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Abstract—Although spectrum sensing, a key technique in dy-
namic spectrum access, has been widely investigated, conventional
methods suffer from carrier frequency offset (CFO), timing delay
and noise uncertainty, which can significantly degrade the sensing
performance. In this paper, we aim to tackle those challenging
issues by developing a stacked autoencoder based spectrum
sensing approach (SAE-SS). The SAE architecture is employed to
effectively learn useful and hidden information from the original
received signals. Compared to the existing sensing methods, our
approach is more robust to CFO, noise uncertainty and timing
delay. Unlike the traditional feature-based detection approaches,
the proposed framework does not require the prior knowledge
or specific features of incumbent users (IUs). Moreover, in
comparison with machine learning based sensing approaches, our
solution does not need any external feature extraction algorithms
to extract specific features (that is essential for ML-based ones).
Through extensive experimental results, our proposed method is
demonstrated to achieve notably higher sensing accuracy, e.g.,
29% reduced probability of miss detection, than that of state-of-
the-art approaches.

Index Terms—Dynamic spectrum access, OFDM, spectrum
sensing, stacked autoencoder, deep learning.

I. INTRODUCTION

In recent years, dynamic spectrum access (DSA) has re-
ceived paramount research interest. In its context, secondary
users (SUs) are allowed to opportunistically utilize the licensed
spectrum resource of incumbent users (IUs) without inducing
any adverse interference [1]. For that purpose, before using
the licensed frequency channels, SUs must detect IU’s activity
states on those channels [2]. In this work, we study the
non-cooperative sensing methods using orthogonal frequency
division multiplexing (OFDM) signals.

The energy detection (ED) is the simplest non-cooperative
OFDM detection approach, while is particularly susceptible to
the noise uncertainty [3]. The feature-based OFDM sensing
methods are more robust to the noise uncertainty by leveraging
the unique structural features of OFDM signals, e.g., the cyclic
prefix (CP) features [4], covariance matrix (CM) features [5],
etc. However, their sensing performance degrades dramatically
due to practical drawbacks, e.g., carrier frequency offset (CFO)
and timing delay [6].

Although various machine learning (ML)-based methods for
spectrum sensing have been proposed, most existing works
focus on cooperative spectrum sensing, e.g., using ML as a tool
at a fusion center to aid the decision making process [7]. Unlike
the learning-based spectrum sensing in cooperative systems,
in this work, we investigate the spectrum sensing method
using deep learning networks in a non-cooperative manner.
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In the context of non-cooperative spectrum sensing, only a
few works leverage ML to extract specific features of received
signals, e.g., the energy [8] and cyclostationary features [4].
However, the accuracy of extracted features is heavily impacted
by communications impairments (e.g., noise uncertainty, timing
delay and CFO). Besides, extracting specific features can only
retrieve partial knowledge from the received signals, while
those hidden but helpful features/information (playing a vital
role for spectrum sensing) are inevitably ignored/lost.

In this paper, we aim to address all the aforementioned
drawbacks using deep learning networks [9]. There are numer-
ous ML network architectures, including stacked autoencoder
(SAE), Convolutional Neural Network (CNN), Recurrent Neu-
ral Network (RNN), etc [10], [11]. Among those models, RNN
can effectively deal with generative problems, while it suffers
from the “vanishing gradient” problem [12], hence how to train
RNN properly is an extremely difficult task. For typical CNN,
it is inevitable to lose features/information in the process of
feature extraction because of its partial connection model. In
contrast, SAE is conceptually simple and easy to be trained
[13]. Moreover, SAE can effectively extract features of the
input data and then fully reconstruct the input data using the
extracted features [13]. These features of SAE allow us to
facilitate accurate sensing performance with the simple training
process. We summarize our major contributions as follows.

• We propose a stacked autoencoder based spectrum sensing
method (SAE-SS) to infer the IU’s presence/absence by
extracting and leveraging all the hidden and useful in-
formation of the received signals. That helps SAE-SS to
probe the IU’s activity more correctly.

• Compared to the existing OFDM sensing methods
(e.g.,[3], [4], [5], [8]), our developed SAE-SS is more
robust to CFO, timing delay and noise uncertainty.

• Unlike the traditional feature-based OFDM detection
methods (e.g., [3], [4], [5]), SAE-SS is capable of sensing
IU’s activity states using the received data only, without
any prior information of IU’s signals. That makes SAE-SS
more suitable for practical implementation, e.g., sharing
the military radar bands in the FCC’s Spectrum Access
System (SAS).

• SAE-SS is capable of automatically extracting the hidden
information from the original received signals without
requiring any external feature extraction methods (often
required in ML-based methods, e.g.,[8]). That improves
the sensing accuracy and makes SAE-SS more suitable
for practical applications.

• We carry out extensive simulations to evaluate SAE-SS’s
performance. The results show that compared with the
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Fig. 1. Architecture of proposed SAE-SS

typical OFDM sensing approaches, the probability of miss
detection of SAE-SS is significantly smaller, especially
under poor communication conditions.

II. SYSTEM MODEL

Consider a typical OFDM DSA system, where the IU
transmits OFDM signals, and SUs can opportunistically utilize
the IU’s spectrum when that IU is absent. Let ym(n) represent
the discrete time received signals, where m = 0, . . . ,M − 1,
and M denotes the number of received OFDM blocks in total.
n = 0, . . . , Nc+Nd− 1, Nc is the length of CP and Nd is the
data block size. Then ym(n) can be expressed as

H0 : ym(n)=wm(n),

H1 : ym(n)=e
−j

2πfq(n−δ)

Nd

Lp−1∑
i=0

hism(n−δ−i)+wm(n), (1)

where H0 stands for the absence of the IU and H1 repre-
sents the presence of the IU. wm(n) denotes the complex
additive white Gaussian noise (AWGN) with zero-mean and
variance σ2

w (i.e., wm(n) ∼ CN(0, σ2
w)). sm(n) stands for

the transmitted OFDM signals from the IU. fq represents
the normalized CFO. δ is the timing delay. hi refers to the
channel gain of the ith channel component, which does not
change in the sensing duration, and Lp is the total number of
multi-path components between the SU and the IU. Without
loss of generality, we assume that sm(n), hi and wm(n) are
independent with each other. Under the central limit theorem,
sm(n) approximately obeys the complex Gaussian distribution
with zero-mean and variance σ2

s , given sufficiently large length
of the received signals. Thus, SNR of ym(n) under H1 is
defined as SNR = σ2

s

∑L−1
i=0 |hi|2/σ2

w.
For typical OFDM sensing methods, Take the ED method

[3] as an instance, its test statistic is

TED =
1

M(Nc +Nd)

M−1∑
m=0

Nc+Nd−1∑
n=0

|ym(n)|2. (2)

From equation (2), it is clear that the ED sensing method
infers the presence of the IU utilizing the energy of the received
signals only. Thus it is sensitive to noise uncertainty, and a
small mismatch in the estimated and actual noise power would
lead to significant performance degradation, especially in low
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Fig. 2. The structure of spectrum sensing based on deep learning network

SNR conditions. Although the feature-based sensing methods
are superior to the ED method regarding the robustness to
noise uncertainty, they are vulnerable to timing delay and CFO.
Consequently, their performance will deteriorate dramatically
even with a small error between the transmitted and received
signals in the frequency-domain or time-domain [5], [6].

III. PROPOSED STACKED AUTOENCODER BASED
SPECTRUM SENSING METHOD

The system architecture for the proposed SAE-SS consists of
two main stages: offline training and online sensing, as shown
in Fig. 1. For the former, it trains the SAE network before the
spectrum sensing stage(i.e., offline stage), which aims to learn
all the important information from the received OFDM signals.
For the latter, it detects the IU’s activity states in the online
spectrum sensing stage by utilizing the extracted features. In
the next, we present the proposed SAE-SS in detail, which
includes pre-training, fine-tuning of SAE, and classification.

A. Pre-training of Stacked Autoencoder

For the pre-training of SAE, it learns the hidden information
from the received OFDM signals in two main steps. First,
divide the whole SAE architecture into several independent
autoencoders (AEs) which are three-layer networks that include
the input layer, the hidden layer and the reconstruction layer
(e.g., the output layer), as shown in Fig. 2(a). Second, train
all the independent AEs one by one, and stack all trained AEs
together by connecting the input and hidden layers of each
AEs, as shown in Fig. 2(b).

We set the number of input units for the first AE as the
integral multiple of OFDM blocks. Notably, AE can work with
non-complex numbers. As such, we divide all the received
OFDM signals into imaginary parts and real parts, respectively.



Thus the received OFDM signals in equation (1) can be
rewritten as

ym := {ℜ(ym(0)),ℑ(ym(0)),ℜ(ym(1)),ℑ(ym(1)), . . . ,

ℜ(ym(Nc +Nd − 1)),ℑ(ym(Nc +Nd − 1))}, (3)

where ℑ(.) and ℜ(.) denote the imaginary part and real part,
respectively. We express the input vector of the first AE as

x := {y0,y1, . . . ,yM−1}T , (4)

where the length of x is Ninput = 2M(Nc + Nd). Note that
x is OFDM signals containing many unique features (e.g., CP
and PT structure), which is beneficial for feature extraction
and sensing IU’s activities. We then feed x into the network
to extract the hidden features through training all AEs.

We express the training process of AEs using the study case
of lth AE. Let Hout

lp , Hlk and Hin
lp stand for the pth output

unit, the kth hidden unit and pth input unit of the lth AE,
respectively. The relationship among them can be given by
[14]

Hlk = f(

Pl∑
p=1

WlpkH
in
lp + blk), (5)

Hout
lp = f(

Kl∑
k=1

W
′

lkpHlk + b
′

lp), (6)

where Pl represents the number of input units at the lth AE. Kl

stands for the number of hidden units in the lth AE. Wlpk is the
weight between the pth input unit and the kth hidden unit in
the lth AE. W

′

lkp stands for the weight between the pth output
unit and the kth hidden unit of the lth AE. For simplicity, we
assume Wlpk = W

′

lkp. blk and b
′

lp are the biases of the kth
hidden unit and the pth output unit in the lth AE, respectively.
f(.) stands for the activation function. The sigmoid function
[13] is selected as f(.) in this work, given by

f(Hin
lp ) =

1

1 + e−Hin
lp

. (7)

Notably, when l = 1, Hin
1 = x, which is

Hin
1 := {Hin

11 ,H
in
12 , . . . ,H

in
1P1
}T , (8)

where P1 represents the number of input units in the first AE,
P1 = Ninput = 2M(Nc+Nd). When l > 1, Hin

l is the hidden
units of (l − 1)th AE.

The core task of training the lth AE is to minimize the
error between Hin

lp and Hout
lp , by continuously updating the

values of Wlpk, blk and b
′

lp. In this work, we adopt the cross-
entropy method to measure the difference between Hin

lp and
Hout

lp , which is given by

χ =

Pl∑
p=1

[Hin
lp log(H

out
lp ) + (1−Hin

lp )log(1−Hout
lp )]. (9)

Let Ω = {Wlpk, blk, b
′

lp}, then the objective function is

Ω = argmin
Ω

χ(Hin
lp ,H

out
lp ) (10)

To optimize Ω, we adopt the gradient descent method [15],

and the rules are given by

Wlpk ←Wlpk − κ
∂χ(Hin

lp ,H
out
lp )

∂Wlpk
, (11)

blk ← blk − κ
∂χ(Hin

lp ,H
out
lp )

∂blk
, (12)

b
′

lp ← b
′

lp − κ
∂χ(Hin

lp ,H
out
lp )

∂b
′
lp

, (13)

where κ is the learning rate.
Following the rules mentioned above, all the AEs can be

trained. After that, we stack the input and hidden layers of
trained AEs together, layer by layer, to obtain the trained SAE.
We express the output of SAE’s pre-training (also the hidden
units of Lth AE) as

HL := {HL1, HL2, . . . , HLKL
}T , (14)

where KL stands for the number of hidden units in the Lth AE.
Note that, HL contains hidden information/features of received
signals, which will be utilized to detect the activity states of
IUs.

B. Fine-Tuning of Stacked Autoencoder and Classification

The pre-training process of SAE can be seen as the stage of
unsupervised feature extraction of IU’s signals. To leverage the
property of SAE for the spectrum sensing, the pre-trained SAE
needs to be fine-tuned. In this work, we implement the logistic
regression classifier to fine-tune the whole SAE architecture,
as illustrated in Fig. 2(b).

Notably, the logistic regression classifier can be treated as a
neural network with a single layer, which applies the softmax
function as the activation of the output layer. Its input is HL

that is also the output features of the pretraining SAE. For
its output, U , it is a set of conditional probabilities of HL,
Wr and br, where br and Wr are biases and weights of the
logistic regression layer, respectively. Note that SAE is used to
detect whether the IU is present or not, which can be regarded
as a binary classification (i.e., the number of classes is 2). In
this case, the conditional probability of U can be written as

P (U=τ |HL,W
r,br)=

eW
r
τHL+br

τ∑1
j=0 e

Wr
jHL+br

j

, (15)

where τ is 0 or 1. τ = 1 stands for the presence of the IU, and
τ = 0 denotes the absence of the IU. The logistic regression
classifier can be trained by applying the backpropagation
method [13]. It is noteworthy that when training the logistic
regression classifier, the fine-tuning of SAE is also completed
at the same time.

After pre-training and fine-tuning of the SAE network, which
are conducted in the offline phase, SAE-SS is able to detect
IU’s presence/absence leveraging the received signals only.
Compared to the conventional feature-based OFDM sensing
methods (e.g., [3], [4], [5], [8]), SAE-SS does not need
external feature extraction algorithms to process the received
signals, such as calculating the energy of received signals. That
significantly reduces the complexity of SAE-SS. Moreover,
SAE-SS detects the IU’s presence/absence using the received



signals only, without requiring any prior information of the IU
(such as transmitting power or the features of IU’s signals).
That makes SAE-SS more practical than conventional OFDM
sensing methods.

C. Complexity Analysis

In this section, we compare the computational complexity
of our proposed SAE-SS during the online sensing phase
with CP [4], CM [5], and Artificial neural network (ANN)
methods [8], as shown in Table I. We select the number of
the real multiplication and complex multiplication as metrics
because they are the most computationally expensive. Note
that, one complex multiplication can be regarded as four times
of real multiplication, hence we use the total number of real
multiplication to illustrate the computational complexity. In
Table I, Kl and KL stand for the numbers of units in the
hidden layer of the lth and Lth layer, respectively. Pl denotes
the number of input units in the lth layer. Sδ means the set of
consecutive indices for which x(n) = x(n + Nd), given the
synchronization mismatch δ.

From this table, it is worth noting that no complex multi-
plication is involved in SAE-SS because we divide complex
signals into the real and imaginary parts (as shown in equation
(3)). The online computational complexity of the proposed
SAE-SS is intermediate, which is less than the CM and CP
methods but higher than the ANN method. When Nc = 8,
Nd = 64, M = 2, L = 2, NSτ = 7, K1 = 100, and K2 = 50,
the total number of real complication of the proposed SAE-SS
is 33850. In contrast, the numbers of CM and ANN methods
are 53568, 43392 and 7754, respectively.

IV. SIMULATION RESULTS

In this section, we carry out extensive simulations to verify
the performance of our proposed SAE-SS. For that purpose,
we compare the results of SAE-SS and other four OFDM
sensing methods ( e.g., ED [3], CP [4], CM [5], and ANN
[8]). We choose Nd = 64 as the data block size of the received
OFDM signals, and Nc = Nd/8 as the length of CP. The signal
bandwidth and the radio frequency are 5 MHz and 2.4 GHz,
respectively. The values of SNR fall in the range from −20dB
to −8dB. We set the timing delay as δ ∈ [0, Nc + Nd − 1].
fq ∈ [0, 1] is the normalized CFO. There are two hidden layers
in SAE-SS, and the number of units in the first and the second
hidden layer are 100 and 50, respectively. M = 2 is the number
of received OFDM blocks. The number of iterations for pre-
training and fine-tuning are both 5000. Both the testing data
and training data are 2 ∗ 104 samples.

Fig. 3 compares the probability of miss detection (Pm) of
different sensing methods under the perfect conditions. The
“perfect conditions” means that the SU has enough prior
knowledge of IU signals, and there are no effects caused by
noise uncertainty, timing delay or CFO. We set the probability
of false alarm (Pf ) as 0.05. It is clear that, Pm of SAE-
SS is much smaller than ED [3], CP [4], CM [5], and ANN
methods [8] under the perfect conditions. Additionally, when
SNR increases, Pm of SAE-SS gets a greater decrease than
those of the other four sensing methods.

To further evaluate the sensing performance, we show the
Receiver Operating Characteristic (ROC) curves of various
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methods at SNR= −12dB, as illustrated in Fig. 4. Obviously,
SAE-SS can achieve a much higher probability of detection
(Pd, Pd = 1−Pm) than the other four methods, with the same
Pf . For instance, when Pf = 0.1, Pd of SAE-SS is 0.959,
whereas those of the other four methods are all lower than 0.8.

Fig. 5 shows Pm of the five sensing methods suffering from
the noise uncertainty, η. As can be seen, η affects Pm of all
the five sensing methods, but to different extents. Specifically,
in comparison with the other four methods, SAE-SS gains the
advantage regarding the robustness to noise uncertainty, and its
Pm is much smaller.

Fig. 6 shows the impact of timing delay on different sensing
methods. The timing delay is selected as 1 symbol and 5
symbols, respectively. Since timing delay does not affect the
sensing performance of ED, we only express the sensing results
of the other four sensing methods. It is clear that SAE-SS
outperforms the other three sensing methods in terms of the
robustness to timing delay. In addition, Pm of SAE-SS is
the smallest among these four sensing methods even when
suffering from timing delay.

Fig. 7 compares the impact of CFO on different sensing
methods. The values of the normalized CFO fq are 0.5 and 1,
respectively. Since the ED is not affected by CFO, we do not
present its figure here. As can be seen, the presented SAE-SS
has an advantage over the other three sensing methods in terms
of the robustness to CFO. Besides, Pm of the proposed SAE-
SS is much lower than the other three sensing methods even
with CFO.



TABLE I
ONLINE COMPUTATIONAL COMPLEXITY OF DIFFERENT SENSING METHODS

Method Complex Multiplications Real Multiplication
CP (Nc +Nd)(M +NSτ + 1) +M(Nc +Nd)

2 2(Nc +Nd)(Nc +Nd −NSτ )

CM MNdlog2
Nd
2

+MN2
d 2(N2

d −Nd)

ANN 2M(Nc +Nd) 4K1 +
∑L

l=2 KlPl +KL

Proposed SAE-SS None 2MK1(Nc +Nd) +
∑L

l=2 KlPl +KL
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V. CONCLUSION

In this work, we proposed a Stacked Autoencoder Based
Spectrum Sensing Method (SAE-SS) for sensing the pres-
ence/absence of IUs that use OFDM modulation. The proposed
method is more robust to CFO, noise uncertainty and timing
delay, in comparison with traditional OFDM sensing methods.
Moreover, SAE-SS is able to detect IU’s signals without any
requirement for prior knowledge of IU’s signals. Besides,
the proposed method can complete the sensing task without
requiring to conduct any arithmetical operations on the received
signals.
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