
1

Optimizing Heart Rate Regulation for Safe

Exercise

Steven W. Su†‡∗, Shoudong Huang†, Lu Wang‡, Branko G. Celler‡,

Andrey V. Savkin‡, Ying Guo§, and Teddy M. Cheng‡

Abstract

Safe exercise protocols are critical for effective rehabilitation programs. This paper aims to develop

a novel control strategy for an automated treadmill system to reduce the danger of injury during cardiac

rehabilitation. We have developed a control-oriented nonparametric Hammerstein model for the control

of heart rate during exercises by using support vector regression and correlation analysis. Based on this

nonparametric model, a model predictive controller has been built. In order to guarantee the safety of

treadmill exercise during rehabilitation, this new automated treadmill system is capable of optimizing

system performance over predefined ranges of speed and acceleration. The effectiveness of the proposed

approach was demonstrated with six subjects by having their heart rate track successfully a predetermined

heart rate.
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I. I NTRODUCTION

An automated exercise system can be useful in providing a platform for the development of

exercise protocols suitable for rehabilitation, medical diagnosis, sport training and analysis of

cardio respiratory kinetics [1] [9] [24]. In our previous study [29], an automated treadmill exercise

system was developed. This system can regulate the heart rate kinetics of the exercising individual

according to a prescribed heart rate profile preventing over stressing of the cardiovascular system.

However, exercising on a treadmill is not without risks and may result in serious injuries [7] [12]

[30]. The major safety concern during treadmill exercise is the subject falling. A fall may occur

when the treadmill is operating at relatively high speed and/or acceleration. It has also been

reported that many obese patients are unable to start exercising on a treadmill, at speeds as low

as2 km/h [10] [16]. In order to ensure safe exercise, the speed and acceleration of the automated

treadmill therefore need to be restricted to a suitable range. This study has developed a new

nonparametric Hammerstein model-based model predictive control (MPC) approach, which can

optimally regulate heart rate under predefined speed and acceleration ranges.

A modest extension of the linear model is the Hammerstein model. The Hammerstein model

can be described as a static nonlinear block followed by a dynamic linear system. Hammerstein

models may account for nonlinear effects encountered not only in industrial processes [13], but

also physiological processes [4] [19] [22] [32]. As far as the amount of prior information about

the system is concerned, identification problems are either parametric [23] or nonparametric [17].

In the nonparametric problem, the need of prior information is often less than that of parametric

problem. However, the nonparametric model will often provide a better fit to experimental data

when pre-determining a model structure is difficult.
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Fig. 1. The proposed nonparametric identification procedure.

This paper presents a nonparametric identification approach for Hammerstein systems (see

Fig. 1.) based on the Support Vector Regression (SVR) [31] [15] and the stochastic method [2].

Specifically, pseudo-random binary sequences (PRBS) experiments are performed to decouple the

identification of the linear dynamic part from the nonlinearity. Correlation analysis [21] is used

to obtain the impulse and step response of the linear dynamic part. The powerfulε-insensitivity

SVR approach is adopted to model the nonlinearity.

We established a nonparametric Hammerstein model by using the proposed modelling method.

Based on the model, we develop a nonparametric model based MPC for an automated exercise

system to ensure safe exercise for rehabilitation purposes. The main advantages of MPC is that

it allows us to use the detailed knowledge of a process, in the form of a dynamic model, as an

aid to controlling that process within the required constraints [14].

MPC has been well developed for linear systems. However, the complexity of the predic-

tive control problem increases significantly for nonlinear systems. In the case of Hammerstein

systems, the most commonly used control method is based on direct inversion of the static

nonlinearity combined with existing linear control approaches [20] [29]. This strategy is also

adopted in this paper. Firstly, the approximation of the inversion of static nonlinearity is directly

obtained by usingε-insensitivity SVR. This nonlinearity is used as a pre-compensator to cancel

the input nonlinearity. The model predictive controller is then designed for the approximated

linear model to achieve desired tracking performance under predefined constraints. Finally,

the proposed MPC approach is applied for the automated heart rate regulation system design.

This study establishes a unified frame work for identification and control ofnonparametric

Hammerstein systems for treadmill rehabilitation exercises. Preliminary data from this study, with

simulation results only, was published in the proceeding of the EMBS 07 conference [27]. This

paper presents the completed study with real time implementation and experimental validation.

The paper is organized as follows. A brief description of the problem is given in Section

II. The proposed identification and model predictive control approach are given in Section III.

Section IV describes the identification of Hammerstein model of heart rate response for treadmill

exercises. Experimental results for the regulation of heart rate of treadmill exercisers are also

presented in Section IV. Section V concludes the paper.
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Fig. 2. The automated treadmill system.

II. PROBLEM DESCRIPTION

The problem considered in this study is the development of a controller for an automated

treadmill system to provide safe exercise protocols. The potential applications arising from this

study include the training of elite athletes, as well as the rehabilitation of patients with cardiac

diseases, diabetes and obesity. The experimental settings are shown in Fig.2. The controller’s

input is the measured heart rate, whereas the output of the controller is the actuating signal that

controls the speed of the treadmill.

In our previous study [29], a nonlinear robust control approach was developed and desired

tracking performance was achieved under normal working conditions. However, for some cases,

the transmission of ECG signal (heart rate variation) was significantly perturbed due to the

high impedance of electrodes, electrical and electromagnetic interface (EMI), and accidental

disconnection of the electrodes. This often led to a sudden halt or dramatic increase of treadmill

speed, compromising the safety of the user.

As stated in the introduction, in order to ensure the safety of rehabilitation exercise, maximum

allowable constraints on the speed and acceleration of the treadmill need to be imposed in the

controller. The role of the controller is to optimally regulate the heart rate by adjusting the speed

of the treadmill under speed and acceleration constraints.

III. PROPOSED MODELLING AND CONTROL APPROACH

In this paper, we use a Hammerstein model to dynamically describe the relationship between

walking speed and heart rate variation. As mentioned in the introduction, the linear dynamic iden-

tification of Hammerstein models can be decoupled from that of nonlinear parts by using PRBS

experiments [2]. However, the PRBS inputs often cannot excite the nonlinearity sufficiently. To

identify the nonlinear part or its inverse, steady state experiments should be performed.
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Fig. 3. The precompensated system.

A. Modelling the inverse of the nonlinear function by using SVR

To transfer a Hammerstein system to a linear system, a pre-compensator (essentially, the

inverse of the nonlinearity) can be applied as in [20] and [29] (See Fig.3).

For the identification of the inverse of the nonlinearity, the so calledε-insensitivity SVR will

be employed, which is convex and very efficient in terms of speed and complexity. Now we

briefly introduce the SVR approach [31].

Let {ui, yi}N
i=1 be a set of inputs and outputs data points (ui ∈ U ⊆ Rd, yi ∈ Y ⊆ R, N is

the number of points). The goal of the SVR is to find a functionf(u) which has the following

form

f(u) = w · φ(u) + b, (1)

whereφ(u) represents the high-dimensional feature spaces which are nonlinearly transformed

from u. The coefficientsw and b are estimated by minimizing the regularized risk function:

1

2
‖w‖2 + C

1

N

N∑
i=1

Lε(yi, f(ui)). (2)

The first term is called the regularized term. The second term is the empirical error measured

by ε-insensitivity loss function which is defined as:

Lε(yi, f(ui)) =




|yi − f(ui)| − ε, |yi − f(ui)| > ε

0, |yi − f(ui)| ≤ ε
(3)

This defines anε tube. The radiusε of the tube and the regularization constantC are both

determined by user.

By solving the above constrained optimization problem, we have

f(u) =
N∑

i=1

βiφ(ui) · φ(u) + b. (4)

where the coefficientsβi correspond to each(ui, yi). The support vectors are the input vectors

uj whose corresponding coefficientsβj 6= 0.

By the use of kernels, all necessary computations can be performed directly in the input space,

without having to compute the mapφ(u) explicitly. After introducing kernel functionk(ui, uj),
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the above equation can be rewritten as follows:

f(u) =
N∑

i=1

βik(ui, u) + b, (5)

For linear support regression, the kernel function is thus the inner product in the input space:

f(u) =
N∑

i=1

βi < ui, u > +b. (6)

For nonlinear SVR, there are a number of kernel functions which have been found to provide

good generalization capabilities, such as polynomials, radial basis function (RBF), and sigmoid

functions. Brief introduction of SVR regression can be found in papers [29] [28]. Details about

SVR, such as the selection of radiusε of the tube, kernel function, and the regularization constant

C, can be found in [31] [26] [18].

It should be emphasized that, as we need to model the inverse of the nonlinear functionf(u),

the measured steady state outputy (heart rate) will be used as theinput data, and the inputu

(treadmill speed) as theoutput data.

B. Identification of the linear dynamic part

When a PRBS input is employed for the identification of the Hammerstein system, as shown

in equation (2.3) of [2], the identification can be simplified as a linear identification problem.

A PRBS signal is particularly suitable as an experimental input signal for correlation analysis.

A PRBS input has two levels (u(t) = u1 or u2) and may switch from one level to the other

only at multiples of a constant time intervalTs. A PRBS is periodic with periodT = TsN ,

whereN is an integer. In order to avoid nonlinear behavior, the difference of the two levels (u1

and u2) of PRBS should be as close as possible. However, it is also required that the output

responses under these two levels of inputs should be noticeable different (good signal to noise

ratio) to ensure a reasonable parameter estimation results. For the selection of Ts and N, we

need to compromise with the complexity of the selected model, response time of the system,

noise level, and the total experimental time which the subjects can tolerate. In this study, we

selectu1 = 4km/h, u2 = 6km/h, N = 31, andTs = 15s. The period of PRBS can be calculated

as T = Ts · N = 465s = 7.75minutes. It is sufficient to excite the cardio-respiration systems

(more than 5 minutes) and short enough to avoid over stressing the subjects to outside the normal
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aerobic range. The 31 bit PRBS input applied in this study is{1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1

1 1 0 0 1 1 0 1 0 0 1 0 0 0 0} [11].

Correlation analysis [21], which is anonparametric modelling approach, is applied to identify

the step response model of the linear dynamic part in this paper. The step response model is

shown as in equation (7) [14]:

yk =
n−1∑
i=1

hi∆uk−i + hnuk−n, (7)

where:

• hi (i = 1, · · ·n) is the model step response coefficients;

• n is the truncation order;

• ∆uk = uk − uk−1.

It should be noted that the model established in this study is for sample group of healthy

young male subjects (aged 31± 5yr, height 176± 5cm, body weight 74± 11kg).

C. Model predictive controller design

Fig. 4. Model predictive algorithm description.

Our previous work [29] mainly concerns robust performance of heart rate tracking. In this

study, in order to ensure the safety of rehabilitation, walking speed and acceleration of the

treadmill exercises must be confined to a safe range. MPC is the most suitable selection due to

its intrinsic capability of dealing with constraints. After the pre-compensator is employed, the

Hammerstein system can be treated as a linear dynamic system. Therefore, linear MPC can be

applied to handle this problem.
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MPC predicts and optimizes the future behaviour of the process based on a dynamic model

of the process. At each control interval, the MPC algorithm calculates an open-loop sequence

of the manipulated variables in such a way as to optimize the future behaviour of the plant [3].

The first value in this optimal sequence is employed into the plant. Fig.4 shows the state of a

SISO (single input and single output) MPC system that has been operating for many sampling

instants. Integerk represents the current instant. The latest measured output,yk, and previous

measurements,yk−1, yk−2, · · · , are known.

To calculate its next moveuk, the controller operates in two phases [3] [25]:

1. Estimation and Prediction: In order to make an intelligent move, the controller needs to

know the current state and any internal variables that influence the future trend. To accomplish

estimation and prediction, the controller uses all past and current measurements and the models.

In this paper, the step response models obtained by using correlation analysis are applied to

implement prediction.

2. Optimization: Values of setpoints, measured disturbances, and constraints are specified over

a finite horizon of future sampling instants,k + 1, k + 2, · · · , k + p, wherep is the prediction

horizon. The controller computesm movesuk, uk+1, ... uk+m−1, wherem is the control horizon.

The moves are the solution of a constrained optimization problem:

min
∆uk···∆uk+m−1

(

p∑

l=1

‖ŷk+l/k − rk+l‖2
Γy

l
+

m∑

l=1

‖∆uk+l−1‖2
Γu

l
), (8)

where:

• rk+l is the targeted output at timek + l;

• ŷk+l/k is the predicted values ofy at timek + l based on information available at timek;

• p is prediction horizon which sets the number of control intervals over which the controller

predicts its outputs when computing controller moves;

• m is control horizon which sets the number of moves computed. It must not exceed the

prediction horizon. If less than the prediction horizon, the final computed move fills the

remainder of the prediction horizon;

• ‖x‖2
Γ = xT Γx;

• Γy
l and Γu

l are weighting matrices for predicted errors and control moves (Γy
l > 0 and

Γu
l ≥ 0). For SISO systems,Γy

l andΓu
l are nonnegative scalars.

Quadratic Programming (QP) was used to minimize the objective function (8).
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FIR (Finite Impulse Response) type models (such as step response models and impulse

response models) are the most common models utilised in commercial MPC packages [25].

This is because FIR model based predictions depend only on the input information, as these

models have no autoregressive part.

For a step response model, the following form is applied for prediction [3] [25]:

ŷk+l/k =
n−1∑
i=1

hi∆uk+l−i + hnuk+l−n + d̂k+l|k, (9)

where:

• d̂k+l|k is the predicted value of additive disturbance at process output at timek + l based

on information available at timek:

d̂k+l|k = r(k)−
n−1∑
i=1

hi∆uk−i + hnuk+l−n. (10)

IV. EXPERIMENTS AND DISCUSSIONS

A. Experimental equipments

The computer controlled treadmill and its related data collection and processing systems are

shown in Fig. 2. The treadmill used in the system is the Powerjog “G” Series fully motorized

medical grade treadmill manufactured by Sport Engineering Limited, England. Control of the

treadmill can be achieved through an RS232 serial port. The treadmill can receive commands

from the computer controller via this link, and obey such commands without supervision. The

measurement of heart rate in the designed system is implemented using a wireless Polar system.

However, even in the absence of external interference the heart rate can vary substantially

over time under the influence of various internal or external factors. Therefore, an improved

exponential weighted moving average filter together with a simple outlier detection algorithm is

adopted for the estimation of the heart rate. Specifically, the control computer collects heart rate

signal from a Polar receiver through an analog input port every2 seconds, and calculates heart

rate by using an edge detection algorithm. Only measured heart rate within a reasonable range

(for example, between50 and150 beats per minute) was counted in the measured sequence in

order to remove outliers.

Assume{xk} is the sequence of the measured heart rate. We apply the exponentially weighted

moving average filter to the sequence{xk}:
x̄k+1 = αx̄k + (1− α)xk. (11)
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whereα is the filter coefficient.

B. Experimental procedure and system modelling

In order to excite nonlinearity sufficiently, steady state experiments are performed and recorded.

Six male subjects volunteered to participate in the study (aged 31± 5yr, height 176± 5cm,

body weight 74± 11kg).

All experiments were conducted in the afternoon, and the subjects were permitted to have a

light meal one hour before their experiment. Initially, the subjects were asked to walk for about

10 minutes on the treadmill to familiarize themselves with the experiment. The subjects were

then requested to walk at five levels of different speeds (3 km/h, 4 km/h, 5 km/h, 6 km/h and

a subject specific maximum walking speed, typically 7km/h). Each level took a total period of

5 minutes, and was followed by a 10-minute resting period. For moderate aerobic exercise, the

heart rate normally takes less than 5 minutes to reach steady state and less than 10 minutes

to recover (see Figure 1 in [8]). Finally, in order to identify the linear dynamic part of the

Hammerstein system, subjects were also requested to walk on the treadmill under a PRBS input.

Fig. 5. Inversion of nonlinearity modelling by using ε-insensitivity SVR.

This study appliesε-insensitivity SVR regression method to model the inverse of the nonlinear

function. The regression result is shown in Fig. 5 where the continuous curve stands for the

estimated input-output steady state relationship. The dotted lines indicate theε-insensitivity tube.

The plus markers are the points of input and output data. The circled ’+’ markers are the support

points. The selected parameters of the SVR regression are listed as follows. The kernel function

is a RBF function withσ = 20.2. The regularization constantC is equal to5. The insensitivity

region ε is 0.8 km/h. The obtained SVR model uses 16.7 % (5 support vectors) of the total
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points available to describe the nonlinear behaviour (with a RMS error0.5 km/h). The identified

static nonlinear inverse model is given as follows:

f(u) =
N∑

i=1

βik(ui, u) + b =
5∑

i=1

βie
− (ui−u)2

2σ2 + b,

where,β1∼5 = -1.95, -5, 5,1.47,0.72,u1∼5 =80.5, 82, 82,106,122, and b=5.01.

For the dynamic modelling of heart rate variation during exercise, a number of paramet-

ric models [6] have been proposed based on physiological analysis. However, because of the

complexity of physiological responses it may not be appropriate to describe the response of

the human cardiovascular system to exercise by a fixed model structure. This paper applies

the nonparametric modelling approach based on correlation analysis [21], to model the linear

dynamic part of heart rate response.

Fig. 6. Correlation analysis results of six subjects. Top: Step responses of all six subjects

based on correlation analysis. Bottom: Normalized step responses of all subjects.

Using experimental data, correlation analysis is then performed. The identified step response

for six subjects are shown in Fig.6. The coefficientsh1−31 in equation (7) is provided as follows:

h1−31= 0.0595, 0.1516, 0.2106, 0.2826, 0.3332, 0.3721, 0.4021, 0.4431, 0.5017, 0.5553,

0.6047, 0.6555, 0.7256, 0.7792, 0.8180, 0.8488, 0.8781, 0.8979, 0.9205, 0.9357, 0.9513,

0.9674, 0.9873, 0.9998, 1.0051, 1.0122, 1.0121, 1.0126, 1.0042, 1.0052, 1.0000.

C. MPC control with selected acceleration constraints

As the inverse of the static nonlinearity has been identified and applied as a precompensator,

the compensated system can be regarded as a linear dynamic system (described by a step response

model). The optimization problem associated with the MPC controller design is then described
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in equation (8). Before implementing the control system, we need to focus on the definition of

system constraints and the selection of prediction and control horizons.

This study investigates constraint selection under the consideration of safety of rehabilitation

exercises. The sampling period of the control system is selected as6 seconds. Treadmill speed

is confined between2km/h and 6.5km/h, which is a comfortable and safe walking range for

patients. The selection of the constraints for acceleration is also crucial for the safety of old

or weak patients due to their relatively slow physical responses. We selected and tested the

following three acceleration constraints:

a) High : [−4.90, 4.90] (km h−1min−1);

b) Medium : [−1.68, 1.68] (km h−1min−1);

c) Low : [−0.96, 0.96] (km h−1min−1).

(12)

The typical responses forHigh, MediumandLow acceleration constraints are shown in Fig.7.

From Fig.7, we can see that the higher the permitted acceleration range the faster the step

responses. However, the differences are not pronounced. For rehabilitation purposes, it is essential

that we pay more attention to the safety of the user rather than a faster response.

Fig. 7. Step response under different acceleration constraints. Top: Heart rate sensor

output (controlled output). Bottom: Treadmill speed (control effort).

As the wireless heart rate signal is subject to electromagnetic interference and motion artefacts

caused by body movements, sensor output may dramatically change (see sensor malfunction A

and B in Fig.8). If the acceleration range isHigh, the automated treadmill system may produce

sudden abrupt motions (the circled part of solid line in the bottom of Fig.8). On the other hand,

a Low acceleration range can well prevent abrupt motions thus avoiding injury.
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Fig. 8. System response for sensor malfunction under different accelerations.

As a tradeoff between system response and patient safety, we select aMediumacceleration.

The overall system constraints are then as follows




2km/h ≤ v ≤ 6.5km/h;

−1.68km · h−1 ·min−1 ≤ a ≤ 1.68km · h−1 ·min−1.
(13)

It should be emphasized that the proposed speed and acceleration constraints can be further

restricted for some special rehabilitation exercises. For example, for the rehabilitation of older

patients with cardiac disease, the speed should be confined between 2 km and 4.5 km, and

acceleration should be further confined between−1 km · h−1 ·min−1 and 1 km · h−1 ·min−1.

For other special purpose rehabilitation exercises, constraints can be set in consultation with the

patient’s clinicians and exercise therapist.

There are no specific rules for the selection of prediction horizonp and control horizonm.

However, increasingp often results in less aggressive control action, whereas increasingm makes

the controller more aggressive and increases computational effort. After extensive simulation and

experimental studies, the value of prediction horizonp and control horizonm were determined

as35 and5 respectively. We also extensively investigated the selection of weighting for predicted

errors and control moves. The following values were finally selected:Γy
l = 2.2 andΓu

l = 0.9.

Fig. 9. Experimental results for all six subjects.
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Fig. 10. Comparison between proposed control approach (under different constraints)

and H∞ control approach (without constraints).

Experimental results for all six subjects are shown in Fig 9. The control system can reach to

target heart rate in less than130 seconds and without steady state error1 for all six subjects.

These results are comparable with those obtained in our previous work [29] which applied the

H∞ control strategy (see Fig. 10). However, it should be pointed out that the results obtained

by the proposed MPC controller are achieved under predefined constraints (13) designed to

guarantee safe exercise for rehabilitation.

Fig. 11.A typical experimental result.

Furthermore, our experimental results show that MPC based control strategy can optimize the

control effort by using the model predictive features of the controller as shown in Fig.11. In

this example, the control effort (treadmill speed) stops increasing att = 24.5 seconds, whereas

the heart rate is still far from the set point. This shows that MPC can correctly determine the

control effort required to avoid an overshoot based on the model prediction function.

In this study we assume the system is a Hammerstein system. It may not be true for real

physiological system. However, the caused modeling error can be handled by the MPC controller.

From our experimental results, we also find that this MPC based control approach is robust in the

presence of substantial inter subject variability as the desired heart rate responses were achieved

for all six subjects.For general purpose exercise training, the group model appears to be

adequate and can be used without significant loss of tracking performance. However, in

1As heart rate is variable even at rest, we consider that the steady state error is zero if the heart rate oscillates around the

reference input by no more than 3 bpm.

October 20, 2009 DRAFT



15

order to further improve control performance and guarantee subject safety during special

rehabilitation exercise or high performance athletic training, we would recommend that

the group model be recalculated for these specific target groups or even individuals.

V. CONCLUSION

One of the main purposes of the developed strategy is to achieve safe exercise protocols in

cardiac rehabilitation programs both for normal operating conditions and in the event of sensor

and/or actuator malfunction (or failure) [5]. In this paper we propose a Hammerstein model-

based model predictive control approach to achieve accurate control of the heart rate response

during exercise. Experimental results show that the proposed control algorithm achieves desired

heart rate tracking performance under predefined speed and acceleration constraints and thus can

ensure the safety of cardiac rehabilitation exercise. It should be noted that this approach can

easily accommodate of actuator failures by simply adding extra control constraints.

In this study, six young and healthy subjects participated in the experimental tests. To further

generalize and demonstrate the validity of this approach, this study will be extended to cardiac

patients as well as those who are obese or overweight.
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Perform steady state experiments (walking at

5 different speeds).


Identify the inverse of the nonlinearity 
by using

SVR.


Perform PRBS experiments.


Identify step response model of the linear

dynamic part by using  C
orrelation Analysis
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End


Fig. 1. The proposed nonparametric identification procedure.
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Fig. 2. The automated treadmill system.
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Fig. 3. The precompensated system.
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Fig. 4. Model predictive algorithm description.
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Fig. 5. Inversion of nonlinearity modelling by usingε-insensitivity SVR
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Fig. 6. Correlation analysis results of six subjects. Top: Step responses of all six subjects based on correlation analysis. Bottom:

Normalized step responses of all subjects.
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Fig. 7. Step response under different acceleration constraints. Top: Heart rate sensor output (controlled output). Bottom:

Treadmill speed (control effort).
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Fig. 8. System response for sensor malfunction under different accelerations.
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Fig. 9. Experimental results for all six subjects.
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Fig. 10. Comparison between proposed control approach (under different constraints) andH∞ control approach (without

constraints).
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Treadmill speed stops increasing at t=24.5 s

Fig. 11. A typical experimental result.
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