through solving this model. Typical meth-
ods of this category include Co-MR (Sindhwani & Rosen-
berg, 2008), which deduces a co-regularization kernel by
exploiting two Reproducing Kernel Hilbert Spaces defined
over the same input space, and RANC (Ye et al., 2015),
which assumes predictions for unlabeled data under differ-
ent views are consistent with each other and enforces an af-
fixed rank constraint on optimization function of each view.

2.3. Co-training theory development

The rationality of co-training is supported by a series of re-
lated theoretical analyses. E.g., (Blum & Mitchell, 1998)
showed that class on two views is learnable in the PAC
model with classification noise when the features of two
views are independent given the class. To further relax
the assumption for co-training, (Abney, 2002) provided a
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weaker view-independence condition that brings about the
success of co-training. Afterwards, (Balcan et al., 2004)
introduced the ε-expansion assumption, which is a confi-
dence assumption on pseudo labeled positive samples, fur-
ther relaxing the condition of guaranteeing the effective-
ness of a co-training strategy. Later, (Wang & Zhou, 2010)
made a new analysis of co-training on label propagation
strategy designed for co-training.

Despite providing theoretical support for current co-
training methods, all these theories include some subjective
assumptions like the independence between classifiers of
different views and the confidence extent of pseudo-labels
of unlabeled samples obtained by the algorithm. These as-
sumptions, however, are not only hard to be justified in real
applications, but also not very intuitive to be easily under-
stood by common co-training users, which might possibly
keep it from being more extensively utilized in practice.

2.4. Self-paced learning

(Bengio et al., 2009) proposed a learning paradigm called
curriculum learning(CL), in which a model is learned by
gradually including samples from easy to complex in train-
ing so as to increase the entropy of training samples. Af-
terwards, self-paced learning (Kumar et al., 2010) is pro-
posed to embed curriculum design as a regularization term
into the learning objective. Due to its generality, the SPL
theory has been widely applied to various tasks, such as
object tracking (Supancic & Ramanan, 2013), image clas-
sification (Jiang et al., 2015), and multimedia event detec-
tion (Jiang et al., 2014a;b). Especially, the SPL paradigm
has been integrated into the system developed by CMU In-
formedia team, and achieved the leading performance in
challenging TRECVID MED/MER competition organized
by NIST in 2014 (Yu et al., 2014).

Let L(yi, g(xi,w)) denote the loss function which calcu-
lates the cost between the ground truth label yi and the es-
timated one g(xi,w). Here w represents the model param-
eter inside the decision function g. The SPL model con-
siders a weighted loss term for all samples and a general
self-paced regularizer with respect to sample weights, ex-
pressed as:

min
w,v∈[0,1]n

E(w,v;λ) =

n∑
i=1

(viL(yi, g(xi,w))+f(vi, λ)),

(1)

where λ is the age parameter for controlling the learn-
ing space, and f(v, λ) represents the self-paced regularizer
(SP-regularizer briefly). By jointly learning the model pa-
rameter w and the latent weight v using alternative opti-
mization strategy with gradually increasing age parameter,
more samples can be automatically included into training
from easy to complex in a purely self-paced way.

The recent development of SPL includes that (Jiang et al.,

2015) improved SPL as a more effective self-paced cur-
riculum learning (SPCL) regime by embedding useful
loss prior knowledge into the model and analyzed that
this regime is analogous to rational instructor-student-
collaborative learning mode of human teaching. And mul-
tiple researches (Zhang et al., 2015; Zhao et al., 2015; Pi
et al., 2016) showed that SPL worked well when dealing
with real data. Besides, (Meng & Zhao, 2015; Ma et al.,
2017) proved that the optimization problem of SPL solved
by the alternative optimization algorithm is equivalent to a
robust loss minimization problem solved by a majorization-
minimization algorithm. This work first reveals the insight-
ful understanding of the robust learning mechanism under
SPL.

3. Self-paced Co-training
In this section, we introduce the details of our proposed
framework, Self-Paced Co-training (SPaCo) model. We
first present the mathematical form of this model, and then
introduce the alternative optimization algorithm for solving
this model. It is then evident that the algorithm finely com-
plies with a co-training strategy in a “draw with replace-
ment” mode and a series implementation manner. Some
properties of the algorithm will be detailedly analyzed af-
terwards. We then provide the theoretical support under
ε-expansion assumption, and show that the effectiveness of
the algorithm can be proved under the conventional routine
of co-training. Finally, a new interpretation on the mecha-
nism of this method will be presented from the viewpoint
of self-paced learning.

3.1. SPaCo Model

We first present the following SPaCo model, which extends
the self-paced learning optimization model (1) to two view
scenarios, by introducing importance weights of two views
v
(1)
k , v

(2)
k , (k = l + 1, · · · , l + u), together with the corre-

sponding hard self-paced regularizer f(v, λ) = λv as pro-
posed in (Jiang et al., 2014a):

min
w(j),yk,v

(j)
k ∈[0,1]

j=1,2;k=l+1,··· ,l+u

E(w(j), v
(j)
k , yk;λ(j), γ) =

2∑
j=1

l∑
i=1

L(yi, g
(j)(x

(j)
i ;w(j))) +

1

2

2∑
j=1

||w(j)||2

+

2∑
j=1

l+u∑
k=l+1

(v
(j)
k L(yk, g

(j)(x
(j)
k ;w(j)))− λ(j)v(j)k )

− γ(v(1))Tv(2),

(2)

where l and u denote the number of labeled and unla-
beled instances, respectively. x

(j)
i is the ith sample (i =

1, · · · , l + u) under jth view (j = 1, 2), and yi is the com-
mon label of x(j)

i for every j. v(j)k denotes the weight of



Self-Paced Co-training

x
(j)
k where k = l + 1, ..., l + u. v(j) is an u-dimensional

vector preserving all the weights of unlabeled instances un-
der jth view where its kth element is v(j)l+k. w(j) represents
parameters of jth classifier trained on jth view. λ(j) is the
age parameter controlling the training scale in each itera-
tion with respect to jth view, and γ is the parameter adjust-
ing influence from the other view when one view is going
to add more training samples.

The above SPaCo model actually corresponds to the sum
of SPL model under two views plus a regularization term
(v(1))Tv(2). This inner product encodes the relationship of
“sample easiness degree” between two views. The new co-
regularizer delivers the basic assumption under co-training
that different views share common knowledge of pseudo-
labeled sample confidence (an unlabeled sample is likely
to be labeled correctly or wrongly simultaneously for both
views), and thus this inner product enforces the weight pe-
nalizing the loss of one view similar to that of the other
view. This finely accords to the idea of SPCL and com-
plies with an instructor-student-collaborative learning man-
ner under a specific co-training curriculum.

3.2. AOS algorithm for solving (2)

The alternative optimization strategy (AOS) can be read-
ily adopted to solve this SPaCo model. The optimization
process are shown as follows1:

Initialization: The first step is to initialize parameters of
model. v(1) and v(2) are zero vectors in Ru. λ(1) and λ(2)

are initialized with small values to allow a few unlabeled
instances into training for the first iteration. γ is set as a
specific value in the whole training process. Two classifiers
are simultaneously trained on labeled samples to get initial
losses of both labeled and unlabeled instances.

Update v(3−j)k (j = 1, 2): The physical meaning of this
step is to prepare confident unlabeled instances (with non-
zero v(3−j)k values) for the training on the jth view. This is
known as the process of picking confident instances from
one view in the traditional co-training algorithm. By calcu-
lating the derivative of Eq. (2) with respect to v(3−j)k , we
can get

∂E

∂v
(3−j)
k

= L
(3−j)
k − λ(3−j) − γv(j)k . (3)

Then we can get the closed-form updating equation for
v3−ji as follows:

v
(3−j)∗
k =

{
1, L

(3−j)
k < λ(3−j) + γvjk,

0, otherwise.
(4)

1For the ease of description, we only present the optimization
process under one view since parameters under the other view are
optimized in the same way.

In the first iteration, all the v(j)k s are zeros according to the
initialization. Thus unlabeled instances are selected only
from the (3−j)th view. In other words, unlabeled instances
with loss values less than λ(3−j) will be seen as confident
instances.

Update v(j)k : The goal of this step is to formally define
which unlabeled instances will be feeded into the training
pool of j(th) view. The optimization process for v(j)k is the
same as previous step, but unlabeled instances selected in
this step will be directly employed for training in jth view.

From Eq. (4), we can easily observe that confident in-
stances from the other view (picked in the previous step)
possess higher chance than other instances to be selected
for training.

Update w(j): This step aims to train a classifier by virtue
of the labeled and pseudo-labeled samples in the training
pool of the jth view. By setting the loss as well-known
hinge loss, we can directly choose SVM to train the ex-
pected classifier. In this case, Eq. (2) degenerates to the
standard SVM optimization problem as:

min
w(j)

1

2
||w(j)||2 +

l∑
i=1

L
(j)
i +

l+u∑
k=l+1

v
(j)
k L

(j)
k , (5)

where L(j)
t = L(yt, g(x

(j)
t ,w(j))), t = 1, · · · , l + u. This

problem can be readily solved by any off-the-shelf SVM
toolbox (Jiang et al., 2014a). For the cross entropy loss,
we can employ deep learning network to train the expected
classifier, and thus our model is not constrained within one
single classification algorithm.

Update yk: The next step is to update pseudo-labels of
training samples by solving the following minimization
sub-problem:

yk = argmin
yk

2∑
j=1

v
(j)
k L(yk, g(x

(j)
k ;w(j))). (6)

It is easy to prove that the global optimum of the above
problem can be obtained by directly setting the pseudo-
label yi of a training sample as the weighted sum of pre-
diction value under two classifiers.

Once pseudo-labels of training samples are refreshed,
λ(1), λ(2) are enlarged to allow more instances with lager
loss values into the training pool in the next iteration. Then
we repeat the above optimization process with respect to
each variable under different views until there is no more
available unlabeled instances or the preset largest iteration
number is reached.

The entire process of this alternative optimization algo-
rithm is summarized in Algorithm 1. It can be seen that
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such optimization process exactly corresponds to the tra-
ditional co-traing algorithm with some reasonable adjust-
ments. Assisted by this model, such a co-training algorithm
possesses all of the necessary elements a formal machine
learning method should have.

Algorithm 1 Alternative Optimization Algorithm for Solv-
ing SPaCo Model

1: Input: samples x(1)1 , · · · , x(1)l+u, x
(2)
1 , · · · , x(2)l+u, labels

y1, ..., yl, parameters λ(1), λ(2), γ, and max round.
2: Output: w(1),w(2).
3: Initialize v(1), v(2), λ(1), λ(2), and γ
4: Update w(1),w(2)

5: training round = 1
6: while not converge || training round < max round do
7: for j ← 1 to 2 do
8: Update v(3−j)k : Prepare confident instances from

(3− j)th view for training on jth view
9: Update v

(j)
k : Add unlabeled instances into the

training pool of jth view based on L
(j)
k and

γv
(3−j)
k

10: Update w(j): Train a classifier (SVM for in-
stance) on training pool of jth view

11: Update yk: Find optimal pseudo label for each of
selected unlabeled instances by solving Eq. (6)

12: Augment λ(1), λ(2)

13: end for
14: end while
15: Return w(1),w(2)

From Algorithm 1, we can easily observe that it has a very
similar implementation scheme as traditional co-training
methods. Specifically, it also iteratively trains classifiers on
two views by exchanging labels of unlabeled instances. Yet
beyond that, the proposed algorithm complies with an opti-
mization implementation on a underlying self-paced learn-
ing model. This model thus tends to provide some novel in-
sightful understandings on the intrinsic effectiveness mech-
anism under the co-training approach, which will be ana-
lyzed in Sec. 3.5.

3.3. Algorithm analysis

The standard co-training method (Blum & Mitchell, 1998)
requires to simultaneously train classifiers of both views,
and then select highly confident samples to label for each
view and feed them into the training pool of the other view.
The proposed SPaCo algorithm, as listed in Algorithm 1,
mainly differs from traditional co-training methods in the
following three-fold aspects.

First, instead of “draw without replacement” mode as con-
ventional, the SPaCo algorithm utilizes a “draw with re-

placement” manner. The algorithm does not consistently
keep the previously selected training pool unchanged,
while a confidence sample in the pool has certain chance
to be thrown out from it when the loss value of a sample is
larger than a preset threshold γ + λ. Note that this confi-
dence threshold is larger than that (λ) set for samples not
in the training pool, implying that we still more prefer to
keep the samples in the pool than those not in it. Also,
when we set γ as an extremely large value, then it is easy
to deduce that the algorithm will degenerate to a traditional
“draw without replacement” method since the loss values
of any samples in the training pool will be smaller than the
threshold and will thus be definitely selected in the next
round.

Second, instead of the parallel training way as conven-
tional, the new algorithm uses a serial manner for training
the classifiers of two views. This not only will make this al-
gorithm fully comply with the alternative updating strategy
for solving an optimization model, but also leads to better
performance than traditional parallel model methods (see
experiment part). This might possibly be due to the fact
that the serial way can better guarantee the reliability of
added high-confidence pseudo-label samples based on the
updated while not the non-updated classifiers as in parallel
way.

Third, when updating the training pool in one view, be-
sides feeding into high-confidence samples justified by the
other view, the new algorithm might add into the pool a few
high-confidence samples which obtain very small loss val-
ues calculated on the current view. This is expected to make
the algorithm use more reliable high-confidence knowledge
from the predicted knowledge by current classifiers.

3.4. Learnable theory of SPaCo under ε-expansion
assumption

Similar to the theoretical support for traditional co-training
methods, we want to prove that the SPaCo algorithm is a
PAC learning algorithm under the certain ε-expansion con-
dition as utilized in (Balcan et al., 2004). First we give the
definition of the ε-expansion condition:

Definition 1 (Balcan et al., 2004) Let X+ denote the pos-
itive region and D+ denote the distribution over X+, and
Xi(i = 1, 2) is the training data set in the ith view. For
S1 ⊆ X1 and S2 ⊆ X2, the D+ is ε-expanding if the fol-
lowing inequality holds:

P (S1 ⊕ S2) ≥ ε min(P (S1 ∧ S2), P (S̄1 ∧ S̄2)), (7)

where P (S1 ∧ S2) denotes the probability of examples for
being confident in both views, and P (S1 ⊕ S2) denotes
the probability of examples for being confident in only one
view.
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We can then prove the following theorem for the proposed
SPaCo algorithm. The proof is presented in supplementary
material.

Theorem 1 Let εfin and δfin be the desired accuracy
and confidence parameters. Suppose that the serial ε-
expanding condition is satisfied in each training round, and
then we can achieve the error rate εfin with probability 1−
δfin by running the SPaCo forN = O( 1

ε log
1

εfin
+ 1
ε ·

1
pinit

)

rounds, each time running algorithm A1 and algorithm A2

with accuracy and confidence parameters set to ε·εfin

8 and
δfin

2N , respectively.

Therefore, the rationality of the new algorithm can also be
supported by the traditional theoretical means.

3.5. Co-robust-loss interpretation for SPaCo rationality

Based on the SPaCo model (2) underlying Algorithm 1,
we can get some new insights underlying the co-training
regimes.

(Meng & Zhao, 2015) has proved that the optimization
problem (1) of SPL is closely related to a robust loss min-
imization problem. Such understanding can be utilized in
this study to present a new understanding for the effective-
ness insight underlying this co-training strategy. Specif-
ically, in the SPaCo model (2), there is a separate SPL
objective function for each view, which means that there
implicitly exists a robust loss for training the classifier of
each view on pseudo-labeled samples. However, such ro-
bust losses for different views are not independent while
closely related to each other since a sample should be la-
beled correctly or wrongly for any view of data representa-
tion. Thus in SPaCo model (2), the co-training curriculum
regularization actually encodes such relationship between
robustness of different views. That is, through consistently
exchanging pseudo-labels justified in different views, the
robust loss functions of both views are enforced to be re-
lated by such regularization term. This guarantees a sound
learning manner for the co-training process.

Note that such a explanation for the effectiveness of the
SPaCo algorithm can be easily understood and requires
no subjective assumptions on pseudo-label confidences or
two-view independence. It is thus expected to facilitate a
better extension of co-training paradigms to general users.

4. Experimental results
To validate the performance of the proposed SPaCo
method, we first employ six text classification data sets de-
rived from three real-world domains, where each data set
is associated with two naturally partitioned or artificially
generated views. Besides, we also apply our method to the
person re-identification task, which is a popular research

Table 1. Statistics of Utilized Data Sets

Data set Number of
examples

Attributes Postive
proportionview 1 view 2

course 1051 344 42 21.88%
ads12 3279 45 49 14.04%
ads13 3279 45 47 14.04%
ads23 3279 49 47 14.04%
NG1 800 303 334 50%
NG2 800 303 334 50%

topic in the field of computer vision.

4.1. Text Classification Experiments

Datasets: We employ the following six data sets, all having
been used for testing in the previous co-training literatures.

Course data: This data set contains 1,051 home pages col-
lected from web sites of Computer Science departments of
Cornell University2. These pages are manually labeled as
course or noncourse, each with a page-based view (words
appearing in the page itself) and a link-based view (words
appearing in hyperlinks pointing to it). Among all home-
pages, course homepages (22%) correspond to positive ex-
amples while all others are negative examples.

Advertisement data: This data set contains advertising im-
ages in web pages3. Each image is described from multiple
views, such as image properties, image caption, words oc-
curring in the image source’s url, words occurring in the
affiliated web page’s url and words occurring in the image
anchor’s url. By using the words of different areas, we cre-
ate data sets named ads12, ads13 and ads23.

Newsgroup data: This data set is related to 16 news-
groups postings from the Mini-Newsgroup data4. Each
group consists of 100 postings randomly drawn from the
1000 postings in the original 20-Newsgroup data. The 16
chosen newsgropus are divided into four groups, and we
create NG1 and NG2 data sets based on a partition strat-
egy (Zhang & Zhou, 2011).

Each utilized data set contains two classes. Table 1 sum-
marizes the statistics of these data sets. For each data set,
25% of the data are retained as test examples while the rest
are used as training examples, i.e., including both labeled
and unlabeled examples. Three experiments are conducted
on these six data sets with different number of labeled in-

2Data available at http://www.cs.cmu.edu/afs/cs/project/theo-
20/www/data/

3Data available at https://archive.ics.uci.edu/ml/datasets/Internet
+Advertisements

4Data available at http://www.cs.cmu.edu/afs/cs/project/theo-
11/www/ naive-bayes/mini newsgroup.tar.gz.
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Table 2. Accuracy comparison of 6 competing methods on 6 testing data sets. Each result is averaged from 100 trials with independently
sampled labeled samples. The best result in each series is highlighted in bold.

SelfTrain Cotrain CoEM CoMR Cotrade RANC SPaCo

k=1

course 0.8034 0.8820 0.7884 0.7975 0.8904 0.7297 0.9121
ng1 0.5521 0.6067 0.5679 0.5148 0.5792 0.6170 0.5970
ng2 0.5775 0.5900 0.5988 0.5211 0.6199 0.6177 0.6243
ad12 0.8733 0.9057 0.8635 0.8653 0.8874 0.9336 0.9253
ad13 0.9082 0.9160 0.8705 0.8664 0.9212 0.9096 0.9227
ad23 0.8975 0.8920 0.8621 0.8631 0.9049 0.9035 0.9093
average 0.7687 0.7987 0.7585 0.7381 0.8005 0.7852 0.8151

k=2

course 0.8303 0.9086 0.8217 0.8145 0.9270 0.7878 0.9315
ng1 0.5826 0.6353 0.6253 0.5260 0.6530 0.6475 0.6255
ng2 0.6033 0.6467 0.6475 0.5422 0.6865 0.6658 0.7036
ad12 0.8947 0.9057 0.8716 0.8690 0.9002 0.9374 0.9346
ad13 0.9124 0.9243 0.8883 0.8720 0.9267 0.9118 0.9320
ad23 0.9021 0.9109 0.8677 0.8665 0.9152 0.9084 0.9207
average 0.7877 0.8219 0.7870 0.7484 0.8348 0.8098 0.8413

k=3

course 0.8525 0.9141 0.8651 0.8365 0.9298 0.8248 0.9322
ng1 0.6509 0.7058 0.6724 0.5627 0.7072 0.7050 0.6827
ng2 0.6858 0.6970 0.7212 0.5853 0.7573 0.7279 0.7701
ad12 0.8986 0.9105 0.8812 0.8750 0.9011 0.9349 0.9356
ad13 0.9208 0.9312 0.9077 0.8816 0.9255 0.9226 0.9441
ad23 0.9014 0.9108 0.8753 0.8728 0.9089 0.9176 0.9219
average 0.8183 0.8449 0.8205 0.7690 0.8550 0.8388 0.8644

stances. To simulate real-world cases where labeled sam-
ples are rarely available, only a small number of instances
are randomly selected as labeled data. Among the train-
ing samples, we choose 2k positive and 3 · 2k negative,
k = 1, 2, 3, labeled instances for Course, 2k positive and
6 · 2k negative labeled examples for Advertisement, and
2 · 2k+1 positive and 2 · 2k negative labeled examples for
Newsgroup, based on their different data size. On each data
set, three series of experiments are implemented (i.e., for
k = 1, 2, 3), and each experiment series contains 100 tri-
als, with independently sampled labeled samples.

Experiment setting: The performance of SPaCo is com-
pared with six current semi-supervised learning algo-
rithms, including: SelfTrain (Scudder, 1965), the most
conventional SSL method, the co-training method (Blum
& Mitchell, 1998), the most conventional co-training
method, CoTrade (Zhang & Zhou, 2011), one state-of-the-
art co-training method, CoEM (Nigam & Ghani, 2000),
CoMR (Sindhwani & Rosenberg, 2008) and RANC (Ye
et al., 2015), representing the state-of-the-art for solving
two-view co-learning problem. SVM is employed as base
classifier in text classification task for all the iterative train-
ing methods.

For SelfTrain, two classifiers expand their training pool
by selecting the “most confident” samples they thought
by themselves in each training round. The standard co-

training and Cotrade select the “most confident” samples
justified by the other view. To avoid introducing too much
noise, each classifier of SelfTrain and standard co-training
only selects 1p(ositive) 3n(egative) for the course data, 1p
6n for the ads data, and 2p 2n for the newsgroup data.
These three algorithms terminate when no more examples
are available for training. Instead of augmenting training
pool step by step, CoEM estimates class probability in ev-
ery training round and employs these pseudo labels to re-
estimate class probability after each iteration.

For CoMR, each data set adpots an unified represen-
tation by merging the two views, and the regular-
ization parameters γ1, γ2 varied on a gird of values
(10(−6), 10(−4), 10(−2), 1, 10, 100) where the results from
optimal configuration are reported. RANC embeds the rank
constraints into the optimized function of multi-view learn-
ing object (Ye et al., 2015) and proposes two different ways
to solve the problem. The ADMM method (Boyd et al.,
2011) is adopted in this paper to get the solution.

For our SPaCo algorithm, instead of tuning λ directly, we
increase the number of nonzero element of v(j) in each
training round. Besides, to judge unlabeled instances based
on two views, we easily set γ as 1 throughout all our ex-
periments. Its setting actually is not sensitive to the final
performance of our algorithm.

Experimental results: The average accuracy over all 100
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trails obtained by each competing method on each data set
is shown in Table 2. From the table, we can easily observe
that the proposed SPaCo method can attain the best (13 out
of 18) or the second best (3 out of 18) performance among
all competing methods. In average, SPaCo acquires an evi-
dent better performance than other competing methods un-
der different sizes of initialized labeled examples. This ver-
ifies the superiority of the proposed method on these co-
training problems.

4.2. Person Re-identification Experiments

The person re-identification (re-ID) task is usually viewed
as an image retrieval problem, aiming to match pedestrians
from the gallery (Zheng et al., 2016). Specifically, given a
person-of-interest (query), a person re-ID method aims to
determine whether the person has been observed by cam-
eras.

Dataset: We employ the Market-1501 set in our experi-
ment. This data set contains 32,668 detected person bound-
ing boxes of 1,501 identities (Zheng et al., 2015). Images
of each identity is captured by six cameras at most, and two
cameras at least. According to the data set setting, training
set contains 12936 cropped images of 751 identities and
testing set contains 19,732 cropped images of 750 identi-
ties. They are directly detected by Deformable Part Model
(DPM) instead of hand-drawn bboxs, which is closer to the
realistic setting. Each identity may have multiple images
under each camera. We use the provided fixed training and
test set, under both the single-query and multi-query eval-
uation settings.

In the experiments, 20% instances of training data with
their labels are chose with labels, the rest of data are treated
as unlabeled instances. Instead of directly selecting labeled
samples from the whole data, we randomly sample 20%
labeled samples for each class. We implemented the ex-
periments two times under two randomly sampled training
data, and their average is reported as the final result.

Experiment setting: Like the state-of-art Person re-ID
model proposed by (Zheng et al., 2016), three different
deep learning networks, including Alexnet, Googlenet, and
Vggnet, respectively, are used to generate multi-view fea-
tures for Market-1501 data set. The employed model is a
new siamese network that simultaneously computes identi-
fication loss and verification loss (Zheng et al., 2016). We
treat this new loss as the optimized loss in our model, and
thus the re-ID task can be well handled using the SPaCo
algorithm. Two combinations, Alexnet with Googlenet and
Googlenet with Vggnet, are adopted in our experiments.

Over all experiments, parameters of each model are set fol-
lowing the training setting as (Zheng et al., 2016).

Via using co-training and self-train algorithms as compar-

Table 3. Rank-1 accuracy comparison of 3 competing methods on
Market-1501 data set

Method Alexnet & Googlenet Vggnet & Googlenet
View1 View2 Final View1 View2 Final

Base 0.3693 0.5371 0.5537 0.5581 0.5371 0.5811
SelfTrain0.5118 0.6315 0.6603 0.6223 0.6315 0.6707
Cotrain 0.5353 0.6392 0.6686 0.6133 0.6625 0.6726
SPaCo 0.5391 0.6657 0.6785 0.6301 0.6647 0.6825

ison methods, the effectiveness of SPaCo method is vali-
dated. The training process on re-ID task is the same as the
process on text classification task. Cotrade is not adopted
to re-ID task since it can only handle two class problems.
CoMR and RANC are also not included since they are not
trained in an iterative way, and hard to be applied to the
re-ID task. For the SPaCo algorithm, in every iteration,
the number of selected unlabeled instances is ranged from
1000 to 2000. The lower bound is to guarantee sufficient
instances for each class and the higher bound is to avoid
introducting too many noisy samples.

Experimental results: From Table 3, it is seen that rank-1
accuracies of all methods are improved since more sam-
ples are used for training. When Alexnet and Googlenet
networks are adopted, SPaCo achieves the highest rank-
1 accuracy not only on final result, but also on two view
results, respectively. Specifically, our model achieves
66.57% rank-1 accuracy, evidently better than other com-
peting methods. For the Vggnet and Googlenet view ex-
periment, our SPaCo algorithm achieves a 68.26% rank-1
accuracy, which is also the best among all competing meth-
ods.

5. Conclusion and Future Work
We have proposed an improved co-training algorithm
which trains the classifiers under two views of data in a
serial way and alternatively updates the pseudo labels of
unlabeled data to improve the performance of classifiers in
each training round. We represent the algorithm with an
self-paced co-training (SPaCo) model, and the optimized
strategy for solving this model is consistent with the train-
ing process of an improved co-training algorithm. Experi-
mental results verify the advantage of SPaCo beyond cur-
rent co-training methods.

Research directions in our future work include designing
more self-paced regularizers for SPaCo considering their
different capacities on noise data. Besides, since there are
many multi-view other than two view data sets in practice,
we need to develop a more general SPaCo regimes to deal
with multi-view tasks.
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