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Abstract 

Multistate density functional theory (MSDFT) is extended to facilitate treatment of 

situations involving more than two open-shell electrons.  The method is applied to 

determine energies for the two doublet state (tripdoublet and singdoublet) and the 

quartet-state components that arise when two electrons of one spin type and one 

electron of the other singly occupy three orbitals.  A test system, the (π,π*) 

excitation of the ethylene cation, is utilized, with MSDFT delivering energies that are 

numerically superior to those from time-dependent density-functional theory 

(TD-DFT) and states free from spin contamination.  

Kohn-Sham [1] density functional theory (DFT) of electronic structure is the 

most widely used theory in quantum chemistry.  Its remaining weaknesses often 

involve the effects of strong electron correlation; of concern herein is static 
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correlation where more than one determinant is required to provide the simplest 

description of the electron density [2].  For instance, currently no known functional 

in DFT is able to simultaneously describe the dissociation of the ground state of H2
+ 

and H2 [2-5], with time-dependent DFT (TDDFT) not able to describe excited states 

of H2 past the ground-state singlet-triplet instability [6].  However, Wang and 

Ziegler were able to treat the dissociation limit of H2 using spin-flip TDDFT with a 

non-collinear exchange correlation potential, but at the cost of poorly representing the 

bonding region [7].  For some problems, an improved exchange-correlation 

functional could help [2, 8], but a more general strategy is to consider multi-reference 

approaches.  

Several DFT methods that in some way embody multi-reference character have 

been recently presented [8-17].  The best-known of these methods is constrained 

DFT (CDFT), introduced by Dederichs, Bl̈gel, Zeller and Akai [18].  In CDFT, one 

can set the total charge or spin to a particular value in certain regions of space.  

Thus, by using CDFT, one can construct different configurations, followed by a 

configuration interaction (CI) calculation, making this a multi-reference DFT 

(MRDFT) calculation. This procedure describes well the dissociation of H2
+, H2 and 

LiF, also it provides a natural way for the description of electron-transfer process [8, 

19-21].  A shortcoming of CDFT is that it does not work well when the fragments 

are strongly overlapping as the constraint formulas are less well defined.  

Very recently Plaisance, Van Santen and Reuter [9] reported a method called 

Constrained-Orbital Density Functional Theory (CO-DFT).  In contrast to CDFT, in 

CO-DFT certain Kohn-Sham orbitals are confined to single atoms.  A plane-wave 

basis set was used in this method, and it was implemented in the Vienna Ab-initio 

Simulation Package (VASP). They also showed that multi-configurational Kohn−Sham 

calculations can be performed using CO-DFT to construct configuration states. 

Another well-known multi-reference DFT is multi-configuration pair-density 

functional theory (MC-PDFT).  Manni et al. [22] developed it by combining 

multi-configuration wavefunction theory and density functional theory. Put simply, the 
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authors compute a multiconfigurational wave function using standard methods. Then 

the density and pair density are translated into variables that conventional DFT 

functionals use, and these are used to compute the remaining correlation energy.  By 

including the DFT contribution after optimization, this method is inherently 

non-variational. They showed that MC-PDFT can be as accurate as CASPT2 for 

electronic excitations [23].   

Gao, Grofe, Ren and Bao [11] described a multistate density functional theory 

(MSDFT), in which block-localized Kohn-Sham orbitals are optimized to construct 

basis states for non-orthogonal configuration interaction calculations [24, 25]. Similar 

to CDFT, block localized Kohn-Sham configurations can limit the effect of 

self-interaction error, but remains well defined for strongly overlapping units.  

MSDFT can be used to study electron transfer processes and other chemical reactions 

as diabatic states can be easily represented using it [10, 26, 27].  Furthermore, MSDFT 

has been used to model the spin multiplet components of atoms and molecules to yield 

strict degeneracy between the high and low spin components [28]. Very recent 

applications of MSDFT include Lewis-base catalysed hydrogen-atom transfer by 

Asgari et al. [29], and C-H bond activation in a non-heme iron oxo complex [30]. 

In this work, we develop new applications for DFT approaches to systems 

involving strongly overlapping orbitals and coupled spin-multiplet components.  In 

particular, this approach has been shown to deliver mean absolute errors of 0.045 eV 

for the singlet-triplet splittings of main-group divalent radicals [28], much lower than 

similar errors reported for MC-PDFT [31, 32] . 

The details of MSDFT have been presented previously [10-12, 28]. For 

completeness, we briefly outline the method. MSDFT treats the multireference 

problem by taking a linear combination of configurations and uses Kohn-Sham 

density functional theory to variationally optimize a set of determinant configurations. 

The density for state I is given as a weighted combination of densities (𝜌𝜌𝐴𝐴) for basis 

configurations and transition densities (𝜌𝜌𝐴𝐴𝐴𝐴): 
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𝜌𝜌𝐼𝐼 = �|𝐶𝐶𝐴𝐴𝐴𝐴|2𝜌𝜌𝐴𝐴

𝑁𝑁𝐷𝐷

𝐴𝐴

+ �𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐵𝐵𝐵𝐵 𝜌𝜌𝐴𝐴𝐴𝐴

𝑁𝑁𝐷𝐷

𝐴𝐴≠𝐵𝐵

 (1) 

where 𝐶𝐶𝐴𝐴𝐴𝐴  is the configuration coefficient for MSDFT state 𝐼𝐼  with 𝑁𝑁𝐷𝐷  basis 

determinants, 𝐴𝐴. The configuration coefficients can then by determined by solving 

the generalized secular equation 

𝑯𝑯𝑴𝑴𝑴𝑴𝑪𝑪 = 𝑬𝑬𝑬𝑬𝑬𝑬 (2) 

where 𝑯𝑯𝑴𝑴𝑴𝑴  is the MSDFT Hamiltonian, 𝑺𝑺 is the overlap matrix and 𝑬𝑬 is the 

diagonal matrix of eigenvalues (also the MSDFT energies).  The elements of the 

MSDFT Hamiltonian are 

𝐻𝐻𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 = 𝐸𝐸𝐾𝐾𝐾𝐾[𝜌𝜌𝐴𝐴] (3) 

𝐻𝐻𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 = 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇[𝜌𝜌𝐴𝐴,𝜌𝜌𝐴𝐴,𝜌𝜌𝐴𝐴𝐴𝐴] (4) 

where 𝐸𝐸𝐾𝐾𝐾𝐾[𝜌𝜌𝐴𝐴] is the energy of Kohn-Sham DFT from a single-determinant for state 

A and 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇 is a new class of density functional of the the transition density and 

those of the interacting states [11, 26, 27].  As for the Kohn-Sham density functional 

approximation to the exchange-correlation functional, the exact transition density 

functional in MSDFT is not known. Therefore, an approximate form of the transition 

density functional has been used:  

𝐻𝐻𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 = 𝐻𝐻𝐴𝐴𝐴𝐴𝑊𝑊𝑊𝑊𝑊𝑊 + 1
2𝑆𝑆𝐴𝐴𝐴𝐴(𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝜌𝜌𝐴𝐴] + 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝜌𝜌𝐵𝐵]) , (5) 

where the first term is the wave function theory (WFT) off-diagonal element, and the 

second term is the overlap weighted average of the correlation energies. Alternatively, 

a correlation energy weighted approximation has been used [11, 26, 27]. Here, the 

correlation energy is defined as the energy difference using DFT and WFT with the 

same set of orbitals.  

In this work, we continue [28] an extension of MSDFT to provide a general form 

of the transition density functional for spin-coupled determinants.  The simplest such 

class is doublet states made with two electrons of one type (e.g., spin-up, α) and one of 

the other (spin-down, β).  In total, when 3 unpaired electrons are placed in 3 orbitals, 

23 = 8 spin combinations are possible, as illustrated in Fig. 1.  In general, not all 

configurations in Fig. 1 are eigenstates of the S2 operator, which depicts the total spin of 
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the system.  Three of the eight spin components have 𝑚𝑚𝑧𝑧 = 1
2, and their interaction 

leads to one quartet state and two doublet states, with corresponding spin-flipped states 

for 𝑚𝑚𝑧𝑧 = −1
2.  Two of the four components of the quartet state are specified simply in 

terms of all α (1a) or all-β (1b) electrons.  For each, the Gunnarsson-Lundqvist 

theorem [3] applies, meaning that standard DFT is well-defined to compute the 

energy of the quartet state; as the components are degenerate, using either 1a or 1b 

produces the same results.  However, the other 6 determinants shown in Fig 1 

interact with each other, and the Gunnarsson-Lundqvist theorem [3] does not apply, 

offering no physical meaning (i.e., spin contaminated states) to the results coming 

from DFT calculations that set the electronic occupancy to any of 2a, 2b, 3a, 3b, 4a, 

or 4b.  Application of MSDFT allows the energies of the two doublet states and the 

quartet state to be determined, processing either the determinant sets 2a, 3a, and 4a or 

else 2b, 3b, and 4b.   

 

 
Fig. 1.  The 8 spin components possible for 3 unpaired electrons in 3 orbitals interact 
with each other to produce 4 degenerate components of a quartet state and two sets of 
two degenerate components of doublet states (the tripdoublet and the singdoublet). 

 

The two doublet states from combinations of the three configurations are usually 

termed the tripdoublet state and the singdoublet state, based on the forms of the 

wavefunctions generated in a Hartree-Fock based multi-configurational approach. The 

meaning of these names becomes clear through consideration of the interaction of a 

closed-shell molecule with a molecule in a doublet state [33].  The closed-shell 

molecule can display singlet and triplet spectroscopic transitions, and, if the other 

molecule is infinitely separated, the transition energies (e.g., for fluorescence and 
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phosphorescence) will occur at the standard gas-phase values.  The singlet 

fluorescence is spin-allowed and may be bright, whereas the triplet phosphorescence is 

spin-forbidden and will be weak.  As the radical is brought close to the molecule, the 

combined states of the dimer become the tripdoublet and the singdoublet states.  The 

singdoublet corresponds to the asymptotic singlet state whilst the tripdoublet 

corresponds to the asymptotic triplet state.  Bringing the two molecules into van der 

Waals contact perturbs the energies of each transition only slightly, but now the 

once-forbidden tripdoublet emission can become very intense, owing to intermolecular 

interactions.  Both singdoublet and tripdoublet transitions are formally spin-allowed.  

Tripdoublet transitions can be very important in molecular materials carrying charge, 

for example the special-pair radical cation in photosynthesis [34, 35]. 

The energies of the spin projections of quartet states involving multiple 

determinants should exactly equal the energies determined from single-determinants 

1a or 1b.  In WFT, this is achieved as determinants 2a through 4b are coupled 

through the exchange operator due to the Slater-Condon rules.  By analogy with 

WFT, we derive effective spin-coupling terms using DFT that guarantee this basic 

result.  In WFT, the total energy for the determinants in Figure 1 is [36] 

𝐸𝐸𝑊𝑊𝑊𝑊𝑊𝑊 = �ℎ𝑖𝑖𝑖𝑖

3

𝑖𝑖

+ �𝐽𝐽𝑖𝑖𝑖𝑖

3

𝑗𝑗<𝑖𝑖

−�𝐾𝐾𝑖𝑖𝑖𝑖𝛿𝛿�𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑗𝑗�
3

𝑗𝑗<𝑖𝑖

 (6) 

where ℎ𝑖𝑖𝑖𝑖  are the one-electron energies of spin orbital 𝑖𝑖 , 𝐽𝐽𝑖𝑖𝑖𝑖  and 𝐾𝐾𝑖𝑖𝑖𝑖  are the 

electrostatic repulsion and exchange integrals between orbitals 𝑖𝑖 and 𝑗𝑗, respectively, 

and 𝑠𝑠𝑖𝑖 is the spin coordinate. 𝛿𝛿�𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑗𝑗� is the Dirac delta function, which ensures 

that the exchange interaction is only included for same spin-electrons. Then the 

energy difference between determinants 2a and 1a is  

Δ𝐸𝐸(2𝑎𝑎, 1𝑎𝑎) = 𝐸𝐸𝑊𝑊𝑊𝑊𝑊𝑊(2𝑎𝑎) − 𝐸𝐸𝑊𝑊𝑊𝑊𝑊𝑊(1𝑎𝑎) = −�𝐾𝐾𝑖𝑖𝑖𝑖 �𝛿𝛿�𝑠𝑠𝑖𝑖2𝑎𝑎 − 𝑠𝑠𝑗𝑗2𝑎𝑎� − 𝛿𝛿�𝑠𝑠𝑖𝑖1𝑎𝑎 − 𝑠𝑠𝑗𝑗1𝑎𝑎��
3

𝑗𝑗<𝑖𝑖

 (7) 

where we have included a superscript to denote the determinant from which the spin 

orbital originates.  Thus, the energy difference is only a linear combination of 

exchange integrals.  Here, we use the minimal number of electrons to simplify the 
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formulas for presentation.  However, this result includes systems that have closed 

shell core electrons as these terms would be included in both determinants, and would 

therefore cancel out.  Considering only determinants 2a, 3a and 4a, we find that there 

are three energy differences using determinant 1a as a unified reference and three 

exchange integrals.  Thus, we can define a linear system of equations 

𝚫𝚫𝑬𝑬𝑾𝑾𝑾𝑾𝑾𝑾  =  −𝜺𝜺 𝑲𝑲𝑾𝑾𝑾𝑾𝑾𝑾 (8) 

where 𝚫𝚫𝑬𝑬𝑾𝑾𝑾𝑾𝑾𝑾 and 𝑲𝑲𝑾𝑾𝑾𝑾𝑾𝑾 are 3 dimensional vectors, and 𝜺𝜺 is a 3 x 3 matrix of 1’s 

and 0’s. 𝜀𝜀𝑖𝑖𝑖𝑖  has a value of 0 when both determinants have the same exchange 

interaction and 1 when the determinants do not. It should be noted that 𝚫𝚫𝑬𝑬𝑾𝑾𝑾𝑾𝑾𝑾 

indexes over the determinants, and 𝑲𝑲𝑾𝑾𝑾𝑾𝑾𝑾 indexes over molecular orbital integrals. 

The order of the exchange integrals in 𝑲𝑲𝑾𝑾𝑾𝑾𝑾𝑾 and the order of the determinants in 

𝚫𝚫𝑬𝑬𝑾𝑾𝑾𝑾𝑾𝑾 determine the structure of 𝜺𝜺. Equation 8 is an exact result from WFT, but it 

is not necessarily true in a multistate density functional theory because of 

contributions due to dynamic correlation.  This property of linearity of the exchange 

operator is a fundamental reason as to why there is an energy degeneracy between the 

high spin and low spin components because there is an exact addition and cancellation 

of terms.  KS-DFT approximations often use nonlinear terms with respect to the 

density to compute the exchange and correlation. Thus, there is no guarantee that the 

same energy degeneracy would result from a simple spin coupling scheme in DFT.  

Using Equation 8, it is possible to impose the correct symmetry in DFT by replacing 

the WFT terms with a density functional approximation.  Then, multiplying on the 

left by 𝜺𝜺−1 yields the MSDFT spin-couplings, 

𝑲𝑲𝑫𝑫𝑫𝑫𝑫𝑫 = −𝜺𝜺−1 𝚫𝚫𝑬𝑬𝑫𝑫𝑫𝑫𝑫𝑫 (9) 

where 𝑲𝑲𝑫𝑫𝑫𝑫𝑫𝑫  is an effective exchange-correlation integral of functionals of two 

determinants.  The form of an a priori theoretical definition of the density 

dependence of 𝑲𝑲𝑫𝑫𝑫𝑫𝑫𝑫 is not yet known and requires further research.  However, we 

can define its value using Eqn. 9 on the basis of energy constraints of spin projections.  

Thus, the spin-couplings can be derived from simple energy differences in the high 

spin and low spin determinants.  Fundamentally, because they were derived from 
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DFT energies, the spin-couplings include dynamic correlation. Then the MSDFT 

coupling between determinants 2a and 4a as an example is   

𝐻𝐻2𝑎𝑎,4𝑎𝑎
𝑀𝑀𝑀𝑀 =  −�𝐾𝐾𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 ��1 − 𝛿𝛿(𝑠𝑠𝑖𝑖2𝑎𝑎 − 𝑠𝑠𝑖𝑖4𝑎𝑎)� �1 − 𝛿𝛿�𝑠𝑠𝑗𝑗2𝑎𝑎 − 𝑠𝑠𝑗𝑗4𝑎𝑎���

3

𝑗𝑗<𝑖𝑖

= −𝐾𝐾12𝐷𝐷𝐷𝐷𝐷𝐷 (10) 

where only a single exchange integral remains. Equations 9 and 10 constitute a 

general method for computing the spin coupling in MSDFT.  For simplicity, we 

presented the equations using three spin-coupled determinants, but the algorithm 

cannot be easily extended to the 𝑁𝑁𝐷𝐷 determinant case. The total number of unique 

configurations is the 2𝑁𝑁𝑆𝑆𝑆𝑆 − 2 where 𝑁𝑁𝑆𝑆𝑆𝑆  is the number of spin coupled orbitals, 

which will always be larger than the number of couplings �12𝑁𝑁
𝑆𝑆𝑆𝑆(𝑁𝑁𝑆𝑆𝑆𝑆 − 1)�. The 

antiparallel high spin configuration (e.g. 𝑚𝑚𝑧𝑧 =  −3
2 ) cannot be used as a separate 

configuration in Eqn. 9 as this would result in 𝜺𝜺 being a singular matrix. Therefore, it 

is possible that the system of equations is solvable for the 𝑁𝑁 dimensional case. 

Equation 10 does not enforce the Slater-Condon rules, but they can easily be enforced 

using the corresponding orbitals method [37].  In the three-determinant case, this is 

not a problem.  Additionally, Eqn. 9 recovers similar formulae to those presented by 

Grofe et al., but does not require the computation of Hartree-Fock energies for 

computing the transition density functional [28].  

As a simple example system, we consider the (π,π*) excitation of the ethylene 

cation.  Key determinants involved are indicated in Fig. 2.  The ground state of the 

cation, (1)2B3u, involves oxidation from the b3u π orbital.  The states of primary 

interest, corresponding to those in Fig. 1, involve (σCH,π*) b3g→b2g excitation, making 

either the (1)4B2u quartet state or the 2B2u singdoublet or tripdoublet states.  Another 

state of relevance is a low-lying state named (2)2B2u of (σCH,π) type.   

 MSDFT calculations required the specification of input orbitals depicting the 

determinants to be included in the calculations, and the method has been implemented 

into a modified version of the GAMESS(US) programme [10, 12, 38], using orbitals 

generated by Gaussian16 [39].  Results are not strongly dependent of the choice of 
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initial orbitals, with those for the spin-restricted quartet state used herein.  Use of 

spin-restricted calculations is essential to ensure that different spin-state components 

evaluate to the same energy.  We report two different MSDFT calculations; the first is 

called “MSDFT(3)” that includes excited states 2a, 3a, and 4a only, and the other is 

“MSDFT(4)” with the additional (2)2B2u state. 

 

Fig. 2.  Determinants used in constructing the (1)2B3u ground-state, (1)4B2u quartet 
state, (2)2B2u state, and the 2B2u singdoublet and tripdoublet states of the ethylene 
cation.    
 

 MSDFT calculations are performed using the PBE0 density functional [40] and the 

aug-cc-pVDZ [41] basis set.  As Fig. 2 shows, the next-highest orbital above the π* 

LUMO is the C 3s Rydberg bonding orbital, and hence details of the results and 

technical issues concerning the feasibility with which the valence states of interest can 

be obtained depend on basis set size.  Table 1 compares MSDFT results for this basis 

set, as well as for cc-pVDZ and cc-PVTZ [41], showing only minor changes.  Larger 

basis sets proved impractical; results obtained using the minimal STO-3G basis vary by 

less than 1 eV from the aug-cc-pVDZ ones.  The PBE0/aug-cc-pVDZ optimized 

geometry of ethylene is used in all calculations. 
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Table 1.  Basis set dependence of PBE0 MSDFT energies, in eV, for the ethylene 
cation relative to its (1)2B3u ground state. 

State cc-pVDZ aug-cc-pVDZ cc-pVTZ 
(1)4B2u 6.62  6.61  6.61  

2B2u tripdoublet 7.27  7.26  7.22  
2B2u singdoublet 10.60  10.57  10.53  

 

 Table 2 compares the aug-cc-pVDZ MSDFT results to data obtained using 

complete-active-space self-consistent field (CASSCF) calculations, multi-reference 

configuration interaction (MRCI), EOM-CCSD, TD-DFT, and full 

configuration-interaction (FCI) calculations using the semi-empirical intermediate 

neglect of differential overlap (INDO-FCI) [42, 43] method, truncated at states of 

energy 80 eV.  The CASSCF and MRCI calculations use a CAS(11,7) active space in 

which all valence electrons are distributed amongst all valence orbitals of lower energy 

than the first Rydberg orbital.          

 

Table 2.  Comparison of excited-state energies ∆E, for the ethylene cation, and spin 
eigenvalues S2 for methods embodying spin contamination (aug-cc-pvDZ basis, PBE0 
used in MSDFT). 

State 
∆E / eV S2 

CAS(11,7) MRCI(11,7) MSDFT(3) MSDFT(4) EOM-CCSD TD-DFT INDO-FCI HF/CISc TD-DFT 

(1)2B3u [0] [0] [0] [0] [0] [0] [0] 0.755 0.752 

(1)4B2u 7.56 7.25 6.61a 6.61a 7.17  7.81   

(2)2B2u 6.16 5.85 - 3.85b 5.86 5.57 8.61 1.50 1.08 

tripdoublet 8.52 8.01 7.26 7.30 7.56 6.94 6.97 1.32 1.73 

singdoublet 13.55 12.07 10.57 12.68 8.59 8.93 11.49 2.75 1.45 

splitting 5.03 4.06 3.31 5.38 1.03d 1.99d 4.52 - - 

a: the same result is obtained by DFT evaluation of the energy of 1a. 
b: 5.81 eV by DFT evaluation of the energy of the single-determinants.  
c: For doublet states without spin contamination, S2 = ¾; EOM-CCSD are based on a 
Hartree-Fock (HF) reference, initiated by single-excitation singles (CIS) calculations, 
only for which S2 values are available; EOM-CCSD values will show improvements 
upon these. 
d: 0.63 eV (EOM-CCSD) and 2.65 eV (TD-DFT) using the STO-3G basis set hence the 
low values are not caused by interactions with Rydberg states. 
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  The most accurate transition energies in Table 2 are believed to be the MRCI ones, 

listing 5.85 eV for (2)2B2u, 7.25 eV for (1)4B2u, 8.01 eV for the tripdoublet state and 

12.07 eV for the singdoublet.  Of these results, the only sizable change from the 

CASSCF results is -1.48 eV for the singdoublet, and it would therefore appear that most 

states are accurately evaluated.  The EOM-CCSD results for (1)4B2u and (2)2B2u are 

very similar to the MRCI ones, but for the singdoublet there is a significant difference 

of 4.96 eV.  The calculated singdoublet-tripdoublet energy difference (Table 2) is 4.06 

eV from MRCI but only 1.03 eV from EOM-CCSD.  Using the minimal STO-3G basis 

set, the EOM-CCSD value is 0.63 eV and hence the unexpectedly low result does not 

arise from interactions with Rydberg states that may not properly included in the 

MRCI.  It is possible that spin-flip EOM-CCSD would yield better values for this 

excitation, but we will leave that for a future work [44].  TD-DFT also gives an 

anomalously low singdoublet energy, with a splitting of just 1.99 eV.  The poor results 

from EOM-CCSD and TD-DFT are most likely indicative of the difficulty in treating 

open-shell states with techniques that embody single-reference characteristics.  As 

indicated in Table 2, these methods are associated with excited-state wavefunctions 

depicting significant spin contamination, questioning the reliability of non-energetic 

properties determined by them.  

Using MSDFT(3) and MSDFT(4), the energy of the quartet state is predicted to be 

6.61 eV, identical to the value obtained by direct computation of the density associated 

with determinant 1a.  This is an important indicator suggesting that the MSDFT results 

for the doublet states accurately portray the properties of the density-functional used in 

the calculations.  These values are 0.7 eV less than the MRCI value of 7.25 eV, 

however.  Similarly, the MSDFT(3) and MSDFT(4) energies for the tripdoublet state 

are 0.7 eV less than the MRCI value.  Most significantly, the MSDFT(4) energy for 

(2)2B2u is 2 eV less than the MRCI value, with that for the singdoublet being 0.6 eV 

higher (and 2.1 eV higher than the MSDFT(3) result).  This energy lowering arises 

from strong interactions perceived by MSDFT between it and, in particular, the 

singdoublet state. 
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If this interaction is realistically represented, then an explanation for the observed 

error could be the absence of other states in the MSDFT that would similarly influence 

the ground state, a recognized problem with MCSCF calculations that inspired the 

development of CASSCF theory. Of course, computational results from MSDFT are 

dependent on the particular functionals used, which is PBE0 in the present study. 

Nevertheless, the singdoublet-tripdoublet splitting is 3.31 eV from MSDFT(3) and 5.38 

eV from MSDFT(4), both closer to the MRCI value of 4.06 eV than are the 

EOM-CCSD and TD-DFT results. 

INDO is an efficient semi-empirical wavefunction-based method that when 

implemented using MRCI would be competitive with MSDFT for many technological 

applications, much more so than either EOM-CCSD or TD-DFT.  Here using a 

CAS(11,12) reference that is equivalent to FCI, it captures critical static electron 

correlation and therefore gives much better result of 4.52 eV for the 

singdoublet-tripdoublet splitting, but it also predicts (2)2B2u to be too high by 3.03 eV, 

indicating that this method lacks general reliability.  Expanding the CI from CAS(5,4) 

to CAS(11,7) to FCI makes little change to the results, however. 

 The ethylene cation may be considered to be a worst-case scenario as the orbitals 

involved in the transitions are all strongly localized, making the energy scale quite 

large.  Nevertheless, MSDFT is shown to make semi-quantitative predictions for its 

lowest-energy tripdoublet and singdoublet states.  We found that energies are closer to 

values from MRCI than those from TD-DFT.  It is perhaps the most generally reliable 

method that could routinely be applied to free radical systems of technological 

relevance. In addition to the choice of a Kohn-Sham density functional approximation 

for each determinant configuration, their orbitals could also be individually optimized, 

whereas a single set of orbitals are used in the present study. In general, it would appear 

necessary to ensure that MSDFT results are converged with respect to the number of 

states included in the calculations, and these are the minimum number of states for a 

given set of spin complement.  This issue is also important for multi-reference 

applications of wavefunction theory based on Hartree-Fock reference states, leading to 
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the development of CASSCF approaches so as to minimise empiricism.  Such effects 

are expected to be independent of the density-functional used as they address issues 

concerning the Kohn-Sham or its extension, the Gunnarsson-Lundqvist theorem [3], 

rather than density-functional design. 

 

Data Availability 

Input scripts and sample output needed to run the MSDFT code in GAMESS, as well as 

the interface code to Gaussian16, are included in Data In Brief associated with this 

manuscript. 
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